Chapter 11

Preferred and Non-Preferred Reference
 Frames

11.1 Preferred Reference Frame

In this sub-chapter the preferred reference frame Σ^{\prime} is shortly stated. In this frame Σ^{\prime} the metric is the pseudo-Euclidean geometry, i.e.

$$
\begin{equation*}
\left(c d \tau^{\prime}\right)^{2}=\left(d s^{\prime}\right)^{2}=-\eta_{k l}^{\prime} d x^{k \prime} d x^{l \prime} \tag{11.1a}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta_{11}^{\prime}=\eta_{22}^{\prime}=\eta_{33}^{\prime}=1, \eta_{44}^{\prime}=-1, \eta_{i j}^{\prime}=0(\mathrm{i} \neq \mathrm{j}) \tag{11.1b}
\end{equation*}
$$

In addition, the inverse tensor $\eta^{i j \prime}$ is given by

$$
\begin{equation*}
\eta_{i k}^{\prime} \eta^{k j}=\delta_{i}^{j} \tag{11.2a}
\end{equation*}
$$

It follows

$$
\begin{equation*}
\eta^{11^{\prime}}=\eta^{22^{\prime}}=\eta^{33^{\prime}}=1, \eta^{44^{\prime}}=-1, \eta^{i j^{\prime}}=0(\mathrm{i} \neq \mathrm{j}) \tag{11.2b}
\end{equation*}
$$

Let $w^{\prime}=\left(w^{1}, w^{2 \prime}, w^{2 \prime}\right)$ be a constant velocity vector and put

$$
\begin{equation*}
\gamma=\left(1-\left|\frac{w^{\prime}}{c}\right|^{2}\right)^{-1 / 2} \tag{11.3}
\end{equation*}
$$

Then, the Lorentz-transformations

$$
\begin{align*}
& \tilde{x}^{i^{\prime}}=x^{i^{\prime}}+(\gamma-1) \frac{\left(x^{\prime}, w^{\prime}\right)}{|w|^{2}} w^{i^{\prime}}+\gamma t^{\prime} w^{i \prime} \quad(\mathrm{i}=1,2,3) \tag{11.4}\\
& c \tilde{t}^{\prime}=\gamma\left(c t^{\prime}+\left(x^{\prime}, \frac{w \prime}{c}\right)\right)
\end{align*}
$$

do not change the line-element (11.1). All the quantities in Σ^{\prime} are subsequently denoted with a prime and we put

$$
\begin{equation*}
x^{4 \prime}=c t^{\prime} \tag{11.5}
\end{equation*}
$$

The inverse formulae are

$$
\begin{align*}
& x^{i^{\prime}}=\tilde{x}^{i^{\prime}}+(\gamma-1) \frac{\left(\tilde{x}^{\prime}, w^{\prime}\right)}{\left|w^{\prime}\right|^{2}} w^{i^{\prime}}-\gamma \tilde{t}^{\prime} w^{i^{\prime}} \quad(i=1,2,3) \\
& x^{4^{\prime}}=\gamma\left(\tilde{x}^{4^{\prime}}-\left(\tilde{x}^{\prime}, \frac{w^{\prime}}{c}\right)\right) . \tag{11.6}
\end{align*}
$$

Hence, the transformations (11.4) and (11.6) give the possibility to transform a known event in Σ^{\prime} into the same event moving with constant velocity w^{\prime} in Σ^{\prime}.

These are the well-known results of special relativity but the transformations (11.4) and (11.6) are always in in the same frame Σ^{\prime} in contrast to the interpretation of special relativity where the transformations give the same result in a uniformly moving frame with velocity w^{\prime}. The light velocity in the preferred frame Σ^{\prime} is always the vacuum light velocity c.

11.2 Non-Preferred Reference Frame

Let us now consider a reference frame Σ which moves with velocity $-v^{\prime}=$ $-\left(v^{1^{\prime}}, v^{2 \prime}, v^{3 \prime}\right)$ relative to the preferred frame Σ^{\prime}. All the results of this subchapter can be found in the article [Pet 86].

The non-preferred reference frame Σ is received from the preferred frame Σ^{\prime} by the transformations

$$
\begin{equation*}
x^{i}=x^{i \prime}(\mathrm{i}=1,2,3), x^{4}=x^{4^{\prime}}-\left(x^{\prime}, \frac{v^{\prime}}{c}\right) . \tag{11.7a}
\end{equation*}
$$

The inverse transformation is

$$
\begin{equation*}
x^{i \prime}=x^{i},(\mathrm{i}=1,2,3), x^{4 \prime}=x^{4}+\left(x, \frac{v \prime}{c}\right) . \tag{11.7b}
\end{equation*}
$$

