Chapter 5

Post-Newtonian Approximation






In this chapter post-Newtonian approximation of the gravitational field in flat
space-time of a perfect fluid is studied. The conservation laws of energy-
momentum and of angular-momentum are derived. The equivalence of the
conservation law of energy-momentum and of the equations of motion is shown
to the studied accuracy. All the results of post-Newtonian approximation in flat
space-time theory of gravitation agree up to the studied accuracy with those of
general relativity as studied by Will in his famous book of Will [wil 81].

5.1 Post-Newtonian Approximation

The study of post-Newtonian approximation of gravitation in flat space-time
follows along the considerations of Will. In this sub-chapter we assume a matter
tensor of the form

T(M){ = (3)1/2 {(P (1 +CEZ) +P) Gik %%‘chzfsij} (5.12)

where p denotes the density of matter, II is the specific internal energy, p is the
isotropic pressure and (‘Z—’:) is the four-velocity. Equation (5.1a) yields by the
use of relation (1.8)
T(M)§ = — (ﬁ)l/2 (p(1+5)-3p)c2 (5.1b)
n c

The post-Newtonian approximation is an expansion of the gravitational field
in powers of % Subsequently, we use the pseudo-Euclidean geometry given by
(1.4) and (1.5). Let us start with the Newtonian gravitational potential defined
by

AU = —4mkp (5.2a)
with the solution
_ 5o P) o3
Ux,t) =k o dx'3. (5.2b)

Sub-chapter 2.2 implies the approximate tensor
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9; =1+C£2U(i =j=1273)
:_(1—C%uj(i = j=4) (5.32)
=0(%i#j)
with the inverse tensor

g" =1—C32U(i=j=1,2,3)

:—(1+C%Uj(i = j=4) (5.30)
=0(i=#j)
Let v denote the velocity of the body, i.e.
v=@w,v3vd) = (dd—f,dd—f,dd—f) (5.4)
And assume in analogy to Will
v|2 1 P In 1
] ~zv-5~5~0(3) (5:59)
and
a/ot
3/7| ~0(1). (5.5b)

The post-Newtonian approximation of gravitation now requires the
knowledge of g4, to 0 (C%) of gi4 t0 O (613) and of g;; to 0 (Ciz) (i,j=1,2,3).
Hence, we make the ansatz

g, [13“)5 (i.j=123
= Avi=123]=9)
C
. (5.6a)
:——3Vj (I =4 ] 21,2,3)
C

2 1 L

with
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Vi~S~0(). (5.6b)
The inverse tensor of (5.6a) is
g’ =[1—C22UJ5" (i;j=12,3)
= Av=123]=4)
‘; (5.6¢)
:_?Vj (i=4;,j=1,2,3)
=—(1+%U +i4(—s +4u2)j(i =j=4)
c C
In addition, we have
_\1/2
()" ~1+2v (5.60)
It follows from (1.13) and (1.12) by the use of (5.4) and (5.6)
(5.7)

2
dt 1 1|v
Ex14+=U —|—|.
dt +02 +Zc

We get from (5.1) with the aid of (5.6) and (5.7)
T(M); = pv'v/ +pc?sf (; j=1,2,3)

2
P 4
+;)_EPVJ

v
Cc

; m, 6
=pcv‘<1+c—2+c—2U+
(i=%4j=123) (589

v|2
C

+2)  (=L2.54)

=—pcvi(1+%+%U+

BINGED

v
Cc

I 2
= —pc? (1+C—2+C—2U+

too(1)and 0 G) respectively. Furthermore, we get to 0(1)

T(M)¥ = —pc? (1 + CEZ + CZ—ZU - 3%). (5.8b)
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We have from (1.21a) and (1.9) by the use of (5.6) the mixed energy-
momentum tensor of the gravitational field to the same accuracy as that of
matter

i 1 8 ou oU ou ou
@) = s

L - D) (:171.29)
_ _18 0uau 6U (i=4; =1, 2, 3)
(5.92)
= +——-—-— (i=1,23;j=4)

