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Section 3.1
The Use of Statistical Tests to Calibrate the

Black-Scholes Model

[Description] A new method to solve the calibration problem for the
Black-Scholes asset price dynamics model is proposed. The data used in
the calibration problem are the observations of the asset price on a finite
set of equispaced (known) discrete time values. Statistical tests are used
to obtain estimates with statistical significance of the two parameters of
the Black-Scholes model, that is of the volatility and of the drift. The
consequences of these estimates on the option pricing problem are
investigated. In particular the pricing problem for options with uncertain
volatility in the Black-Scholes framework is revisited and a statistical
significance is associated to the option price intervals determined using
the Black-Scholes-Barenblatt equations. Numerical experiments with
synthetic and real data are presented. The real data considered are the
daily closing values of the S&P500 index and of the associated European
call and put option prices in the year 2005. The method proposed to
calibrate the Black-Scholes dynamics model can be extended to other
stochastic dynamical systems used as models in science and engineering.

[Paper] Fatone L., Mariani F., Recchioni M.C., Zirilli F. (2012). The use
of statistical tests to calibrate the Black-Scholes asset dynamics model
applied to pricing options with uncertain volatility, Journal of Probability
and Statistics, Volume 2012, Article ID 931609, 20 pages.

[Website] http://www.econ.univpm.it/recchioni/finance/w11
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3.1.1 Outline of the Presentation

• We consider the calibration problem for the Black-Scholes asset price
dynamics model (Black et al. 1973).

• The data used in the calibration problem are the observations of the
asset price on a finite set of equispaced (known) discrete time values.

• The method proposed to solve the calibration problem uses statistical
tests in order to obtain estimates with statistical significance of the
two parameters of the Black-Scholes model, i.e.: the volatility and
the drift.

• We present the consequences of these estimates (with significance
levels) on the option pricing problem. In particular we revisit the
pricing problem for options with uncertain volatility in the Black-
Scholes framework associating a statistical significance to the option
price intervals determined using the Black-Scholes-Barenblatt (BSB)
equation.

• Numerical experiments with real data are presented.

3.1.2 The Calibration Problem

We want to estimate (with statistical significance) the volatility and the
drift parameters of the Black-Scholes asset price dynamics model starting
from a set of data.

We use as set of data the observations of the asset price on a finite set of
(known) equispaced discrete time values.

The solution of the calibration problem proposed uses the Student’s T
and the χ2 statistical tests, in order to provide values of the volatility and
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of the drift parameters of the Black-Scholes model with a statistical
significance associated.

In a statistical test the statistical significance α, 0 < α < 1, is the
maximum probability of rejecting the (null) hypothesis of the test when
the hypothesis is true.

We consider the effects of these significance levels on the pricing
problem for options with uncertain volatility. We assume that the
(uncertain) volatility belongs to a known interval and we determine the
corresponding price intervals for the (European vanilla) option prices
using the Black-Scholes-Barenblatt (BSB) equation (see, for example,
Avellaneda et al. 1995, Lyons, 1995).

Thank to our methodology statistical significance levels can be attributed
to the option price intervals determined using the BSB equation.

Using these tools we study the data time series made of the daily closing
values of the S&P500 index and of the associated European vanilla call
and put option prices in the year 2005.

Remarks

1. The calibration problem for the Black-Scholes asset dynamics model
is an inverse problem for a stochastic dynamical system defined by a
stochastic differential equation.

2. The use of statistical tests in the solution of the calibration problem for
stochastic dynamical systems is an interesting way of approaching these
inverse problems. It can be used in many application contexts different
from mathematical finance. The Black-Scholes model is very simple
and can be studied with elementary statistical tests (Student’s T, χ2).
The study of more general models with this methodology requires the
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development of ad hoc statistical tests.

3.1.3 The Calibration Problem for the Black-Scholes Model

Let St > 0 denote the asset price at time t ≥ 0. The Black-Scholes
model assumes that St, t > 0, satisfies:

dSt = µStdt+ σStdWt, t > 0,

S0 = Ŝ0,

where µ, σ are real parameters, µ is the drift, σ > 0 is the volatility,

Wt, t > 0, is the standard Wiener process, W0 = 0, dWt, t > 0, is its

stochastic differential and Ŝ0 > 0 is a given random variable. We assume

Ŝ0 concentrated in a point with probability one.

The real parameters µ, σ are the unknowns of the calibration problem.

Let Gt = ln

(
St

Ŝ0

)
, t > 0, be the log-return at time t of the asset whose

price is St, t > 0. The process Gt, t > 0, satisfies:

dGt =

(
µ− σ2

2

)
dt+ σdWt, t > 0,

• Gt = ln

(
St

Ŝ0

)
, t > 0, is a generalized Wiener process with constant

drift µ− σ2

2
and constant volatility σ > 0;

• for t ≥ 0, τ > 0, the increment in Gt = ln

(
St

Ŝ0

)
occurring between

time t and time t + τ , is a Gaussian random variable with mean(
µ− σ2

2

)
τ and variance σ2τ , i.e.:
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Gt+τ−Gt = lnSt+τ−lnSt∼N
((

µ−σ
2

2

)
τ, σ2τ

)
, t ≥ 0,τ > 0,

where, for M , V real constants, N (M,V 2) denotes the Gaussian
distribution with mean M and variance V 2.

Let ∆t > 0 be a time increment and ti = i∆t, i = 0, 1, . . . , n be a

discrete set of equispaced time values. We define Xti , the

asset price log-return increment when t goes from ti−1 to ti,

i = 1, 2, . . . , n, as follows:

Xti = ln

(
Sti
Sti−1

)
, i = 1, 2, . . . , n.

The random variables Xti , i = 1, 2, . . . , n, are independent identically
distributed (i.i.d.) Gaussian random variables with mean M and variance
V 2 where:

M =

(
µ− σ2

2

)
∆t, V 2 = σ2∆t.

That is we have:

Xti ∼ N
((

µ− σ2

2

)
∆t, σ2∆t

)
, i = 1, 2, . . . , n.
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3.1.4 The Calibration Problem

Given ∆t > 0, a statistical significance level α, 0 < α < 1,
and the asset price Ŝi observed at time t = ti = i∆t,
i = 0, 1, . . . , n, determine two intervals where the
parameters of the Black- Scholes model µ and σ > 0

belong with the given significancelevel α.

The observed log-return increments x̂i = ln

(
hatSi
hatSi−1

)
,

i = 1, 2, . . . , n, are a sample of n observations taken respectively from

Xti , i = 1, 2, . . . , n, that is taken from a set of i.i.d. Gaussian random

variables. Using this data sample, through the Student’s T test and the χ2

test respectively, we determine two intervals where the mean M and the

variance V 2 of these random variables belong with the given significance

level α.

From the knowledge of the intervals determined for M and V 2, the
corresponding intervals for µ and σ can be easily recovered.

Remark

In many circumstances it is more practical to try to determine an interval
of variability for the drift µ and for the volatility σ of the Black-Scholes
model instead than trying to determine their “exact” values.
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3.1.5 The Student’s T Test and the χ2 Test for the Gaussian Random
Variable

In the most simple circumstances, like the one considered here,
inferences about the mean M of a Gaussian distribution N (M,V 2) are
based on the Student’s T test and inferences about the variance V 2 of a
normal distribution N (M,V 2) are based on the χ2 test.

Let n ≥ 2 and let Y1, Y2, . . . , Yn be a set of i.i.d. random variables whose

distribution is N (M,V 2).

Let

Ȳ =
Y1 + Y2 + · · ·+ Yn

n
=

1

n

n∑
i=1

Yi,

Σ2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2.

3.1.6 The Student’s T Test

Given two real numbers M1, M2, such that M1 < M2, we are interested
in testing the following (composite) hypotheses:

H0 : M1 ≤M ≤M2,

versus
H1 : M < M1 or M > M2.

The corresponding decision table is:

1. accept H0 : M1 ≤M ≤M2;

2. reject H0 : M1 ≤M ≤M2.
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The two test statistics are:

T1 =
Ȳ −M1

Σ/
√
n
, T2 =

Ȳ −M2

Σ/
√
n
.

Given a significance level α, 0 < α < 1, the decision rules are:

1. accept H0 : M1 ≤M ≤M2, with significance level α, if on the data
sample we have: T1 > −tn−1,α/2 and T2 < tn−1,α/2;

2. reject H0 : M1 ≤ M ≤ M2, with significance level α, if on the data
sample we have: T1 ≤ −tn−1,α/2 or T2 ≥ tn−1,α/2.

The number tn−1,α/2 is the solution of:

P (−tn−1,α/2 ≤ T ≤ tn−1,α/2) = 1− α,

where P (·) denotes the probability of · and T is a random variable with
Student’s T distribution with n− 1 degrees of freedom.

3.1.7 The χ2 Test

Given two positive numbers V1, V2, such that V 2
1 < V 2

2 , let us consider
the test of the following (composite) hypotheses:

H0 : V 2
1 ≤ V 2 ≤ V 2

2 ,

versus
H1 : V 2 < V 2

1 or V 2 > V 2
2 .

The corresponding decision table is:

1. accept H0 : V 2
1 ≤ V 2 ≤ V 2

2 ;

2. reject H0 : V 2
1 ≤ V 2 ≤ V 2

2 .
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The two test statistics are:

χ2
1 =

(n− 1)Σ2

V 2
1

, χ2
2 =

(n− 1)Σ2

V 2
2

.

