

Chapter 6

Introduction to OpenCV

http://www.sciencepublishinggroup.com 89

On successful completion of this course, students will be able to:

 Explain the roles of Computer Vision.

 Install OpenCV for image processing.

 Use CANNY Edge detector.

Introduction

Computer vision is the most important technology in the future in the

development of intelligent robot. Computer vision is in the simplest terms,

computer vision is the discipline of "teaching machines how to see." This field

dates back more than forty years, but the recent explosive growth of digital

imaging technology makes the problems of automated image interpretation

more exciting and relevant than ever. Computer vision and machine vision

differ in how images are created and processed. Computer vision is done with

everyday real world video and photography. Machine vision is done in

oversimplified situations as to significantly increase reliability while decreasing

cost of equipment and complexity of algorithms.

As a scientific discipline, computer vision is concerned with the theory

behind artificial systems that extract information from images. The image data

can take many forms, such as video sequences, views from multiple cameras, or

multi-dimensional data from a medical scanner. As a technological discipline,

computer vision seeks to apply its theories and models to the construction of

computer vision systems. Examples of applications of computer vision include

systems for:

 Navigation, e.g., by an autonomous mobile robot;

 Detecting events, e.g., for visual surveillance or people counting;

 Organizing information, e.g., for indexing databases of images and image

sequences;

 Modeling objects or environments, e.g., medical image analysis or

topographical modeling;

 Interaction, e.g., as the input to a device for computer-human interaction,

and;

 Automatic inspection, e.g., in manufacturing applications.

http://en.wikipedia.org/wiki/People_counter
http://en.wikipedia.org/wiki/Computer-human_interaction

Modern Robotics with OpenCV

90 http://www.sciencepublishinggroup.com

Computer vision is fast moving towards video data, as it has more

information for object detection and localization even though there scale and

rotational variance. An essential component of robotics has to do with artificial

sensory systems in general and artificial vision in particular. While it is true that

robotics systems exist (including many successful industrial robots) that have

no sensory equipment (or very limited sensors) they tend to be very brittle

systems. They need to have their work area perfectly lit, with no shadows or

mess. They must have the parts needed in precisely the right position and

orientation, and if they are moved to a new location, they may require hours of

recalibration. If a system could be developed that could make sense out of a

visual scene it would greatly enhance the potential for robotics applications. It is

therefore not surprising that the study of robot vision and intelligent robotics go

hand-in-hand.

Introduction of OpenCV

OpenCV (Open Source Computer Vision Library) is a library of

programming functions mainly aimed at real-time computer vision, developed

by Intel, and now supported by Willow Garage and Itseez. OpenCV is released

under a BSD license and hence it’s free for both academic and commercial use.

It has C++, C, Python and Java interfaces and supports Windows, Linux, Mac

OS, iOS and Android. OpenCV was designed for computational efficiency and

with a strong focus on real-time applications. Written in optimized C/C++, the

library can take advantage of multi-core processing. You may download the

latest version such as OpenCV 2.4.7.

OpenCV’s built in modules are powerful and versatile enough to solve most of

your computer vision problems. OpenCV provides you with a set of modules that

can execute the functionalities listed in table 6. 1.

Tabel 6.1 Modules in OpenCV.

No Module Functionality

1 Core Core data structures, data type and memory management

2 ImgProc Image filtering, image transformation and shape analysis

3 Highgui GUI, reading and writing images and video

4 ML
Statistical models and classification algorithms for use in computer

vision applications

5 Objdetect Object detection using cascade and histogram of gradient classifiers

6 Video Motion analysis and object tracking in video

7 Calib3d Camera calibration and 3D Reconstruction from multiple views

http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Willow_Garage

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 91

You need an editor and compiler of Visual Studio. Net 2010/2013 for editing

and compiling OpenCV program. You must first configure the Visual C + +.

Net where the library files and the source must be included. Some library files

must also be added to the linker input in Visual C + +. The steps are:

1) Run the program and extract to, let say f:/OpenCV246.

Figure 6.1 Extracting files to a folder.

2) Add these paths to your Path Variable:

f:\OpenCV246\opencv\build\x86\vc10\bin

f:\OpenCV246\opencv\build\common\tbb\ia32\vc10

3) Now we are ready to create a project with OpenCV. In Visual C++ 2010,

create a new Win32 console application called IntelligentRobotics. Now

right click the project and select Properties. On the left, choose C/C++ and

edit the Additional Include Directories. Add these directories:

f:\OpenCV246\opencv\build\include\opencv

f:\OpenCV246\opencv\build\include

Modern Robotics with OpenCV

92 http://www.sciencepublishinggroup.com

Figure 6.2 configuring additional include directories.