8Kk c* 0x!dct

ouU oU
T 8K c* Zk 19xk axk ( J 4)

and

ou ou

l _
T(G)l "8k c4 Zk 19xk gxk’

(5.9b)

We now obtain from (1.24) with the aid of (5.6), (5.8), (5.9) and (5.2) by
longer elementary calculations

AV; = —4mkpvt (i=1,2,3) (5.10a)
And

2
aS—4%i (U )+2 o = 8mkp (11 + 20U + 2[v|? + 3%) (5.10b)

Here, (5.10a) follows with i=1,2,3; j=4 (or i and j exchanged ) and equation
(5.10b) with i=j=4. The equations (1.23) with i, j=1,2,3 are identically satisfied
by virtue of (5.2).The solution of (5.10a) is given by

kf””” d3x’ (i=1,2,3) (5.11)

where p’ = p(x’,t) and correspondingly v’ To solve equation (5.10b) we use
the identity

0 ou
85U =2%5 75 (U i)

and introduce in analogy to Chandrasekhar the super-potential

x=—k[p|lx—x'|d3x (5.12a)
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which satisfies
Ay =-2U. (5.12b)
Hence, the equation (5.10b) can be rewritten

aZX pCZ
A(S—ZUZ—F) =8nkp(l'l+2U+2|v|2+37). (5.13)

Furthermore, let us put (see |Wil 81])

d3’¢2 kJ-LY g

\ \ |x x\ ’ (5.14a)
_ J‘ p ¢4 dsx.
[x=x]| X X\
and
¢ =201+ 2¢, + P3 + 3¢, (5.14b)
then, the equation (5.13) has the solution
S=2U%+=—=%-2¢. (5.15)

at2

Hence, the tensors (g;;) and (g%) of (5.6a) and (5.6c) are known to the
needed accuracy. Will [Wil 81] has shown that any metric theory of gravitation
may be given by a suitable transformation in the so-called “standard form”. For
the metric (5.6a) this transformation is given by

i.e. only by a time-transformation. But it will be shown that there is no necessity
for such a transformation as already remarked by Chugreev [Chu 90].

5.2 Conservation Laws
When we start instead of (5.6a) from the better approximation for i, j =1,2,3
2 1
gl] = (1 + C_ZU) 61] +FS”

where S;; = 0(1) then the energy-momentum tensor (1.21a) can be calculated
to the accuracy
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T(@)i~0(%) (.j=123)

~0(3) (=1,2,3,j=4), (i=4;}=1,2,3) (5.16)

~0(1) (i=j=4).

Elementary calculations give

oU oU
oxtoxJ

(

1 0U dUu

Kc* dxtact

1
Kc*

T(G); =

(

2¢?

au ads

oxtoxJ

Kc* dct dxJ

1 3
T ket Zk:l
where

C4
ELG

4y 4 vq
¢ dxiox) c24k=1

)+¥§

oV 0V
oxt oxJ
v os
dxJ dxt

Lg) (i,i=123)

(i=1, 2, 3; j=4) (5.17a)

(i=4; =1, 2, 3)

ouU ou
oxk axk

(i=j=4)

Y]
oct

4
c?

s (oU Y ’ s (oU Y
25 &) S
4 (V) 13 0U 35

(5.17h)

Hence, the energy-momentum tensor T(G)j'- of (5.17) is given to the stated

accuracy (5.16). It follo

ws that the knowledge of S;; is not necessary.

We will now calculate T(M)¥ to the same accuracy as stated by (5.16). It

follows from (1.28), (5.