Given the significance level α, 0 < α < 1, the decision rules are:

1. accept H0 : V 2
1 ≤ V 2 ≤ V 2

2 , with significance level α, if on the data
sample we have: χ2

1 > χn−1,α/2 and χ2
2 < γn−1,α/2;

2. reject H0 : V 2
1 ≤ V 2 ≤ V 2

2 , with significance level α, if on the data
sample we have: χ2

1 ≤ χn−1,α/2 or χ2
2 ≥ γn−1,α/2,

where:
P (χn−1,α/2 ≤ χ2) = 1− α

2
,

P (χ2 ≤ γn−1,α/2) = 1− α

2
,

where χ2 is a random variable with χ2 distribution with n − 1 degrees of
freedom.

Given a significance level α, 0 < α < 1, we can perform statistical tests

on the variance V 2 and on the mean M of the random variables

Xti = ln

(
Sti
Sti−1

)
, i = 1, 2, . . . , n, starting from the data sample

x̂i = ln

(
Ŝi

Ŝi−1

)
, i = 1, 2, . . . , n, using the χ2 test and the Student’s T test

respectively.

This implies that given α, 0 < α < 1, we can accept or reject, with
significance level α, the hypotheses:

σ1 ≤ σ ≤ σ2,

and
µ1 ≤ µ ≤ µ2,
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where

σi =
Vi√
∆t
, and µi =

Mi

∆t
+

V 2
i

2∆t
, i = 1, 2,

simply translating to σ and µ the results on V 2 and M obtained with the
statistical tests described previously (see Fatone et al. 2012 for further
details).

3.1.8 Large Option Prices with Uncertain Volatility and Statistical
Significance

Given a significance level α, 0 < α < 1, assuming that the
hypothesis H0 : σ1 ≤ σ ≤ σ2 is accepted with significance
level α, determine (with significance level α) the range
where the value of an European vanillaoption lies.

The answer to this question follows from the work of Avellaneda, Levy
and Parás 1995 and of Lyons 1995. These authors propose a way to price
options in the Black-Scholes model when the volatility σ is not known
exactly, but it is known that:

σ1 ≤ σ ≤ σ2.

In Avellaneda et al. 1995 and Lyons, 1995 significance levels are not
considered.

We limit our attention to European vanilla call and put options.

Let t be the time variable, S be the asset price, T > 0 be the expiration
date of the option to be priced and r be the risk free interest-rate. Moreover
let g be the pay-off function of the option. For example, if K denotes
the strike price of the option, for an European vanilla call option we have
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g(S) = max(S −K, 0), S > 0, while for an European vanilla put option
we have g(S) = max(K − S, 0), S > 0.

In Avellaneda et al. 1995 and Lyons, 1995 it is shown that in the Black-

Scholes framework when σ1 ≤ σ ≤ σ2 there exists an interval [V1,V2]

depending on S and t, such that the price V = V(S, t), S > 0, 0 < t ≤ T ,

of the option lies in this interval, that is:

V1(S, t) ≤ V(S, t) ≤ V2(S, t), S > 0, 0 < t ≤ T .

The worst-case option value V1(S, t), S > 0, 0 < t ≤ T , satisfies the

following nonlinear partial differential equation known as Black-Scholes-

Barenblatt (BSB) equation:

∂V1

∂t
+

1

2
a(Γ1)2S2∂

2V1

∂S2
+ rS

∂V1

∂S
− rV1 = 0, S > 0, 0 < t < T ,

with final condition:

V1(S, T ) = g(S), S > 0,

where

Γ1 =
∂2V1

∂S2
,

and

a(Γ1) =

 σ2, if Γ1 ≤ 0,

σ1, if Γ1 > 0.

Similarly, the best-case option value mathcalV2(S, t), S > 0, 0 < t ≤

T , satisfies the following BSB equation:
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∂V2

∂t
+

1

2
b(Γ2)2S2∂

2V2

∂S2
+ rS

∂V2

∂S
− rV2 = 0, S > 0, 0 < t < T ,

with final condition:

V2(S, T ) = g(S), S > 0,

where

Γ2 =
∂2V2

∂S2
,

and

b(Γ2) =

 σ2, if Γ2 ≥ 0,

σ1, if Γ2 < 0.

Remarks

1. The BSB equation reduces to the Black-Scholes equation when σ1 =

σ2.

2. For a general pay-off function these equations don’t have a closed-form
solution and must be solved numerically.

3. When a call or a put option is considered, due to the convexity of the

corresponding pay-off functions g(S), S > 0, and to the properties of

the parabolic equations (such as the BSB equation), it can be shown that

the functions
∂2V1

∂S2
and

∂2V2

∂S2
do not change sign for S > 0, 0 < t < T .

That is when S > 0, 0 < t < T , the functions
∂2V1

∂S2
and

∂2V2

∂S2
keep

the sign that they have at t = T , therefore, when a call or a put option

172 http://www.sciencepublishinggroup.com



Chapter 3. Calibration of Stochastic Volatility Models Using Statistical Tests

is considered, the BSB equations reduce to the Black-Scholes equation.

The Black-Scholes equation is linear and, when simple final conditions

are imposed, can be solved explicitly (see Fatone et al. 2012).

For example if we consider an European call option the worst-case
option value V1 is the solution of the following problem:

∂V1

∂t
+

1

2
σ2

1S
2∂

2V1

∂S2
+ rS

∂V1

∂S
− rV1 = 0, S > 0, 0 < t < T ,

V1(S, T ) = max(S −K, 0), S > 0,

and similarly the best-case call option value V2 satisfies:

∂V2

∂t
+

1

2
σ2

2S
2∂

2V2

∂S2
+ rS

∂V2

∂S
− rV2 = 0, S > 0, 0 < t < T ,

V2(S, T ) = max(S −K, 0), S > 0,

and, as it is well known, these problems have explicit solutions given by
the Black-Scholes formula.

First of all we assume that a “true” value of the volatility σ exists even if
it is unknown. From the fact that in the Black-Scholes model the price V
of an option is a monotonically increasing function of the volatility σ we
can conclude that when

σ1 ≤ σ ≤ σ2, with significance level α.

we have:
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“V1(S, t) ≤ V(S, t) ≤ V2(S, t), S > 0, 0 < t < T

with significance level α”,

where V1(S, t), V2(S, t), S > 0, 0 < t < T , are the solutions of the
appropriate BSB equations.

3.1.9 Some Numerical Results on Real Data

1. Study of the variance and of the drift of the S&P500 index during
the year 2005

The real data studied are the 2005 daily data of the U.S. S&P500 index
and of the prices of European vanilla call and put options on this index.We
remind that the U.S. S&P500 index is one of the leading indices of the
New York Stock Exchange.

More specifically we consider the daily closing values of the S&P500

index and of the bid prices of the vanilla European call and put options on
the S&P500 index during the period of about 12 months going from
January 3, 2005 to December 30, 2005. In this period we have more than
153.000 option prices. We limit our study to the call and the put prices
corresponding to options that have a positive volume (i.e. a positive
number of contracts) traded the day corresponding to the price considered
and a positive bid price. These prices are 46.823 options prices.

Since there are 253 trading days in the year 2005 we choose as time unit
a “year” made of 253 trading days. We choose as time t = t0 = 0 the day
January 3, 2005.
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3.1.10 The S&P500 Index (year 2005)

We have 253 daily S&P500 index values Ŝi observed at time t = ti =

i∆t, i = 0, 1, . . . , 252, with ∆t = 1
253

year. Remind that t = t0 = 0

corresponds to January 3, 2005.
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3.1.11 The S&P500 Daily Log-Return Increments (Year 2005)

We interpret this set of data using the Black-Scholes model.

We begin studying the variance and the drift of the Black-Scholes model
used to explain S&P500 index during the year 2005.

The S&P500 daily log-return increments x̂i = ln

(
Ŝi

Ŝi−1

)
,

i = 1, 2, . . . , 252, are analyzed using the Black-Scholes model, that is
they are considered as a sample of 252 observations taken from a set of
i.i.d. Gaussian random variables, that is:

x̂i is sampled from Xti ∼ N
(
M,V 2

)
, i = 1, 2, . . . , 252,

where:
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M =

(
µ− σ2

2

)
∆t, V 2 = σ2∆t.

First we estimate V 2 (and therefore σ2) using the χ2 test and
subsequently we estimate M (and therefore µ) using the Student’s T test.

In order to estimate V 2 from the log-return increments we proceed as

follows. Given the data sample x̂i, i = 1, 2, . . . , n, we fix a statistical

significance level α, 0 < α < 1. We choose a sufficiently large interval

I = I(0) = [a(0), b(0)], 0 < a(0) < b(0) so that we can assume that V 2 ∈

I(0). We take a partition of I(0) made of m subintervals (of equal length)

I
(0)
i = [a

(0)
i , b

(0)
i ], i = 1, 2, . . . ,m, and we apply the χ2 test to test the

hypothesis V 2 ∈ I
(0)
i , i = 1, 2, . . . ,m. We restrict our attention to the

subinterval(s) I(0)
i∗ = [a

(0)
i∗ , b

(0)
i∗ ] ⊂ I(0) where the composite hypothesis:

H0 : a
(0)
i∗ ≤ V 2 ≤ b

(0)
i∗ , (1)

is accepted with significance level α, 0 < α < 1.If there are no subintervals

I
(0)
i∗ where the hypothesis (1) is accepted we change the choice of I(0)

and/or of m. If the subinterval I(0)
i∗ is unique we set I(1) = [a(1), b(1)] =

I
(0)
i∗ , otherwise we set I(1) = [a(1), b(1)] equal to the union of the intervals

where (1) is accepted with significance level α, and in both cases we repeat

the procedure dividing I(1) in the first case and shrinking I(1) in the second

case. In this way we construct a sequence of subintervals I(k) = [a(k), b(k)],

k = 1, 2, . . ., such that the hypothesis:

H0 : a(k) ≤ V 2 ≤ b(k), k = 1, 2, . . . ,
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is accepted with significance level α, 0 < α < 1.