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 93

4) Now choose Linker and add this directory to the Additional Library

Directories. You need to replace x86 with x64 if you want to build a 64

bit application.

f:\OpenCV246\opencv\build\x86\vc10\lib

5) Now open the Linker group (press the + sign before it) and select Input.

Add these lines to the Additional Dependencies:

opencv_core246d.lib

opencv_imgproc246d.lib

opencv_highgui246d.lib

opencv_ml246d.lib

opencv_video246d.lib

opencv_features2d246d.lib

opencv_calib3d246d.lib

opencv_objdetect246d.lib

opencv_contrib246d.lib

opencv_legacy246d.lib

opencv_flann246d.lib

Modern Robotics with OpenCV

94 http://www.sciencepublishinggroup.com

Figure 6.3 Configuring additional dependencies.

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 95

For example, create a Win32 console application program to display an

image in Windows, the following example:

IntelligentRobotics.cpp

// Displaying image using cvLoadImage

#include "stdafx.h"

#include <cv.h>

#include <cxcore.h>

#include <highgui.h>

int _tmain(int argc, _TCHAR* argv[])

{

IplImage *img = cvLoadImage("f:\handsome.jpg");

cvNamedWindow("Intelligent Robotics with OpenCV",1);

cvShowImage("OpenCV",img);

cvWaitKey(0);

cvDestroyWindow("OpenCV ");

cvReleaseImage(&img);

return 0;

}

Modern Robotics with OpenCV

96 http://www.sciencepublishinggroup.com

Figure 6.4 Image displayed using OpenCV.

Or, if you like to use the 2.x C++ style, you can also use:

DisplayImage.cpp

// Displaying an image using 2.x C++ style

#include <iostream>

#include <stdio.h>

#include <opencv2/opencv.hpp>

#include <opencv2/highgui//highgui.hpp>

using namespace cv;

using namespace std;

int main(int argc, char** argv)

{

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 97

// Creating an object img from Mat

cv::Mat img = cv::imread("f:\handsome.jpg");

cv::imshow("Modern Robotics with OpenCV",img);

cv::waitKey(); //wait user hit the keyboard

return EXIT_SUCCESS;

}

Digital Image Processing

An image is an array, or a matrix of square pixels arranged in columns and

rows format. A grayscale image is composed of pixels represented by multiple

bits of information, typically ranging from 2 to 8 bits or more. A color image is

typically represented by a bit depth ranging from 8 to 24 or higher. With a 24-

bit image, the bits are often divided into three groupings: 8 for red, 8 for green,

and 8 for blue. Combinations of those bits are used to represent other colors. A

24-bit image offers 16.7 million (2
24

) color values.

Figure 6.5 Grayscale image in 8 bit format (a), and truecolor image consist of 3

grayscale image red, green and blue.

To convert color image to grayscale, since red color has more wavelength of

all the three colors, and green is the color that has not only less wavelength then

red color but also green is the color that gives more soothing effect to the eyes.

It means that we have to decrease the contribution of red color, and increase the

contribution of the green color, and put blue color contribution in between these

two.

Modern Robotics with OpenCV

98 http://www.sciencepublishinggroup.com

So the new equation in that form is:

grayscale image = ((0.3 * R) + (0.59 * G) + (0.11 * B)).

According to this equation, Red has contributed 33%, Green has contributed

59% which is greater in all three colors and Blue has contributed 11%.

Figure 6.6 Color image (a) and grayscale image (b).

The purpose of image processing is divided into 5 groups. They are:

1) Visualization - Observe the objects that are not visible.

2) Image sharpening and restoration - To create a better image.

3) Image retrieval - Seek for the image of interest.

4) Measurement of pattern – Measures various objects in an image.

5) Image Recognition – Distinguish the objects in an image.

As an experiment to know the RGB process, create a new project and name

RGB, and create the program below:

RGB.cpp:

//Adding an RGB

#include "stdafx.h"

#include <stdio.h>

#include <cv.h>

#include <highgui.h>

void sum_rgb(IplImage* src, IplImage* dst) {

// Allocate individual image planes.

IplImage* r = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

IplImage* g = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 99

IplImage* b = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

// Temporary storage.

IplImage* s = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

// Split image

cvSplit(src, r, g, b, NULL);

// Add equally weighted rgb values.

cvAddWeighted(r, 1./3., g, 1./3., 0.0, s);

cvAddWeighted(s, 2./3., b, 1./3., 0.0, s);

// Truncate the value above 100.

cvThreshold(s, dst, 150, 100, CV_THRESH_TRUNC);

cvReleaseImage(&r);

cvReleaseImage(&g);

cvReleaseImage(&b);

cvReleaseImage(&s);

}

int main(int argc, char** argv) {

// Buat jendela

cvNamedWindow(argv[1], 1);

// Load the image from the given file name.