T(M)' =p

80

4), (5.6) and (5.7) for the symmetric matter tensor

1+Ez+i2U+
c° ¢

2
+ p]vivj +pc?st (i,j=12,3)
P

2

P

+i2U+
Yol

c

I1
1+—

- (5.18)

vai (i=123j=4)

1+E+iU+
c° c

2 2
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We obtain from (5.17) by the use of (5.13), (5.2a) and (5.10a)

aikT(G)ﬁ =—p[1+nz+4zu B\ p]guj
X c° c c X (5.19)
4 s OV, 1 S
P2t 50t 2 o
to accuracy of 0 ( ) and
1 ou
to accuracy of 0 (%) It follows from (5.18) and (5.6a)
;(zgf' TM)¥ = [ +Ez+izu oY +3 p]guj
© ¢ ¢ X (5.20a)
4 o, 1
Sy v Sk p 2 (j-129)
to accuracy 0 ( ) and
L9k eppykt = 1,9V
2 dct (M) P (5.200)
to accuracy 0 (g) Hence, we get by comparing (5.19) and (5.20)
T(G)k = —22% Kt (j=1-4) (5.21)
6xk J 2 dxJ .

to accuracy 0 (%) for j=1,2,3 and to 0 (%) for j=4. The equations of motion

(1.29a) to the above noted accuracy are equivalent to the conservation law of
energy-momentum (see (1.25a))

S (T@F+TNY) =0 (j=1-4). (5.22)
Put

= [(T(®F+T(M)})d3x (j=1-4). (5.23)

Hence, P; is constant to accuracy O (%) for j=1,2,3 and to accuracy 0(1) for

j=4. It follows from (5.23) with the aid of (5.8a), (5.9a), (5.2a) and (5.12b) by
the theorem of Gauf3
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. 2 2
Pj=cfp{v1(1+%+c6—2U+ +%)—1V+ - 6X}d3x(5.24a)

c2 7 " 2c2 ataxi

v
c

for j=1,2.3 and

i 5 2
P, = —czfp<1+c—2+ﬁU+ )d3x (5.24b)

v
c

where the identity

3 oU oU _ 3 0 ou
St sgage = ~UAU + Sioi5x (U5)

is used. Will [Wil 81] introduces for j=1,2,3

[/Vj _ kfpl(v’,(x—x’))(xl_xll) d3x' (5253)

[x—2xr|3

then (compare also Chandrasekhar [Cha 65])

?Px _ o,
o = Vv, — W (5.25b)

We get from the conservation law for mass
((ﬁ)l/ ? d_x")

-n p dt
by the use of (5.4), (5.6d) and (5.7) the conservation law

ap* d *
- + Zi=1m(p vk) =0 (527a)

N 0 (5.26)

to 0 (Ciz) where

2
p*=p(1+f—zu+§§ ) (5.27b)
Hence, the conserved mass is given by
m= [p*d3x. (5.28)

The conserved energy-momentum follows from (5.24) with (5.27b) and by
(5.25)
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o Wt 3 1|2 | p 1
P=cfp|vi (14 g+ 5045 +5) v+ W) (5200
(=1,2,3)
2
p4=—c2fp*<1+c%—$U+%§ )d3x. (5.29b)

By the use of the identity (see e.g. [Cha 65])
prvj d3x = fij d3x

the momentum (5.29a) is rewritten to O (%) in the form

o i} 1 11v|?
Pi=cfp [v1(1+c—2—§U+5;

1
+ %) - ﬁwj] d3x. (5.29¢)

The conserved quantities of mass (5.28) and of the energy-momentum (5.29b)
and (5.29c) are identical with the corresponding results of Einstein’s theory (see
[Cha 65] or [Wil 81]).

It is worth mentioning that we have used the energy-momentum tensor in the

_\1/2
form (5.1a) with the factor (_—f’) to get formally the same results as those of

general relativity. In general the above factor is omitted which would give the
same results in another form of representation.