This procedure stops when b(k) − a(k) < tol, where tol is a given
tolerance. We take the last set constructed with this procedure where the
hypothesis formulated is accepted as final estimate of the interval where
V 2 belongs with significance level α.

A similar procedure is used to estimate from the data sample x̂i, i =

1, 2, . . . , n, using the Student’s T test, an interval where M belongs with
significance level α.

Given the data sample made of the S&P500 daily log-return increments
x̂i, i = 1, 2, . . . , 252, the significance level α = 0.1, m = 2, tol = 10−4

and appropriate initial intervals I = I(0) to determine the intervals where
the variance and the mean belong, we find using the procedures described
above that the hypotheses:

2.5297 · 10−3 = σ2
1 ≤ σ2 ≤ σ2

2 = 2.7232 · 10−2,

−1.1087 · 10−2 = µ1 ≤ µ ≤ µ2 = 2.5968 · 10−2,

are accepted with significance level α = 0.1.

Let us do a kind of stability analysis of the intervals determined with
the statistical tests starting from the sample of the 252 daily S&P500 log-
return increments observed in the year 2005.

To do this we fix α = 0.1 and we apply the previous procedures to
determine the intervals where σ2 and µ belong with significance level α
starting from a window of 70 consecutive observations corresponding to
70 consecutive observation times (i.e. 70 consecutive trading days).

We move this window through the data time series discarding the datum
corresponding to the first observation time of the window and inserting the
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datum corresponding to the next observation time after the window.

Proceeding in this way we have 252-70+1 data windows in the data time
series considered and for each one of these data windows we solve the
corresponding calibration problem. We find 252-70+1 couples of intervals
where the volatility and the drift parameter belong with significance level
α = 0.1.

The following figure shows that, changing the data window, the intervals
determined through the statistical tests remain stable.

3.1.12 The Parameters σ2 and µ Reconstructed from the 2005
S&P500 Data

2. Option pricing problem with uncertain volatility and statistical
significance: the S&P500 call and put option prices
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From the estimates:

σ2
1 ≤ σ2 ≤ σ2

2, (2)

µ1 ≤ µ ≤ µ2, (3)

established with significance level α = 0.1, we are able to determine the
corresponding option price intervals using the BSB equations. That is we
can determine the worst-case option value V1 and the best-case option
value V2 such that:

“V1(S, t) ≤ V(S, t) ≤ V2(S, t), S > 0, 0 < t < T

with significance level α”.
(4)

Note that in order to determine V1 and V2 in the Black-Scholes formula
we use (2) and we choose r = µ1+µ2

2
with µ1 and µ2 defined in (3). Note

that the value of r (the risk free interest rate) is not really relevant in
determining V1 and V2. Moreover let us mention that in the Black-Scholes
formula the time to maturity involved in the option prices is computed
considering a year made of 365 days.

We compute the percentage of the prices of the European call (% call)
and put (% put) options on the S&P500 observed in the year 2005 that
verify (4) when we assume (2).

The results obtained are shown in the following tables where Ncall and
Nput denote respectively the number of the call prices and of the put prices
corresponding to options whose characteristics are described in the caption
of the table.

The quantities Icall and Iput denote respectively the average relative
amplitude of the call price intervals and of the put price intervals
determined using the BSB equations.
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Pcall and Pput denote respectively the average bid price of the call and of
the put prices.

In parentheses in the % call and % put columns it is written the average
number of contracts on the options considered traded.

We recall that given the asset price S and the strike price K of an option,
a call option (a put option) is:

1. in the money if S > K (if S < K);

2. out the money if S < K (if S > K);

3. at the money if S = K.

In the numerical experiments the condition S = K is substituted with
|S −K| < ε where ε is a (given) positive quantity. As a consequence the
conditions S > K, S < K are rewritten as S > K + ε, and S < K − ε,
respectively. We take ε equal to one per cent of the average strike price of
the options considered.

Using this criterion the 46.823 option prices considered above are
divided in three subsets corresponding to prices of in the money, at the
money and out of the money options. Table 1 refers to in the money
S&P500 option prices and it is obtained specifying (2), (3) respectively
as:

2.5297 · 10−3 = σ2
1 ≤ σ2 ≤ σ2

2 = 2.7232 · 10−2, (5)

−1.1087 · 10−2 = µ1 ≤ µ ≤ µ2 = 2.5968 · 10−2, (6)
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Table 1. S&P500 option prices: in the money options (year 2005). These results are

obtained using estimates (5), (6).

January-April 2005

% call % put Ncall Nput Icall Iput Pcall Pput

73.8 % (172.22) 72.3 % (313.01) 1571 1822 0.23 0.34 94.01 76.82

May-August 2005

% call % put Ncall Nput Icall Iput Pcall Pput

74.6 % (335.25) 62.0 % (202.34) 2005 1745 0.24 0.35 92.03 76.73

September-December 2005

% call % put Ncall Nput Icall Iput Pcall Pput

65.5 % (401.78) 59.7 % (557.22) 2174 2300 0.23 0.35 97.94 76.14

A similar analysis relative to S&P500 option prices corresponding to
options out and at the money shows that the use of the intervals (5), (6)
leads to huge call and put price intervals making the results obtained of
dubious practical value.

One way of overcoming this drawback is to refine the estimates (5), (6)
reducing the parameter tol in the procedures described previously until
option price intervals of “acceptable average relative amplitude” (i.e.
average relative amplitude of some tens of percentage points) are
obtained.

Taking tol1 = tol/4 = 10−4/4 we find that the hypotheses:

8.7051 · 10−3 = σ2
1 ≤ σ2 ≤ σ2

2 = 1.4881 · 10−2, (7)
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1.2646 · 10−3 = µ1 ≤ µ ≤ µ2 = 1.0528 · 10−2, (8)

are accepted with significance level α = 0.1.

The choice of (7), (8) as intervals containing σ2 and µ respectively leads
to average relative amplitudes of some tens of percentage points for the
option price intervals when call and put options at the money are
considered.

Table 2 shows the results obtained on at the money option prices using
(7), (8).

Table 2. S&P500 option prices: at the money options (year 2005). These results are

obtained using estimates (7), (8).

January-April 2005

% call % put Ncall Nput Icall Iput Pcall Pput

51.1 % (1358.18) 67.7 % (1869.60) 852 902 0.27 0.28 28.29 24.76

May-August 2005

% call % put Ncall Nput Icall Iput Pcall Pput

56.5 % (1899.99) 66.2 % (1989.07) 1115 1154 0.28 0.28 27.40 22.52

September-December 2005

% call % put Ncall Nput Icall Iput Pcall Pput

41.5 % (2377.19) 59.4 % (2652.84) 1188 1208 0.27 0.28 30.29 23.45

When S&P500 option prices relative to options out the money are
considered it is necessary to reduce further the parameters tol to keep the
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average relative amplitude of the option price intervals to reasonable
values.

For example taking tol2 = tol/10 = 10−4/10 we find that the
hypotheses:

1.1021 · 10−2 = σ2
1 ≤ σ2 ≤ σ2

2 = 1.2565 · 10−2, (9)

4.7385 · 10−3 = µ1 ≤ µ ≤ µ2 = 7.0544 · 10−3, (10)

are accepted with significance level α = 0.1.

Table 3 shows the results obtained on out of the money option prices
using (9), (10).

Table 3. S&P500 option prices: out of the money options (year 2005). These results are

obtained using estimates (9), (10).

January-April 2005

% call % put Ncall Nput Icall Iput Pcall Pput

20.1% (691.52) 2.41 % (1061.76) 3412 4892 0.26 0.57 11.13 9.05

May-August 2005

% call % put Ncall Nput Icall Iput Pcall Pput

13.4% (929.68) 3.55 % (1337.39) 3644 6316 0.23 0.58 9.89 8.33

September-December 2005

% call % put Ncall Nput Icall Iput Pcall Pput

12.6% (1598.65) 2.71 % (1908.66) 4055 6468 0.24 0.59 12.73 8.58
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Section 3.2
The Use of Statistical Tests to Calibrate the Normal

SABR Model I

[Description] We investigate the idea of solving calibration problems for
stochastic dynamical systems using statistical tests. We consider a
specific stochastic dynamical system: the normal SABR model. This
model is a system of two stochastic differential equations whose
independent variable is time and whose dependent variables are the
forward prices/rates and the associated stochastic volatility. The normal
SABR model is a special case of the SABR model. The calibration
problem for the normal SABR model is an inverse problem that consists in
determining the values of the parameters of the model from a set of data.
We consider as set of data two different sets of forward prices/rates and
we study the resulting calibration problems. The first set of data
considered is obtained taking one observation on each trajectory of a set
of independent trajectories of the normal SABR model. In the slides
contained in this section the calibration problem associated to this set of
data is illustrated. Ad hoc statistical tests are developed to solve this
calibration problem. Estimates with statistical significance of the
parameters of the model are obtained. The slides contained in this section
are concerned with this calibration problem.