IplImage* src = cvLoadImage(argv[1]);

IplImage* dst = cvCreateImage(cvGetSize(src), src->depth, 1);

sum_rgb(src, dst);

// show the window

cvShowImage(argv[1], dst);

// Idle until the user hits the "Esc" key.

while(1) { if((cvWaitKey(10)&0x7f) == 27) break; }

// clean the window

cvDestroyWindow(argv[1]);

cvReleaseImage(&src);

cvReleaseImage(&dst);

}

The result is an image that its RGB value has changed as shown below:

Modern Robotics with OpenCV

100 http://www.sciencepublishinggroup.com

Figure 6.7 Result of adding RGB value.

Edge Detection

Edge detection is a technique to locate the edges of objects in the scene. This

can be useful for locating the horizon, the corner of an object, white line

following, or for determing the shape of an object. The algorithm is quite simple:

 sort through the image matrix pixel by pixel;

 for each pixel, analyze each of the 8 pixels surrounding it;

 record the value of the darkest pixel, and the lightest pixel;

 if (darkest_pixel_value - lightest_pixel_value) > threshold);

 then rewrite that pixel as 1;

 else rewrite that pixel as 0.

The Canny Edge detector was developed by John F. Canny in 1986. Also

known to many as the optimal detector, Canny algorithm aims to satisfy three

main criteria:

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 101

 Low error rate: Meaning a good detection of only existent edges.

 Good localization: The distance between edge pixels detected and real

edge pixels have to be minimized.

 Minimal response: Only one detector response per edge.

CannyEdgeDetector.cpp:

//Canny Edge Detector

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/highgui/highgui.hpp"

#include <stdlib.h>

#include <stdio.h>

using namespace cv;

/// Global variables

Mat src, src_gray;

Mat dst, detected_edges;

int edgeThresh = 1;

int lowThreshold;

int const max_lowThreshold = 100;

int ratio = 3;

int kernel_size = 3;

char* window_name = "Canny Edge Detector";

void CannyThreshold(int, void*)

{

/// Reduce noise with a kernel 3x3

blur(src_gray, detected_edges, Size(3,3));

/// Canny detector

Canny(detected_edges, detected_edges, lowThreshold,

lowThreshold*ratio, kernel_size);

/// Using Canny's output as a mask, we display our result

dst = Scalar::all(0);

src.copyTo(dst, detected_edges);

imshow(window_name, dst);

}

Modern Robotics with OpenCV

102 http://www.sciencepublishinggroup.com

int main(int argc, char** argv)

{

/// Load an image

src = imread("lena.jpg");

if(!src.data)

{ return -1; }

/// Create a matrix of the same type and size as src (for dst)

dst.create(src.size(), src.type());

/// Convert the image to grayscale

cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create a window

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Create a Trackbar for user to enter threshold

createTrackbar("Min Threshold:", window_name, &lowThreshold,

max_lowThreshold, CannyThreshold);

/// Show the image

CannyThreshold(0, 0);

/// Wait until user exit program by pressing a key

waitKey(0);

return 0;

}

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 103

Figure 6.8 Edge detection using CANNY.

In image processing, to take the most important areas of an image, commonly

known as the ROI (region of interest), can use the following functions:

cvSetImageROI(src, cvRect(x,y,width,height));

ROI.cpp:

#include "stdafx.h"

#include <cv.h>

#include <highgui.h>

Modern Robotics with OpenCV

104 http://www.sciencepublishinggroup.com

int main(int argc, char** argv) {

IplImage* src;

cvNamedWindow("Contoh awal", CV_WINDOW_AUTOSIZE);

cvNamedWindow("Contoh akhir", CV_WINDOW_AUTOSIZE);

if(argc == 7 && ((src=cvLoadImage(argv[1],1)) != 0))

{

int x = atoi(argv[2]);

int y = atoi(argv[3]);

int width = atoi(argv[4]);

int height = atoi(argv[5]);

int add = atoi(argv[6]);

cvShowImage("Contoh awal", src);

cvSetImageROI(src, cvRect(x,y,width,height));

cvAddS(src, cvScalar(add),src);

cvResetImageROI(src);

cvShowImage("Contoh akhir",src);

cvWaitKey();

}

cvReleaseImage(&src);

cvDestroyWindow("Contoh awal");

cvDestroyWindow("Contoh akhir");

return 0;

}

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 105

Figure 6.9 ROI of image.

Optical Flow

Optical flow or optic flow is the pattern of apparent motion of objects,

surfaces, and edges in a visual scene caused by the relative motion between an

observer (an eye or a camera) and the scene. calcOpticalFlowPyrLK calculates

an optical flow for a sparse feature set using the iterative Lucas-Kanade method

with pyramids.