We will now study the conservation law of angular-momentum (1.53) in
uniformly moving reference frames. We get

M = [(xITH — xIT 4 AU4) d3x (5.30)
is conserved for i, j=1,2,3,4. It follows by the use of (5.6) that AY* = 0 to an

accuracy of 0 (%) for i, j=1,2,3 and to an accuracy of 0(1) for i=4; j=1,2,3 and
i=1,2,3; j=4.

Hence, we obtain to the given accuracy the usual conservation law of
angular-momentum, i.e. without spin expression:

MY = [(x'T/* — xIT™) d3x. (5.31)

In particular, for j=4 we get with (5.23)
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M* = [(=x'T — ctT!)d® x = = [x' T}d*x —ctP. (5.3

If we substitute (5.8a) and (5.17a) into relation (5.32) we get for i=1,2,3 by
elementary calculations

(7N O on__t 1121 @3y — ctP.
M —cfxp<1+c2 —U+3 )dx ctP;. (5.33)

v
c

Defining the centre of the mass (x?, X2, X3) (see Will [Wil 81]) by
2

3 * on_ 1 1
)d x/fp <1+C2 U +3

We get from equation (5.33) by differentiation and the use of (5.29b)

2
)d3x.

v
c

i i x I 1 1
X‘=fx‘p <1+C—Z—EU+E

v
c

d i _ ﬂ .
Xi= —e (i71.29) (5.34)

i.e. the centre of the mass moves uniformly with the velocity — Pi (Py, Py, P3).
4

5.3 Equations of Motion

The equations of motion (1.29a) can be rewritten (see Petry [Pet 91])
] ; j
mT(M)J" = —T(G);, T(M)*. (5.35)
Elementary calculations give by the use of (5.6), (5.15) and (5.25b) for i, j,

k=1,2,3 the Christoffel symbols

10U 10U
S TG) =5
C3 8t ( )4| Cz 8X'

0V,
YL TR
oct|eat ! ox! ox

10U 1[au2 op 70V, 1awiJ

F(G)fm =

PO =G5r a2

XX 20t 2 ét (5.36)
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The equations of motion are satisfied to accuracy O (6—12) for j=1,2,3 and to

accuracy O G) for j=4 (see (5.21)). Hence, it follows from formula (5.35) with

j=4 that F(G)?j ~0 (i, j=1,2,3) to the needed accuracy. Therefore, the
Christoffel symbols (5.36) with T'(G){; = 0 are identical with those of general
relativity (see [Wil 81] and [Cha 65]). The equations of motion (5.35) are by the
use of (5.18) and (5.36) given to accuracy O (Ciz) for j=1,2,3 and to accuracy

0 (2) for j=4. Here, the density p* given by (5.27b) may be introduced instead
of the densityp.

Let T(Mz)¥ denote the symmetric matter tensor of the theory of Einstein then
we have the relation

ron’ = ()" 637

The equations of motion of general relativity of Einstein can be written (see
e.g. Fock [Foc 60])

—{(-6®)

where I'(Gg), are the Christoffel symbols of the theory of Einstein and G(E) is
the determinant of the corresponding metric. By virtue of (5.37),n=-1,
G=G(E) 00 (Ciz) and the agreement of I'(G)%, with I'(Gg)}, to the needed
accuracy the equations of motion (5.35) of gravitation in flat space-time agree
with the equations of motion (5.38) of general relativity. Hence, the equations
of motion are to post-Newtonian approximation identical with the results of the
theory of Einstein.

1/2 1/2

T(Mg)™*} = —T(Gp)ju(—G(E)) " “T(Mp)*  (5.38)

Summarizing, all the results of flat space-time theory of gravitation and the
general theory of relativity of Einstein agree to post-Newtonian approximation.

The results of this chapter on post-Newtonian approximations by the use of
the theory of gravitation in flat space-time can be found in the article of Petry

[Pet 92]. Post-Newtonian approximations to higher order (to 2 %) are given in the

paper of ThUmmel [Thii 96] by the use of the theory of gravitation in flat space-
time.
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