[Paper] Fatone L., Mariani F., Recchioni M.C., Zirilli F. (2013). The use
of statistical tests to calibrate the normal SABR model, Journal of Inverse
and Ill Posed Problems 21(1), 59-84.

[Website] http://www.econ.univpm.it/recchioni/finance/w15
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3.2.1 Outline of the Presentation

• We investigate the idea of solving calibration problems for stochastic
dynamical systems using statistical tests.

• We concentrate our attention on two specific stochastic dynamical
systems used in mathematical finance: the Black-Scholes model
(Black et al. 1973) and the normal SABR model (Hagan et al. 2002).
The normal SABR model is a special case of the SABR model
(Hagan et al. 2002). The calibration problem consists in determining
the values of the parameters of the model starting from a set of
observed data. The observed data are sets of asset prices.

• We use statistical tests to solve the calibration problem. That is we
use “hypothesis testing” to determine the values of the parameters of
the models. In particular to the parameter values obtained as solution
of the calibration problem we associate a statistical significance level.

• We review some preliminary facts.

• We use statistical tests to calibrate the Black–Scholes asset dynamics
model (Fatone et al. 2012).

• We interpret the normal SABR model (Fatone et al. Journal of Inverse
and Ill Posed Problems 2013) as a state space model.

• We use statistical tests to calibrate the normal SABR model (Fatone
et al. Journal of Inverse and Ill Posed Problems 2013).

• We present some numerical experiments on a sample of synthetic
data.
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3.2.2 Statistical Test Review

Let X1, X2, . . . , Xn be independent identically distributed (i.i.d.)
random variables.

Let x1, x2, . . . , xn be realizations of respectively X1, X2, . . . , Xn. The
set x1, x2, . . . , xn is the data sample of “observations”.

The mathematical setting used to describe the data sample represents
“repeated experiments in a scientific laboratory”.

The (i.d.) random variables X1, X2, . . . , Xn have a (known) distribution
F (x, θ) depending on an (unknown) parameter vector θ.

Question: From the knowledge of the data sample x1, x2, . . . , xn obtain
information about θ.

3.2.3 Statistical Test - Hypothesis Testing

Hypothesis.

1. Null Hypothesis: H0: θ = θ0, θ0 given;

2. Alternative Hypothesis: H1: θ 6= θ0.

Decision Table.

1. Reject H0;

2. Do not reject H0.

Statistical significance α, 0 < α < 1.

The statistical significance α is the maximum probability of rejectingH0
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when H0 is true (Type I Error).

False alarm probability β, 0 < β < 1.

The false alarm probability β is the maximum probability of non
rejecting H0 when H0 is false (Type II Error).

Decision rule.

Statistical test.

Applying the decision rule on the data sample, a decision of the
Decision Table is assumed with statistical significance α and/or false
alarm probability β.

3.2.4 Elementary Statistical Tests

Bernoulli random variable: p=probability of success; J. Arbuthnot, 1710
(statistical analysis of birthrates in London). Find p.

Normal random variable: N (µ, σ2), µ=mean, σ2=variance;Student T: W.
S. Gosset, 1908 (Guinness Brewery, Dublin). Find µ when σ2 is unknown.
χ2: K. Pearson, 1900. Find σ2 when µ is unknown.

Statistical tests have an impact in a wide variety of contexts. For example
they have changed substantially:

1. criminal investigation;

2. paternity test;

3. evaluation of complex administrative systems (hospitals, tribunals,
schools, ...);
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4. detection of selective abortion practices.

Statistical tests are widely used in science and engineering.

We advocate their use in the solution of inverse problems in financial
engineering.

The tests described in the previous slides are very simple. In practical
situations the previous assumptions (i.i.d. random variables, elementary
probability distributions,...) are not satisfied.

There is the need of developing ad hoc tests to solve “ad hoc” questions.
These ad hoc tests may use numerical methods when necessary and in this
case can be seen as examples of computational statistics.

In particular in order to use statistical tests to calibrate the asset
dynamics models of mathematical finance it is necessary to consider
random variables implicitly defined by stochastic dynamical systems and
data samples more general that those obtained from the i.i.d. random
variables.

3.2.5 Black-Scholes vs Normal SABR Model

• For the Black-Scholes model the data considered are the observations
on a discrete set of time values of the asset price and the resulting
calibration problem is reduced to the Student’s T and the χ2 tests
(Johnson et al. 2006).

• For the normal SABR model multiple independent trajectories of
the model are considered and the set of the forward prices/rates
observed at a given time T in these trajectories is used as data set of
the calibration problem. In the study of the normal SABR model no

190 http://www.sciencepublishinggroup.com



Chapter 3. Calibration of Stochastic Volatility Models Using Statistical Tests

elementary statistical tests (such as the Student’s T and the χ2 tests)
can be used. The statistical test used to solve the calibration problem
considered is based on some new formulae for the moments of the
state variables of the normal SABR model and on statistical
simulation.

Remarks

1. The calibration problems studied are inverse problems for stochastic
dynamical systems.

2. The results presented for the normal SABR model are easily
extended to several other contexts in science and engineering where
similar stochastic models are used. These are models involving
stochastic volatility or, more in general, stochastic state space
models. For example models of this type are used in the study of
clutter in signal processing, of wave propagation in random acoustic
or electromagnetic media, of noise in telecommunications, of
biomedical systems in medicine, as well as in the study of other
models in mathematical finance.

3. The solution of calibration problems in mathematical finance usually
does not involve statistical tests and statistical significance levels.
That is to the solution of the calibration problem found is not
attributed a “confidence level”.

3.2.6 The Black-Scholes Model

Let St > 0 denote the asset price at time t ≥ 0. The Black-Scholes
model (Black et al. 1973) assumes that St, t > 0, satisfies:
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dSt = µStdt+ σStdWt, t > 0,

S0 = Ŝ0,

where µ, σ are real parameters, µ is the drift, σ > 0 is the volatility, Wt,

t > 0, is a standard Wiener process such that W0 = 0, dWt, t > 0, is its

stochastic differential and Ŝ0 > 0 is a given random variable. We assume

Ŝ0 concentrated in a point with probability one.

The real parameters µ, σ are the unknowns of the calibration problem
for the Black- Scholes model.

Let ∆t > 0 be a time increment and ti = i∆t, i = 0, 1, . . . , n, be a
discrete set of equispaced time values. We define Xti , the asset price log-
return increment when t goes from ti−1 to ti, i = 1, 2, . . . , n, as follows:

Xti= ln

(
Sti
Sti−1

)
, i = 1, 2, . . . , n.

The random variables Xti , i = 1, 2, . . . , n, are independent identically
distributed (i.i.d.) Gaussian random variables with mean M and variance
V 2 where M =

(
µ− σ2

2

)
∆t, V 2 = σ2∆t. That is we have:

Xti ∼ N
((

µ− σ2

2

)
∆t, σ2∆t

)
, i = 1, 2, . . . , n.

3.2.7 The Black-Scholes Calibration Problem

Given ∆t > 0, a statistical significance level α, 0 < α < 1, and the asset
price Ŝi observed at time t = ti = i∆t, i = 0, 1, . . . , n, determine two
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intervals where the parameters of the Black-Scholes model µ and σ > 0

belong with the given significance level α.

Given a significance level α, 0 < α < 1, we can perform statistical tests
on the variance V 2 and on the mean M of the random variables
Xti = ln

(
Sti/Sti−1

)
, i = 1, 2, . . . , n, starting from the data sample

x̂i = ln
(
Ŝi/Ŝi−1

)
, i = 1, 2, . . . , n, using the χ2 test and the Student’s T

test respectively (Johnson et al. 2006).

This implies that given α, 0 < α < 1, we can accept or reject, with
significance level α, the null hypothesis:

H0 : σ1 ≤ σ ≤ σ2, or H0 : µ1 ≤ µ ≤ µ2,

where

σi =
Vi√
∆t
, and µi =

Mi

∆t
+

V 2
i

2∆t
, i = 1, 2,

simply translating to σ and µ the results on V 2 and M obtained with the
Student’s T and the χ2 tests (Fatone et al. 2012).

Remark

Given a significance level α, 0 < α < 1, let us assume that the
hypothesis H0 : σ1 ≤ σ ≤ σ2 is accepted with significance level α. Using
the Black-Scholes- Barenblatt equation it is possible to determine the
corresponding range where the value of an European vanilla option lies
(with significance level α) (see Fatone et al. 2012).

3.2.8 The Normal SABR Model

Let ξt, vt, t > 0, be real stochastic processes that describe respectively
the forward prices/rates and the associated stochastic volatility. The normal
SABR model is given by Hagan et al. 2002 :
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dξt = vt dWt, t > 0, ξ0 = ξ̃0,

dvt = ε vt dQt, t > 0, v0 = ṽ0.

The quantity ε > 0 is a parameter known as volatility of volatility. The
stochastic processes Wt, Qt, t > 0, are standard Wiener processes such
that W0 = Q0 = 0, dWt, dQt, t > 0, are their stochastic differentials and
we assume that:

< dWtdQt > = ρ dt, t > 0,

where < · > denotes the expected value of · and ρ ∈ (−1, 1) is a constant
known as correlation coefficient. The quantities ξ̃0, ṽ0 are random variables
that we assume to be concentrated in a point with probability one.