The metric follows from (11.1). We get

$$
\begin{align*}
\eta_{i j} & =\delta_{i j}-\frac{v^{i^{\prime}}}{c} \frac{v^{j^{\prime}}}{c} \quad(\mathrm{i} ; \mathrm{j}=1,2,3) \\
& =-\frac{v^{i \prime}}{c} \quad(1,2,3 ; \mathrm{j}=4) \tag{11.8a}\\
& =-\frac{v^{j}}{c} \quad(\mathrm{i}=1 ; \mathrm{j}=1,2,3) \\
& =-1 . \quad(\mathrm{i}=\mathrm{j}=4)
\end{align*}
$$

with

$$
\begin{equation*}
(c d \tau)^{2}=-\eta_{k l} d x^{k} d x^{l} . \tag{11.8b}
\end{equation*}
$$

The inverse has the form

$$
\begin{align*}
\eta^{i j} & =\delta^{i j} \quad(i ; j=1,2,3) \\
& =-\frac{v^{i^{\prime}}}{c} \quad(i=1,2,3 ; j=4) \\
& =-\frac{v^{j^{\prime}}}{c} \quad(i=1 ; j=1,2,3) \tag{11.9}\\
& =-\left(1-\left|\frac{v^{\prime}}{c}\right|^{2}\right) . \quad(i=j=4)
\end{align*}
$$

Elementary calculations give the absolute value of light-velocity

$$
\begin{equation*}
\left|v_{l}\right|=c /\left(1-\left|\frac{v^{\prime}}{c}\right| \cos \vartheta\right) \tag{11.10}
\end{equation*}
$$

where ϑ denotes the angle between the vectors v_{l} of light-velocity and v^{\prime}. Hence the light-velocity is anisotropic.

We consider the Michelson-Morley experiment. Let l be the length of the arms of the apparatus. Then, the total time for the travelling of the ray is

$$
\begin{equation*}
t=\frac{l}{c}\left\{\left(1-\left|\frac{v^{\prime}}{c}\right| \cos \vartheta\right)+\left(1-\left|\frac{v^{\prime}}{c}\right| \cos \left(180^{0}-\vartheta\right)\right)\right\}=\frac{2 l}{c} \tag{11.11}
\end{equation*}
$$

Therefore, the null-result of Michelson-Morley is received. The transformations (11.7) give the result of an event studied in the preferred frame Σ^{\prime} for the same event as it would appear in the non-preferred frame Σ and vice versa.

We will now study the transformations in Σ which correspond to the Lorentztransformations in Σ^{\prime}, i.e. they transform an event in Σ as it appears in Σ when it has the velocity w^{\prime} measured in Σ^{\prime}. We have the formulae (11.7) and for the moving object the same transformations hold, i.e.

$$
\begin{equation*}
\tilde{x}^{i^{\prime}}=\tilde{x}^{i} \quad(\mathrm{i}=1,2,3), \tilde{x}^{4^{\prime}}=\tilde{x}^{4}+\left(\tilde{x}, \frac{v \prime}{c}\right) \tag{11.12}
\end{equation*}
$$

The transformations (11.7) and (11.12) yield from the transformations (11.4) by elementary computations the result

$$
\begin{align*}
\tilde{x}^{i}=x^{i}+ & (\gamma-1) \frac{\left(x, w^{\prime}\right)}{\left|w^{\prime}\right|^{2}} w^{i \prime}+\gamma x^{4} \frac{w^{i \prime}}{c}+\gamma\left(x, \frac{v \prime}{c}\right) \frac{w^{i \prime}}{c}(1,2,3) \\
\tilde{x}^{4}= & \gamma\left(x^{4}+\left(x, \frac{w^{\prime}}{c}\right)\right)-\gamma\left(x^{4}+\left(x, \frac{v^{\prime}}{c}\right)\right)\left(\frac{w^{\prime}}{c}, \frac{v^{\prime}}{c}\right) \tag{11.13a}\\
& +(\gamma-1)\left(\left(x, \frac{v^{\prime}}{c}\right)-\frac{\left(x, \frac{w^{\prime}}{c}\right)}{\left|w^{\prime}\right|^{2}}\left(w^{\prime}, v^{\prime}\right)\right)
\end{align*}
$$

The inverse formulae are

$$
\begin{align*}
& x^{i}=\tilde{x}^{i}+(\gamma-1) \frac{\left(\tilde{x}, w^{\prime}\right)}{\left|w^{\prime}\right|^{2}} w^{i^{\prime}}-\gamma \tilde{x}^{4} \frac{w^{i}}{c}-\gamma\left(\tilde{x}, \frac{v \prime}{c}\right) \frac{w^{i} \prime}{c}(\mathrm{i}=1,2,3) \\
& x^{4}=\gamma\left(\tilde{x}^{4}-\left(\tilde{x}, \frac{w^{\prime}}{c}\right)\right)+\gamma\left(\tilde{x}^{4}+\left(\tilde{x}, \frac{v^{\prime}}{c}\right)\right)\left(\frac{w^{\prime}}{c}, \frac{v^{\prime}}{c}\right) \tag{11.13b}\\
&+(\gamma-1)\left(\left(\tilde{x}, \frac{v^{\prime}}{c}\right)-\frac{\left(\tilde{x}, \frac{w^{\prime}}{c}\right)}{\left|w^{\prime}\right|^{2}}\left(w^{\prime}, v^{\prime}\right)\right)
\end{align*}
$$

Any event computed in Σ at rest can be calculated in Σ when it moves with velocity w^{\prime}.

