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In this chapter post-Newtonian approximation of the gravitational field in flat 

space-time of a perfect fluid is studied. The conservation laws of energy-

momentum and of angular-momentum are derived. The equivalence of the 

conservation law of energy-momentum and of the equations of motion is shown 

to the studied accuracy. All the results of post-Newtonian approximation in flat 

space-time theory of gravitation agree up to the studied accuracy with those of 

general relativity as studied by Will in his famous book of Will         . 

5.1  Post-Newtonian Approximation 

The study of post-Newtonian approximation of gravitation in flat space-time 

follows along the considerations of Will. In this sub-chapter we assume a matter 

tensor of the form 

      
 

  
  

  
 

   

      
 

         
   

  

   

  
      

 
   (5.1a) 

where   denotes the density of matter,   is the specific internal energy,   is the 

isotropic pressure and  
   

  
  is the four-velocity. Equation (5.1a) yields by the 

use of relation (1.8) 

      
    

  

  
 

   

     
 

            (5.1b) 

The post-Newtonian approximation is an expansion of the gravitational field 

in powers of 
 

 
. Subsequently, we use the pseudo-Euclidean geometry given by 

(1.4) and (1.5). Let us start with the Newtonian gravitational potential defined 

by 

          (5.2a) 

with the solution 

          
       

      
    . (5.2b) 

Sub-chapter 2.2 implies the approximate tensor 
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with the inverse tensor 
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Let   denote the velocity of the body, i.e. 

                 
   

  
 
   

  
 
   

  
  (5.4) 

And assume in analogy to Will 

  
 

 
 
 
 

 

    
 

 
  

 

       
 

    (5.5a) 

and 

  
    

     
         (5.5b) 

The post-Newtonian approximation of gravitation now requires the 

knowledge of     to   
 

   , of     to   
 

    and of     to   
 

    (i,j=1,2,3). 

Hence, we make the ansatz 
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 (5.6a) 

with 
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              . (5.6b) 

The inverse tensor of (5.6a) is 
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 (5.6c) 

In addition, we have 

  
  

  
 

   

   
 

    (5.6d) 

It follows from (1.13) and (1.12) by the use of (5.4) and (5.6) 

   

  
   

 

    
 

 
 
 

 
 
 
  (5.7) 

We get from (5.1) with the aid of (5.6) and (5.7) 

     
               

                    

(5.8a) 

                      
 

   
 

     
 

 
 
 

 
 

 
  

 

 
       

               

                       
 

   
 

     
 

 
 
 

 
 

 
        (i=1, 2, 3; j=4)  

                       
 

   
 

     
 

 
 
 
        (i=j=4)  

to      and   
 

 
  respectively. Furthermore, we get to      

      
            

 

   
 

     
 

 
   (5.8b) 
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We have from (1.21a) and (1.9) by the use of (5.6) the mixed energy-

momentum tensor of the gravitational field to the same accuracy as that of 

matter 

       
      

 

  

 

    
  

   

  

    
 

 
  

  
  

   
 
   

  

       (i; j=1,2,3)  

(5.9a) 
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   (i=1, 2, 3; j=4)  

                          
 

  
 

 

    
  

   
 
   

  

   
   (i=j=4)  
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   . (5.9b) 

We now obtain from (1.24) with the aid of (5.6), (5.8), (5.9) and (5.2) by 

longer elementary calculations 

               (i=1,2,3) (5.10a) 

And 

     
 

   
 
     

  

      
   

                     
   

 
    (5.10b) 

Here, (5.10a) follows with i=1,2,3; j=4 (or i and j exchanged ) and equation 

(5.10b) with i=j=4. The equations (1.23) with i, j=1,2,3 are identically satisfied 

by virtue of (5.2).The solution of (5.10a) is given by 

       
     

      
       (i=1,2,3) (5.11) 

where            and correspondingly     To solve equation (5.10b) we use 

the identity 

      
 

   
 
     

  

      

and introduce in analogy to Chandrasekhar the super-potential 

                   (5.12a) 
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which satisfies 

       . (5.12b) 

Hence, the equation (5.10b) can be rewritten 

         
   

                      
   

 
 .  (5.13) 

Furthermore, let us put                
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and 

                  (5.14b) 

then, the equation (5.13) has the solution 

       
   

      . (5.15) 

Hence, the tensors       and       of (5.6a) and (5.6c) are known to the 

needed accuracy. Will           has shown that any metric theory of gravitation 

may be given by a suitable transformation in the so-called “standard form”. For 

the metric (5.6a) this transformation is given by  

       
 

   

  

  
,  

i.e. only by a time-transformation. But it will be shown that there is no necessity 

for such a transformation as already remarked by Chugreev         . 

5.2  Conservation Laws 

When we start instead of (5.6a) from the better approximation for i, j =1,2,3 

       
 

        
 

       

where          then the energy-momentum tensor (1.21a) can be calculated 

to the accuracy 
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(5.16)                                                 
 

 
    (i=1, 2, 3; j=4),  (i=4; j=1, 2, 3) 

         (i=j=4).  

Elementary calculations give 
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Hence, the energy-momentum tensor      
  of (5.17) is given to the stated 

accuracy (5.16). It follows that the knowledge of     is not necessary. 