We assume ṽ0 > 0. Unlike ξ̃0 the initial stochastic volatility ṽ0 cannot be
observed in the financial markets and must be regarded as a parameter of
the model. Similarly the stochastic volatility vt, t > 0, cannot be observed
in the financial markets.

The unknowns of the calibration problem for the normal SABR model
are: ε, ρ, ṽ0.

The normal SABR model and more in general the SABR model are
widely used in the pricing of interest rates derivatives and of options on
currencies exchange rates in the theory and practice of mathematical
finance.
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3.2.9 The Normal SABR Model Interpreted as a State Space Model

Interpreting vt, t > 0, as state variable (not observed) and ξt, t > 0, as
observation variable, the normal SABR model:

dvt = εvt dQt, t > 0, state(or transition) equation,

dξt = vt dWt, t > 0, observation(or measurement) equation,

becomes a (stochastic) state space model.

Remark

In a similar way it is easy to see that the usual stochastic volatility models
used in mathematical finance (Heston, Hull and White, Stein and Stein, ...)
can be interpreted as (stochastic) state space models.

Remark

The state space models have been introduced around 1960 by Kalman
in the study of guidance problems in the aeronautical industry. Today they
are widely used in many branches of engineering (in particular in signal
processing) including in financial engineering (i.e. stochastic volatility
models).

Recall that:

1. The real parameters ε, ρ, ṽ0, are the unknowns of the calibration
problem for the normal SABR model.

2. We use a statistical test to solve a calibration problem for the normal
SABR model; more precisely to the parameter values obtained as
solution of the calibration problem we associate a statistical
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significance level using an ad hoc statistical test. The statistical test
used is based on some new formulae for the moments of the forward
prices/rates variable of the normal SABR model. In particular the
decision resulting from the test is assumed comparing the theoretical
values of three moments of the forward prices/rates variable of the
normal SABR model when the null hypothesis H0 is true with the
observed values of these moments computed from the data sample.

In Fatone et al. Journal of Mathematical Finance 2013 we derive the
following formula for the transition probability density function pN of the
variables ξt, vt, t > 0, implicitly defined by the normal SABR model:

pN(ξ, v, t, ξ′, v′, t′)=
1

2π

∫ +∞

−∞
dke−ı k(ξ′−ξ)gN (t− t′, k, v, v′, ε, ρ) ,

(ξ, v), (ξ′, v′) ∈ R× R+, t, t′ ≥ 0, t− t′ > 0,

where ξt = ξ, vt = v, ξt′ = ξ′, vt′ = v′, t, t′ ≥ 0, t− t′ > 0. The function
gN is given by:

gN(s, k, v, v′, ε, ρ) =

2

π2
e−

s
8
ε2

(√
v′

v
√
v

)
eı k

ρ(v′−v)
ε

∫ +∞

0

dω e−τω
2

ω sinh(πω)Kıω(ς(k)v)Kıω(ς(k)v
′),

s ∈ R+, k ∈ R, v, v′ ∈ R+, ε > 0, ρ ∈ (−1, 1),

where ı is the imaginary unit, the functions sinh, Kη denote respectively
the hyperbolic sine and the second type modified Bessel function of order
η and finally ς2(k), k ∈ R, is defined as: ς2(k) = k2

ε2
(1− ρ2), k ∈ R.
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Starting from the previous formula in Fatone et al. Journal of Inverse and
Ill Posed Problems 2013 we derive the formulae for the momentsMn,m,
n,m = 0, 1, . . . , with respect to zero of the transition probability density
function pN , that is:

Mn,m(t, ξ′, v′, t′)=

∫ +∞

−∞
dξ ξn

∫ +∞

0

dv vm pN(ξ, v, t, ξ′, v′, t′),

(ξ′, v′) ∈ R× R+, t, t′ ≥ 0, t− t′ > 0, n,m = 0, 1, . . . .

Let

M∗
n(t− t′, ξ′, v′) =Mn,0(t, ξ′, v′, t′),

t− t′ ∈ R+, (ξ′, v′) ∈ R× R+, n = 0, 1, . . . .

Note that the momentsM∗
n when t′ = 0, ξ′ = ξ̃0, v′ = ṽ0 depend on the

unknowns of the calibration problem considered ε, ρ, ṽ0 and on the time t.
In particular M∗

2 depends on ε and ṽ0, while the momentsM∗
3 andM∗

4

depend on ε, ṽ0 and ρ.

In Fatone et al. Journal of Inverse and Ill Posed Problems 2013 when
t′ = 0, ξ′ = ξ̃0, v′ = ṽ0 we derive the following new closed form formulae
for the momentsM∗

0,M∗
1,M∗

2,M∗
3,M∗

4 of the normal SABR model:
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M∗
0(t, ξ̃0, ṽ0) = 1, (ξ̃0, ṽ0) ∈ R× R+, t ∈ R+,

M∗
1(t, ξ̃0, ṽ0) = ξ̃0, (ξ̃0, ṽ0) ∈ R× R+, t ∈ R+,

M∗
2(t, ξ̃0, ṽ0) = ξ̃2

0 +
ṽ2

0

ε2
(eε

2t − 1), (ξ̃0, ṽ0) ∈ R× R+, t ∈ R+,

M∗
0(t, ξ̃0, ṽ0) = 1, (ξ̃0, ṽ0) ∈ R× R+, t ∈ R+,

M∗
1(t, ξ̃0, ṽ0) = ξ̃0, (ξ̃0, ṽ0) ∈ R× R+, t ∈ R+,

M∗
2(t, ξ̃0, ṽ0) = ξ̃2

0 +
ṽ2

0

ε2
(eε

2t − 1), (ξ̃0, ṽ0) ∈ R× R+, t ∈ R+,

M∗
3(t, ξ̃0, ṽ0) = ξ̃3

0 + 3ξ̃0
ṽ2

0

ε2
(eε

2t − 1)

+
ρ ṽ3

0

ε3
e3ε2t

(
1− 3e−2ε2t + 2e−3ε2t

)
,

(ξ̃0, ṽ0) ∈ R× R+, t ∈ R+,

M∗
4(t, ξ̃0, ṽ0) = ξ̃4

0 + 6ξ̃2
0

ṽ2
0

ε2
(eε

2t − 1)

−4ξ̃0
ρ ṽ3

0

ε3
e3ε2t

(
1− 3e−2ε2t + 2e−3ε2t

)
+

(ṽ0)4

ε4
e6tε2

[
4ρ2

3
(1− e−3ε2t)+

(6− 12ρ2)

5
(1− e−5ε2t) +

(8ρ2 − 6)

6
(1− e−6ε2t)

]
,

(ξ̃0, ṽ0) ∈ R× R+, t ∈ R+.

3.2.10 The Normal SABR Calibration Problem

Given a time value T > 0, a statistical significance level α, 0 < α <
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1, a positive integer n and n independent observations at time t = T of
the forward prices/rates ξT , that is given ξ̂iT , i = 1, 2, . . . , n, determine
the values of the parameters ε, ρ and ṽ0 of the normal SABR model with
significance level α.

Let T > 0 be given and let ξiT , i = 1, 2, . . . , n, be n independent copies
of the random variable ξT . It is easy to see that the random variables:

X̄(n, T )= 1
n

∑n
i=1Xi, Ȳ (n, T )= 1

n

∑n
i=1 Yi, Z̄(n, T )= 1

n

∑n
i=1 Zi,

where Xi = (ξiT )
2
, Yi = (ξiT )

3
, Zi = (ξiT )

4
, i = 1, 2, . . . , n, are

unbiased estimators of respectively M∗
2,M∗

3,M∗
4 (when t = T , t′ = 0,

ξ′ = ξ̃0, v′ = ṽ0). The random variables X̄, Ȳ , Z̄ are used as components
of the vector valued test statistic L = (X̄, Ȳ , Z̄) of the statistical test.
Note that for i = 1, 2, . . . , n, the observation ξ̂iT can be regarded as a
realization of the random variable ξiT .

Let us consider the realizations ˆ̄X, ˆ̄Y, ˆ̄Z in the data sample ξ̂iT ,
i = 1, 2, . . . , n, of the random variables X̄, Ȳ , Z̄, that is:

ˆ̄X(n, T )=
1

n

n∑
i=1

X̂i,
ˆ̄Y (n, T )=

1

n

n∑
i=1

Ŷi,
ˆ̄Z(n, T )=

1

n

n∑
i=1

Ẑi,

where X̂i =
(
ξ̂iT

)2

, Ŷi =
(
ξ̂iT

)3

, Ẑi =
(
ξ̂iT

)4

, i = 1, 2, . . . , n.

Given a statistical significance level α, 0 < α < 1, and given ε∗ > 0,
ρ∗ ∈ (−1, 1), ṽ∗0 > 0, using the vector valued test statistic L = (X̄, Ȳ , Z̄),
we want to test the null hypothesis:

H0 : (ε, ρ, ṽ0) = (ε∗, ρ∗, ṽ∗0).

with statistical significance level α, 0 < α < 1.
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First of all we translate the hypothesis H0 in a corresponding hypothesis
for the momentsM∗

2,M∗
3,M∗

4 associated to the normal SABR model.