The four-velocity in Σ is

$$
\left(\frac{d x^{i}}{d \tau}\right)=\frac{d t}{d \tau}\left(\frac{d x^{1}}{d t}, \frac{d x^{2}}{d t}, \frac{d x^{3}}{d t}\right)
$$

and in Σ^{\prime} the four-velocity is

$$
\left(\frac{d x^{i \prime}}{d \tau^{\prime}}\right)=\frac{d t^{\prime}}{d \tau^{\prime}}\left(\frac{d x^{1 \prime}}{d t^{\prime}}, \frac{d x^{2 \prime}}{d t^{\prime}}, \frac{d x^{3 \prime}}{d t^{\prime}}\right) .
$$

The last two relations give by the use of (11.7) and the standard transformations for the velocities in Σ and Σ^{\prime} :

$$
\begin{equation*}
\frac{d x}{d t}=\frac{d x^{\prime}}{d t^{\prime}} \frac{1}{1-\left(\frac{1 d x^{\prime} v^{\prime}}{c d t^{\prime}} \frac{,}{c}\right)} \tag{11.14a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d x \prime}{d t^{\prime}}=\frac{d x}{d t} \frac{1}{1+\left(\frac{1 d x}{c d t}, \frac{v^{\prime}}{c}\right)} \tag{11.14b}
\end{equation*}
$$

In the special case that $\frac{d x^{i \prime}}{d t^{\prime}}=v^{i \prime}$ we get

$$
\begin{equation*}
\frac{v}{c}=\frac{v \prime}{c} \frac{1}{1-\left|\frac{v}{c}\right|^{2}}, \quad \frac{v \prime}{c}=\frac{v}{c} \frac{2}{1+\left(1+4\left|\frac{v}{c}\right|^{2}\right)^{1 / 2}} \tag{11.15}
\end{equation*}
$$

We will now give the transformation formulae for computing in the frame Σ an event which takes place in the frame Σ^{\prime}. In the frame Σ the frame Σ^{\prime} is described by the velocity $w^{\prime}=v^{\prime}$ in the formula (11.13), i.e.

$$
\begin{align*}
& \tilde{x}^{i}=x^{i}+(\gamma-1) \frac{\left(x, v^{\prime}\right)}{\left|v^{\prime}\right|^{2}} v^{i^{\prime}}+\gamma x^{4} \frac{v^{i^{\prime}}}{c}+\gamma\left(x, \frac{v^{\prime}}{c}\right) \frac{v^{i^{\prime}}}{c}(i=1,2,3) \tag{11.16}\\
& \tilde{x}^{4}=\gamma^{-1}\left(x^{4}+\left(x, \frac{v^{\prime}}{c}\right)\right)
\end{align*}
$$

The transformation law from Σ to Σ^{\prime} is given by (11.7a) which implies

$$
\begin{align*}
& \tilde{x}^{i}=x^{i^{\prime}}+(\gamma-1) \frac{\left(x^{\prime}, v^{\prime}\right)}{\left|v^{\prime}\right|^{2}} v^{i^{\prime}}+\gamma x^{4^{4}} \frac{v^{i^{\prime}}}{c}(i=1,2,3) \tag{11.17a}\\
& \tilde{x}^{4}=\gamma^{-1} x^{4^{\prime}}
\end{align*}
$$

The inverse formulae are given by

$$
\begin{align*}
& x^{i^{\prime}}=\tilde{x}^{i}+\left(\gamma^{-1}-1\right) \frac{\left(\tilde{x}, v^{\prime}\right)}{\left|v^{\prime}\right|^{2}} v^{i^{\prime}}-\gamma \tilde{x}^{4} \frac{v^{i^{\prime}}}{c}(i=1,2,3) \tag{1.17b}\\
& x^{4^{\prime}}=\gamma \tilde{x}^{4} .
\end{align*}
$$

The formulae (11.17) are given at first by Tangherlini [Tan 61] and later on by Marinov [Mar 80]. Marinov stated the measurement of the velocity of the Earth of about $\left|\frac{v^{\prime}}{c}\right| \approx 10^{-3}$ in agreement with the observed velocity relative to the CMB. Hence, we can identify the Earth with the non-preferred frame Σ and the CMB frame with the preferred frame Σ^{\prime}.

All these results can be found in the article of Petry [Pet 86]. Furthermore, the paper contains in the non-preferred frame Σ the equations of Maxwell in a medium, the equations of motion of a point particle in the electro-magnetic field.

In addition, the experiments of Hook and Fizeau are studied being in agreement with the observed results. The Doppler-effect is also studied in the reference frame Σ. All these studies are omitted here.