We will now calculate        to the same accuracy as stated by (5.16). It 

follows from (1.28), (5.4), (5.6) and (5.7) for the symmetric matter tensor 
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We obtain from (5.17) by the use of (5.13), (5.2a) and (5.10a) 
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to accuracy of   
 

    and 

 
 

        
    

 

 
 

  

  
 (5.19b) 

to accuracy of   
 

 
 . It follows from (5.18) and (5.6a) 
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to accuracy   
 

    and 

 
 

 

    

   
       

 

 
 

  

  
 (5.20b) 

to accuracy   
 

 
 . Hence, we get by comparing (5.19) and (5.20) 

 
 

        
   

 

 

    

            (j=1-4) (5.21) 

to accuracy   
 

    for j=1,2,3 and to   
 

 
  for j=4. The equations of motion 

(1.29a) to the above noted accuracy are equivalent to the conservation law of 

energy-momentum (see (1.25a)) 

 
 

         
       

       (j=1-4). (5.22) 

Put   

            
       

        (j=1-4). (5.23) 

Hence,    is constant to accuracy   
 

 
  for j=1,2,3 and to accuracy      for 

j=4. It follows from (5.23) with the aid of (5.8a), (5.9a), (5.2a) and (5.12b) by 

the theorem of Gauß 
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          (5.24a) 

for j=1,2.3 and 

             
 

   
 

      
 

 
 
 
     (5.24b) 

where the identity  

 
  

   
 
   

  

           
 

     
  

    
 
     

is used. Will          introduces for j=1,2,3 

      
                     

       
     (5.25a) 

then (compare also Chandrasekhar         ) 

 
   

            . (5.25b) 

We get from the conservation law for mass 

   
  

  
 

   

 
   

  
 

  
   (5.26) 

by the use of (5.4), (5.6d) and (5.7) the conservation law  

 
   

  
  

 

   
 
            (5.27a) 

to   
 

    where  

        
 

    
 

 
 
 

 
 
 
 . (5.27b) 

Hence, the conserved mass is given by 

          . (5.28) 

The conserved energy-momentum follows from (5.24) with (5.27b) and by 

(5.25) 
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                 (5.29a) 

(j=1,2,3) 

             
 

   
 

     
 

 
 
 

 
 
 
    . (5.29b) 

By the use of the identity (see e.g.         ) 

                 

the momentum (5.29a) is rewritten to   
 

 
  in the form 

              
 

   
 

     
 

 
 
 

 
 
 

 
 

 
  

 

           (5.29c) 

The conserved quantities of mass (5.28) and of the energy-momentum (5.29b) 

and (5.29c) are identical with the corresponding results of Einstein’s theory (see 
         or          ).  

It is worth mentioning that we have used the energy-momentum tensor in the 

form (5.1a) with the factor  
  

  
 

   

 to get formally the same results as those of 

general relativity. In general the above factor is omitted which would give the 

same results in another form of representation. 

We will now study the conservation law of angular-momentum (1.53) in 

uniformly moving reference frames. We get 

                               (5.30) 

is conserved for i, j=1,2,3,4. It follows by the use of (5.6) that        to an 

accuracy of   
 

 
  for i, j=1,2,3 and to an accuracy of      for i=4; j=1,2,3 and 

i=1,2,3; j=4. 

Hence, we obtain to the given accuracy the usual conservation law of 

angular-momentum, i.e. without spin expression: 

                         . (5.31) 

In particular, for j=4 we get with (5.23) 
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         . (5.32) 

If we substitute (5.8a) and (5.17a) into relation (5.32) we get for i=1,2,3 by 

elementary calculations 

                
 

   
 

     
 

 
 
 

 
 
 
         . (5.33) 

Defining the centre of the mass            (see Will         ) by  

           
 

   
 

     
 

 
 
 

 
 
 
          

 

   
 

     
 

 
 
 

 
 
 
     . 

We get from equation (5.33) by differentiation and the use of (5.29b) 

 
 

  
      

  

  
  (i=1,2,3) (5.34) 

i.e. the centre of the mass moves uniformly with the velocity  
 

  
          . 

5.3  Equations of Motion 

The equations of motion (1.29a) can be rewritten (see Petry         ) 
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Elementary calculations give by the use of (5.6), (5.15) and (5.25b) for i, j, 

k=1,2,3 the Christoffel symbols 
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The equations of motion are satisfied to accuracy   
 

    for j=1,2,3 and to 

accuracy   
 

 
  for j=4 (see (5.21)). Hence, it follows from formula (5.35) with 

j=4 that       
    (i, j=1,2,3) to the needed accuracy. Therefore, the 

Christoffel symbols (5.36) with       
    are identical with those of general 

relativity (see          and         ). The equations of motion (5.35) are by the 

use of (5.18) and (5.36) given to accuracy   
 

    for j=1,2,3 and to accuracy 

  
 

 
  for j=4. Here, the density    given by (5.27b) may be introduced instead 

of the density . 

Let         denote the symmetric matter tensor of the theory of Einstein then 

we have the relation 

         
  

  
 

   

       . (5.37) 

The equations of motion of general relativity of Einstein can be written (see 

e.g. Fock         ) 

 
 

           
   

                 
        

   
        (5.38) 

where        
  are the Christoffel symbols of the theory of Einstein and      is 

the determinant of the corresponding metric. By virtue of (5.37),     , 

       to   
 

    and the agreement of       
  with        

  to the needed 

accuracy the equations of motion (5.35) of gravitation in flat space-time agree 

with the equations of motion (5.38) of general relativity. Hence, the equations 

of motion are to post-Newtonian approximation identical with the results of the 

theory of Einstein. 

Summarizing, all the results of flat space-time theory of gravitation and the 

general theory of relativity of Einstein agree to post-Newtonian approximation. 

The results of this chapter on post-Newtonian approximations by the use of 

the theory of gravitation in flat space-time can be found in the article of Petry 

        . Post-Newtonian approximations to higher order (to  
 

 
) are given in the 

paper of Thümmel          by the use of the theory of gravitation in flat space-

time. 
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