The moments M̂∗
2,M̂∗

3,M̂∗
4 obtained from M∗

2,M∗
3,M∗

4 when H0 is
true and t = T , t′ = 0, are compared with the moments ˆ̄X, ˆ̄Y, ˆ̄Z observed
in the data sample. Note that the point P̂ = ( ˆ̄X, ˆ̄Y, ˆ̄Z) ∈ R3 is the value
taken by the test statistic L on the data sample.

In particular to test the null hypothesis H0 we check if the point P̂ =

( ˆ̄X, ˆ̄Y, ˆ̄Z) ∈ R3 and the point P̂ ∗ = (M̂∗
2,M̂∗

3,M̂∗
4) ∈ R3 are “close” or

“far”.

The heuristic decision rule is:

1. do not rejectH0 if the points P̂ and P̂ ∗ are “close”;

2. reject H0 if the points P̂ and P̂ ∗ are “far”.

In Fatone et al. Journal of Inverse and Ill Posed Problems 2013 we
determine the relation among α, n, ε∗, ρ∗, ṽ∗0 that translates the qualitative
expressions “close” and “far” in a quantitative statement about the norm of
the vector P̂ − P̂ ∗.

Recall that the statistical significance level α, 0 < α < 1, is the
maximum probability of rejecting the null hypothesis H0 when the
hypothesis is true.

We proceed as follows: given α, 0 < α < 1, n > 0, ε∗ > 0, ρ∗ ∈ (−1, 1)

and ṽ∗0 > 0 we solve the following inequality for the real unknown Aα,n:

Probability(||L− P̂ ∗|| ≥ Aα,n) ≤ α, (1)

where || · || is the norm of · in R3 and we determine the infimum rα,n of the
values Aα,n that satisfy (1).
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The inequality (1) is studied and the infimum rα,n of its solutions is
determined numerically using statistical simulation.

Given α, 0 < α < 1, a positive integer n, the null hypothesis H0 and the
corresponding threshold rα,n > 0 the decision rule of the statistical test is:

1. if ||P̂−P̂ ∗||≤rα,n do not reject H0, with significance levelα;

2. if ||P̂−P̂ ∗||>rα,n reject H0, with significance levelα.

Let us call “moments space” (i.e. R3) the space where the test statistic
L takes values. Note that the threshold rα,n divides the “moments space”
into two regions: the rejection region R = Rα,n and the “retain” (i.e. do
not reject) region. In the “moments space” the retain region is the sphere
of center the vector of the theoretical moments P̂ ∗ and radius rα,n and the
rejection region Rα,n is its complement.

3.2.11 Procedure Used to Determine the Threshold rα,n

We build a sample of the random variables X̄, Ȳ , Z̄ integrating
numerically the normal SABR model(when H0 is true) in the time
interval [0, T ] with the explicit Euler method.

The joint probability density function of the random variables X̄, Ȳ , Z̄
is approximated with the corresponding three-dimensional joint histogram
deduced from the sample of X̄, Ȳ , Z̄ generated.

This histogram shows the proportion (i.e. relative frequency) of cases
that falls into each one of several disjoint categories covering R3 (i.e.
non-overlapping three-dimensional parallelepipeds covering R3). The
proportion of cases belonging to each category approximates the
probability that the random variable L = (X̄, Ȳ , Z̄) (when H0 is true)
belong to that category. The sum of these proportions is equal to one.
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Note that the random variables X̄, Ȳ , Z̄, their joint probability density
function and therefore their joint histogram depend on H0, T and n.

Given α, n, H0 and the joint histogram of the variables X̄, Ȳ , Z̄ when
H0 is true, the threshold rα,n is obtained integrating the joint probability
density function of X̄, Ȳ , Z̄ on the spheres of center P̂ ∗ and radius Aα,n,
Aα,n > 0. These integrals are approximated with appropriate sums of
relative frequencies of the joint histogram of X̄, Ȳ , Z̄ obtained with the
numerical simulation. In this way we determine rα,n as the infimum of the
Aα,n that, in the approximations considered, satisfy condition (1).

Remark

Note that the threshold rα,n depends on α and n; moreover unlike the
threshold(s) of the elementary statistical tests of the normal random
variable (i.e. the Student’s T or χ2 tests, see Johnson et al. 2006) and of
the tests used in the calibration of the Black-Scholes model (Fatone et al.
2012), rα,n depends on the null hypothesis H0.

In the study case that follows given n and the null hypothesis H0 we
provide a table of rα,n as a function of α, 0 < α < 1.

3.2.12 A Drawback

The data sample used in the previous statistical test although realistic in
many contexts of science and engineering it is hardly available in the
financial markets. In fact in the financial markets usually it is not possible
to repeat the “experiment”, that is repeated observations at time t = T of
independent trajectories of the stochastic dynamical system under
investigation are usually not available. This is a serious drawback.

In Fatone at al. Journal of Inverse and Ill Posed Problems 2013 and in
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Section 3.3 of Chapter 3 it is presented a second statistical test to calibrate
the normal SABR model that uses a different data sample. The data
sample used by the second statistical test is easily available in the
financial markets.

Remarks

1. Several null hypotheses different from H0 : (ε, ρ, ṽ0) = (ε∗,

ρ∗, ṽ∗0) can be studied adapting the statistical test considered here.

2. In Fatone et al. 2012 and Fatone et al. Journal of Inverse and Ill
Posed Problems 2013 we discuss the question of how to choose the
parameters that defines the null hypothesis H0 to be tested in the
calibration problems for the Black-Scholes and for the normal
SABR models respectively. For example these parameters can be
chosen as solution of a different formulation of the calibration
problem that does not involve statistical significance.

3. The statistical test used to calibrate the normal SABR model uses
numerical methods (i.e. the probability density function of the test
statistic is approximated by statistical simulation) and can be seen as
an example of a fruitful application of numerical methods in statistics,
that is it is an example of computational statistics.

3.2.13 A Numerical Example

We solve the calibration problem for the normal SABR model with the
statistical test procedure presented using a sample of synthetic data.

Let T > 0 be given and n, m be positive integers. Let ∆t = T/m

be a time increment and ti = i∆t, i = 0, 1, . . . ,m, be a discrete set of

http://www.sciencepublishinggroup.com 203



Research Seminars in Mathematical Finance: Stochastic Volatility Models, Option Pricing,
Calibration

equispaced time values. Let ξtm = ξT , vtm = vT be the solutions of the
normal SABR model at time t = T .

We approximate n independent realizations ξ̂iT , i = 1, 2, . . . , n, of the
random variable ξT integrating numerically n times the normal SABR
model in the time interval [0, T ] using the explicit Euler method.

We choose T = 1, m = 10000, n = 100, ε = 0.1, ρ = −0.2, ξ0 = ξ̃0 =

0 and v0 = ṽ0 = 0.5. That is:

(ε, ρ, ṽ0) = (0.1,−0.2, 0.5),

are the unknown parameters of the normal SABR model that we want to
recover as solution of in the calibration problem.

The synthetic dataˆ̂ξiT=1, i = 1, 2, ..., n, are obtained approximating with
the explicit Euler method multiple independent trajectories of the normal
SABR model with the previous parameter values and looking at the
computed trajectories at time t = T = 1.

That is for n = 100 and i = 1, 2, . . . , n, letˆ̂ξiT=1 be the approximation
of ξ̂iT=1 obtained in this way.

The set D̄T=1 =
{̂̂
ξiT=1, i = 1, 2, . . . , 100

}
is the data sample of the

statistical test used in the calibration problem of the normal SABR model.

We consider the following calibration problem:

Given D̄T=1 and the significance level α, 0 < α < 1, determine the
values of the parameters (ε, ρ, ṽ0) of the normal SABR model with
significance level α.

• The first step consists in the formulation of the null hypothesis H0.
We proceed as suggested in Fatone et al. Journal of Inverse and Ill
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Posed Problems 2013 and we solve the calibration problem using the
nonlinear least squares method. As a result of this analysis we test
the null hypothesis:

H̄0 : (ε, ρ, ṽ0) = (ε∗, ρ∗, ṽ∗0) = (0.1261,−0.3356, 0.515),

with statistical significance level α using the data sample D̄T=1.

• To perform this test the corresponding threshold rα,100 must be
determined.

For this purpose we build a sample of N = 1000 (approximate)
realizations of the random variables X̄, Ȳ , Z̄ defined previously when
n = 100, T = 1 and H̄0 is true integrating numerically (100000 times)
with the explicit Euler method the normal SABR model (when H̄0 is true)
in the time interval [0, 1].

Moreover we approximate the joint probability density function of the
previously defined random variables X̄, Ȳ , Z̄ with the corresponding
three-dimensional joint histogram associated to the sample of
numerousness N = 1000 of the random variables X̄, Ȳ , Z̄ that has been
generated. Proceeding as suggested in the previous slides we determine
an approximation of rα,100 denoted with r̄α,100. For simplicity we consider
rα,100 = r̄α,100.

Given n = 100 and the null hypothesis H̄0 table 4 shows the values of
the the threshold rα,100 = r̄α,100 as a function of α determined with the
previous procedure.
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Table 4. The threshold rα,n = r̄α,100 as a function of α for the null hypothesis H̄0.

H̄0 : (ε, ρ, ṽ0) = (0.1261,−0.3356, 0.515), n = 100

α r̄α,100

0.01 0.29

0.05 0.19

0.1 0.16

Let us perform the test associated to the calibration problem considered.

Given the null hypothesis H̄0, the significance level α and the data
sample D̄T=1 made of n = 100 observations of the random variable ξT=1

compute:

1. the point Q̂ = ( ˆ̄X, ˆ̄Y, ˆ̄Z) ∈ R3 associated to the data sample D̄T=1;

2. the point Q̂∗ = (M̂∗
2,M̂∗

3,M̂∗
4) ∈ R3, where the quantities M̂∗

2,

M̂∗
3,M̂∗

4 are the “theoretical” moments M∗
2,M∗

3,M∗
4 calculated

when t = T = 1, ε = 0.1261, ρ = −0.3356, ṽ0 = 0.515 (i.e. are the
moments M∗

2,M∗
3,M∗

4 evaluated when t = T = 1 and the
hypothesis H̄0 is true).

We have Q̂=(0.2674,−0.0177, 0.2277) and Q̂∗=(0.2674,

− 0.0177, 0.2197).

Let α = 0.01, 0.05, 0.1, and r̄α,100 be the corresponding thresholds
shown in Table 4, the decision rule of the statistical test that has statistical
significance α is given by:

1. if ||Q̂−Q̂∗||≤ r̄α,100 do not rejectH̄0, with significance levelα;

2. if ||Q̂−Q̂∗||>r̄α,100 reject H̄0, with significance levelα.
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In this specific experiment given the data sample D̄T=1 the hypothesis
H̄0, is retained for the values of α considered in Table 4.

3.2.14 Future Work

• Derive closed form formulae for the moments of the lognormal SABR
model and use them in the calibration of the model.

• Develop new statistical tests and apply them to sets of real data time
series of forward prices/rates actually observed in the financial
markets.

• Use the previous ideas to calibrate other stochastic dynamical systems
used in mathematical finance.
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Section 3.3
The Use of Statistical Tests to Calibrate the Normal

SABR Model II

[Description] We investigate the idea of solving calibration problems for
stochastic dynamical systems using statistical tests. We consider a
specific stochastic dynamical system: the normal SABR model. This
model is a system of two stochastic differential equations whose
independent variable is the time and whose dependent variables are the
forward prices/rates and the associated stochastic volatility. The normal
SABR model is a special case of the SABR model. The calibration
problem for the normal SABR model is an inverse problem that consists in
determining the values of the parameters of the model from a set of data.
We consider as set of data two different sets of forward prices/rates and
we study the resulting calibration problems. The second set of data
considered is obtained taking several observations of the forward
prices/rates on a discrete set of given time values along a single
trajectory of the normal SABR model. Ad hoc statistical tests are
developed to solve this calibration problem. Estimates with statistical
significance of the parameters of the model are obtained. The slides
contained in this section are concerned with this calibration problem.

[Paper] Fatone L., Mariani F., Recchioni M.C., Zirilli F. (2013). The use
of statistical tests to calibrate the normal SABR model, Journal of Inverse
and Ill Posed Problems 21(1), 59-84.

[Website] http://www.econ.univpm.it/recchioni/finance/w15
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3.3.1 Outline of the Presentation

1. Calibration

• Normal SABR model

• Formulation of the calibration problem

• Calibration techniques

2. An ad hoc statistical test

• Hypothesis formulation

• Decision rule

• Monte Carlo method

3. Numerical Results

4. References

3.3.2 Normal SABR Model

Let us consider the normal SABR model introduced by Hagan et al.
2002. We assume that the forward price of an asset ξt, t > 0, and its
stochastic volatility vt, t > 0, satisfy the following system of stochastic
differential equations:

dξt = vt dWt, t > 0, (1)

dvt = ε vt dQt, t > 0, (2)

with the initial conditions:

ξ0 = ξ̃0, (3)

v0 = ṽ0. (4)
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In (1)-(4):

• ε > 0 is the volatility of volatility,

• Wt, Qt, t > 0, are standard Wiener processes such that

1) W0 = Q0 = 0,

2) dWt, dQt, t > 0, are their stochastic differentials,

3) < dWtdQt >= ρdt, t > 0, where < · > denotes the expected
value of · and ρ ∈ (−1, 1) is the correlation coefficient,

• ξ̃0, ṽ0 are random variables that are assumed to be concentrated in a
point with probability one,

• ṽ0 > 0 is not observable and must be considered as a parameter of
the model.

The unknowns of the calibration problem are ε, ρ, ṽ0.

Let us formulate the calibration problem for the normal SABR model
(1), (2), (3), (4) that we study.

• Let M be a positive integer. The data of the calibration problem are
the forward prices/rates observed at discrete times t0, t1, ..., tM , such
that ti > ti−1, i = 1, 2, ...,M, where t0 = 0. For i = 1, 2, ...,M we
denote with ξ̂i the forward price/rate observed at time t = ti along
one trajectory of the stochastic process ξt, t > 0. The set
D1={ξ̂i, i=1, 2, ...,M} is the data sample used to solve the
calibration problem.

Calibration problem: From the knowledge of the data sample D1 we
want to recover the values of the unknown parameters of the normal SABR
model: ε, ρ, ṽ0.
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Data sample of the calibration problem

• Previous talk

Data sample 1: N observations of ξ̂iT , i = 1, 2, ..., N, made at time
t = T on N independent trajectories.

• This talk
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Data sample 2: M observations made at the at times ti,

i = 0, 1, 2, ...,M, on a single trajectory.

• Data sample 1 corresponds to “repeated experiments” (repetitions of
a phenomenon). This data sample most of the times is not realistic in
finance.

• Data sample 2 corresponds to observing the time evolution of a
phenomenon. This data sample is realistic in finance. The
observations are simply the time series of the prices observed.

3.3.3 Calibration Techniques

In the literature there are several methods to calibrate stochastic volatility
models like model (1)-(4).

• Maximum likelihood estimation (Mariani et. al. 2008): the values of
the model parameters are characterized as those that give to the
observed data the greatest likelihood (i.e. parameter values that
maximize the likelihood function).

• blueLeast squares fit (Fatone et al. 2008): the values of the model
parameters are characterized as those that minimize the least square
error between the observed data and the values predicted by the model
of the observed quantities.

• Method of moments (Garcia et al. 2011): the values of the model
parameters are characterized as those that minimize the difference
between the moments predicted by the model and the moments
obtained from the observed data.
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To the solution of the calibration problem obtained with these methods
is not associated a statistical significance level.

3.3.4 An ad hoc Statistical Test

We want to solve the calibration problem associating to the solution
found a statistical significance level through the use of a statistical test.

• We state a null and an alternative hypothesis.

• We choose a significance level.

• We specify a decision rule.

• We compute the test statistic on the data sample.

• We take a decision. That is we reject or we do not reject the null
hypothesis with the chosen significance level.

3.3.5 Hypothesis Formulation

• Starting from the data sampleD1 = {ξ̂i, i = 1, 2, ...,M} we solve the
calibration problem using one of the techniques mentioned previously
(i.e.: maximum likelihood, least squares fit, moments method). Let
ε∗, ρ∗, ṽ∗0 be the values of the normal SABR model (1)-(4) obtained
as solution of the calibration problem.

• We choose the following null hypothesis:

H0 : (ε, ρ, ṽ0) = (ε∗, ρ∗, ṽ∗0), (5)

• We choose a statistical significance level α ∈ (0, 1), i.e. α =

maximum probability of rejecting H0 when H0 is true. (type I error)
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• We test the null hypothesis H0 with significance level α.

3.3.6 Decision Rule

How to decide when to reject the null hypothesis H0? There are two
possibilities:

• the data sample D1 is “compatible” with (does not contradict) H0

with significance level α : the hypothesis H0 is not rejected,

• the data sample D1 is “not compatible” with H0 with significance
level α : the hypothesis H0 is rejected in favour of the alternative
hypothesis

H1 : (ε, ρ, ṽ0) 6= (ε∗, ρ∗, ṽ∗0). (6)

Assigned α the decision rule defines what to do to evaluate the
compatibility of the data sample D1 with the null hypothesis H0.

3.3.7 The Test Statistic

In Fatone et al. Journal of Inverse and Ill Posed Problems 2013 starting
from the data sample ξ̂i, i = 1, 2, ...,M, we compute:

F̂k(M) =
1

M

M∑
i=1

wiξ̂
k
i , k = 2, 3, 4, (7)

wherewi, i = 1, 2, ...,M, are positive weights decreasing when i increases.

Remark

The quantity F̂k is a realization of the random variable:
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Fk(M) = f̂k(ηt1 , ηt2 , ..., ηtM ), k = 2, 3, 4, (8)

where

f̂k(ηt1 , ηt2 , ..., ηtM ) =
1

M

M∑
i=1

wiη
k
ti
, k = 2, 3, 4, (9)

and ηti = ξti |{ξtk = ξ̂k, k = 0, 1, ..., i − 1}, that is ηti is the random

variable ξti conditioned to ξtk = ξ̂k, k = 0, 1, ..., i − 1, i = 1, 2, ...,M.

The random variables F2, F3, F4 are used to build the vector valued test

statistic F = (F2, F3, F4) of the statistical test.

Note that the random variables Fk(M), k = 2, 3, 4, in (8) are unbiased
estimators of:

F∗k (M) =

∫ +∞

−∞
dξ1 · · ·

∫ +∞

−∞
dξMfk(ξ1, ξ2, ..., ξM)

p̂N(ξ1, t1, ξ2, t2, ..., ξM , tM |ξ̃0, ṽ0, t0), k = 2, 3, 4,

(10)

where p̂N(ξ1, t1, ξ2, t2, ..., ξM , tM |ξ̃0, ṽ0, t0) is the joint probability density

function associated to the normal SABR model (1)-(4) of having ξti = ξi,

i = 1, 2, ...,M, conditioned to ξt0 = ξ̃0 and vt0 = ṽ0. Recall that t0 = 0.

In (10) we have chosen:

fk(ξ1, ξ2, ..., ξM) =
1

M

[
w1ξ

k
1 +

M∑
i=2

wiξ
k
i

i−1∏
j=1

δ(ξj − aj)
]
,

k = 2, 3, 4,

(11)
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where wi are positive weights decreasing when i increases and ai = ξ̂i,

i = 1, 2, ...,M.

The joint probability density function in (10) is given by:

p̂N(ξ1, t1, ξ2, t2, ..., ξM , tM |ξ̃0, ṽ0, t0) =

∫ +∞

0

dv1∫ +∞

0

dv2 · · ·
∫ +∞

0

dvM pN(ξ1, v1, t1, ξ̃0, ṽ0, t0)·

pN(ξ2, v2, t2, ξ1, v1, t1) · · ·

pN(ξM , vM , tM , ξM−1, vM−1, tM−1),

(12)

where pN(ξi+1, vi+1, ti+1, ξi, vi, ti) is the transition probability density

function associated to the normal SABR model (1)-(4) of having

ξti+1
= ξi+1, vti+1

= vi+1 given the fact that ξti = ξi, vti = vi,

i = 0, 1, ..., N − 1.

In Fatone et al. Journal of Mathematical Finance 2013 we have derived
a formula that gives the transition probability density function of the
normal SABR model pN as a one dimensional integral of an explicitly
known integrand.

3.3.8 Monte Carlo Method

When M is “large” (i.e. M is greater than 3 or 4) the integrals (10) and
(12) are high dimensional integrals that must be evaluated using Monte
Carlo method.

In the straightforward application of the Monte Carlo method to the
evaluation of F∗k (M) we must draw a sample from the probability density
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functions pN(ξi+1, vi+1, ti+1, ξi, vi, ti), i = 0, 1, ...,M − 1. However the
complexity of the expression of pN makes difficult to draw this sample.

This difficulty can be overcome using the importance sampling method,
that allows to draw the sample of the Monte Carlo procedure from
probability density functions that are similar to the density functions
pN(ξi+1, vi+1, ti+1, ξi, vi, ti), i = 0, 1, ...,M − 1, and that are easy to
sample. These new probability density functions are called sampling
distributions.

3.3.9 Importance Sampling

The sampling distribution used to evaluate (10), (12) are obtained
substituting to the model (1)-(4) the following simplified model:

dξt = ṽ∗0 dB
1
t , t > 0, (13)

dvt = ε∗ vt dB
2
t , t > 0, (14)

where the stochastic processesB1
t , B

2
t , t > 0, in (13), (14) are uncorrelated

standard Wiener processes such that B1
0 = B2

0 = 0, and dB1
t , dB

2
t , t > 0,

are their stochastic differentials. Equations (13), (14) are equipped with
the initial conditions: ξ0 = ξ̃0 and v0 = ṽ∗0.

For i = 0, 1, ...,M − 1 the “sampling distribution” (density function)
used to approximate pN(ξi+1, vi+1, ti+1, ξi, vi, ti) is given by:

1√
2π(ti+1 − ti)ṽ2

0

exp
[
− 1

2(ti+1 − ti)ṽ∗20

(ξi+1 − ξi)2
]
·

1√
2π(ti+1 − ti)ε∗2

exp
[
− 1

2(ti+1 − ti)ε∗2
(log(vi+1)−

log(vi) +
1

2
ε∗2(ti+1 − ti))2

]
.

(15)
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The function (15) is the probability density function associated to the
simplified model (13), (14).

3.3.10 Ad hoc Statistical Test (more)

The statistical test Fatone et al. Journal of Inverse and Ill Posed
Problems 2013 is based on the idea of comparing the test statistic vector
F = (F2, F3, F4) observed in the data sample D1 (i.e. its realization
F̂ = (F̂2, F̂3, F̂4)) with the vector F̂∗ = (F̂∗2 , F̂∗3 , F̂∗4 ). That is we evaluate
‖F̂ − F̂∗‖, where ‖ · ‖ is the norm of · in R3.

The heuristic decision rule of the test is:

• do not reject H0 if ‖F̂ − F̂∗‖ is “small”;

• reject H0 if ‖F̂ − F̂∗‖ is “big”.

In order to give a precise quantitative meaning to the expressions “big”
and “small” of the heuristic decision rule:

• we must know the distribution of the random variable
F = (F2, F3, F4). The distribution of F can be approximated using a
sample of values of F generated numerically (i.e. statistical
simulation),

• we must determine a threshold value that divides the space of the
possible values assumed by F into two regions: the acceptance region
and the rejection region. When the value F̂ belongs to the acceptance
region, the null hypothesis is accepted, or at any rate not rejected,
otherwise the null hypothesis is rejected,
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• the threshold value that determines the acceptance and the rejection
region depends on the significance level α.

3.3.11 Sampling Distribution

We approximate the joint probability density function of the test
statistic F = (F2, F3, F4) with a three-dimensional histogram obtained
from a sample of the random vector F = (F2, F3, F4) obtained integrating
numerically the normal SABR model when H0 is true with the explicit
Euler method.

Analogously the integral of the joint probability density function of F2,

F3, F4 on a subset of R3 is approximated with the appropriate sum of
relative frequencies of sampled points computed in the three-dimensional
histogram.

3.3.12 Threshold Value

Let us assign a significance level α ∈ (0, 1). Recall that α is the
maximum probability of making a type I error (i.e. rejecting H0 when H0

is true). Let us denote the threshold value with sα,M . We choose sα,M as
the infimum of the values Aα,M such that:

Probability(‖F − F̂∗‖ ≥ Aα,M) ≤ α, (16)

where the Probability(‖F − F̂∗‖ ≥ Aα,M) is determined integrating the
joint probability density function of F2, F3, F4 (when H0 is true) outside
the sphere of center F̂∗ and radius Aα,M > 0, i.e. summing the relative
frequencies of the sampled points outside the sphere of the
three-dimensional histogram that approximates the joint probability
density function of F2, F3, F4.
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3.3.13 Decision Rule

Summarizing,given the significance level α ∈ (0, 1), the sample size
M, the null hypothesis H0 and the corresponding threshold value sα,M the
decision rule of the statistical test is given by:

• if ‖F̂ − F̂∗‖ ≤ sα,M do not reject H0 with significance level α;

• if ‖F̂ − F̂∗‖ > sα,M reject H0 with significance level α.

3.3.14 An Example Using Synthetic Data

Let us choose:

(ε, ρ, ṽ0) = (0.1,−0.2, 0.5)

as the unknown parameters of the normal SABR model that we want
recover in the calibration problem. For i = 1, 2, ...,M let us choose the
weights wi, and the constants ai appearing in (11) as follows:
wi = exp(−2 ∗ (i−M)), ai = ξ̂i.

• Data sample generation: Let M = 10 be the number of observations.
Let ∆t = 20 be a time increment and ti = i∆t, i = 0, 1, ...,M,

be a discrete set of observation times. The synthetic data ξ̂i, i =

1, 2, ...,M, are obtained approximating with the explicit Euler method
(1)-(4) one trajectory of the normal SABR model with the previous
choice of the parameter values. That is: D1 = {ξ̂i, i = 1, 2, ...,M}
is the data sample of the numerical example presented. Using D1 we
compute F̂ = (1.684, 6.435, 24.604).

• Hypothesis formulation: We proceed as suggested in Fatone et al.
Journal of Inverse and Ill Posed Problems 2013 and we solve the
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calibration problem using the nonlinear least squares method. The
solution obtained with the least squares method is used to formulate
the null hypothesis of the statistical test. That is we consider the
following null hypothesis:

H0 : (ε, ρ, ṽ0) = (0.1261,−0.3356, 0.515). (17)

We test the hypothesis H0 with statistical significance α using the
sample data D1.

• Monte Carlo method: We compute F∗(M) = (F∗1 (M),F∗2 (M),

F∗3 (M)), where F∗k (M), k = 2, 3, 4, are given by (8), when H0 is

true, using the Monte Carlo procedure. We have

F∗(M) = (0.607, 0.117, 16.449).

• Threshold value determination: We build a sample of N = 1000

realizations of the random variables F2(M), F3(M), F4(M) defined

in (8) when H0 is true integrating numerically with explicit Euler

method the normal SABR model (1)-(4) on the time interval [0, 200].

The values of sα,10 as a function of α obtained in this way are shown

in the following table:

H0 : (ε, ρ, ṽ0) = (0.1261,−0.3356, 0.515), M = 10

α sα,10

0.01 571

0.05 179

0.1 50

222 http://www.sciencepublishinggroup.com



Chapter 3. Calibration of Stochastic Volatility Models Using Statistical Tests

• Decision rule:

– if ‖F̂ − F̂∗‖ ≤ sα,10 do not reject H0, with significance level α;

– if ‖F̂ − F̂∗‖ > sα,10 reject H0, with significance level α.

The hypothesisH0 is retained for the values of α considered in the Table.
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