OpticalFlow.cpp:

#include <opencv2/opencv.hpp>

#include <iostream>

#include <vector>

#include <cmath>

using namespace cv;

using namespace std;

int main(int argc, char** argv)

{

http://en.wikipedia.org/wiki/Motion_%28physics%29
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Camera

Modern Robotics with OpenCV

106 http://www.sciencepublishinggroup.com

// Load 2 image

Mat imgA = imread("left02.jpg", CV_LOAD_IMAGE_GRAYSCALE);

Mat imgB = imread("left03.jpg", CV_LOAD_IMAGE_GRAYSCALE);

Size img_sz = imgA.size();

Mat imgC(img_sz,1);

int win_size = 15;

int maxCorners = 20;

double qualityLevel = 0.05;

double minDistance = 5.0;

int blockSize = 3;

double k = 0.04;

std::vector<cv::Point2f> cornersA;

cornersA.reserve(maxCorners);

std::vector<cv::Point2f> cornersB;

cornersB.reserve(maxCorners);

goodFeaturesToTrack(imgA,cornersA,maxCorners,qualityLevel,minD

istance,cv::Mat());

goodFeaturesToTrack(imgB,cornersB,maxCorners,qualityLevel,minD

istance,cv::Mat());

cornerSubPix(imgA, cornersA, Size(win_size, win_size),

Size(-1, -1),

TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03));

cornerSubPix(imgB, cornersB, Size(win_size, win_size),

Size(-1, -1),

TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03));

// Call Lucas Kanade algorithm

CvSize pyr_sz = Size(img_sz.width+8, img_sz.height/3);

std::vector<uchar> features_found;

features_found.reserve(maxCorners);

std::vector<float> feature_errors;

feature_errors.reserve(maxCorners);

calcOpticalFlowPyrLK(imgA, imgB, cornersA, cornersB,

features_found, feature_errors ,

Size(win_size, win_size), 5,

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 107

cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.3),

0);

// Make an image of the results

for(int i=0; i < features_found.size(); i++){

cout<<"Error is "<<feature_errors[i]<<endl;

//continue;

cout<<"Got it"<<endl;

Point p0(ceil(cornersA[i].x), ceil(cornersA[i].y));

Point p1(ceil(cornersB[i].x), ceil(cornersB[i].y));

line(imgC, p0, p1, CV_RGB(255,255,255), 2);

}

namedWindow("ImageA", 0);

namedWindow("ImageB", 0);

namedWindow("LKpyr_OpticalFlow", 0);

imshow("ImageA", imgA);

imshow("ImageB", imgB);

imshow("LKpyr_OpticalFlow", imgC);

cvWaitKey(0);

return 0;

}

(a) (b) (c)

Figure 6.10 Result of optical flow program from 2 images.

Modern Robotics with OpenCV

108 http://www.sciencepublishinggroup.com

References

[1] Gary Bradski & Adrian Kaehler, Learning OpenCV (2008), O’Reilly Publisher.

[2] Robert Laganiere, OpenCV 2 Computer Vision Application Programming

Cookbook, 2011.

[3] Richard Szeliski, Computer Vision: Algorithms and Applications, 2010.

[4] Budiharto W., Santoso A., Purwanto D., Jazidie A., A Navigation System for

Service robot using Stereo Vision, 11th International conference on Control,

Automation and Systems, Kyntext-Korea, pp 101-107, 2011.

http://www.amazon.com/OpenCV-Computer-Application-Programming-Cookbook/dp/1849513244/ref=sr_1_2?ie=UTF8&qid=1333891360&sr=8-2
http://www.amazon.com/OpenCV-Computer-Application-Programming-Cookbook/dp/1849513244/ref=sr_1_2?ie=UTF8&qid=1333891360&sr=8-2

	wbudiharto@binus.edu-9.11 97
	wbudiharto@binus.edu-9.11 98
	wbudiharto@binus.edu-9.11 99
	wbudiharto@binus.edu-9.11 100
	wbudiharto@binus.edu-9.11 101
	wbudiharto@binus.edu-9.11 102
	wbudiharto@binus.edu-9.11 103
	wbudiharto@binus.edu-9.11 104
	wbudiharto@binus.edu-9.11 105
	wbudiharto@binus.edu-9.11 106
	wbudiharto@binus.edu-9.11 107
	wbudiharto@binus.edu-9.11 108
	wbudiharto@binus.edu-9.11 109
	wbudiharto@binus.edu-9.11 110
	wbudiharto@binus.edu-9.11 111
	wbudiharto@binus.edu-9.11 112
	wbudiharto@binus.edu-9.11 113
	wbudiharto@binus.edu-9.11 114
	wbudiharto@binus.edu-9.11 115
	wbudiharto@binus.edu-9.11 116
	wbudiharto@binus.edu-9.11 117
	wbudiharto@binus.edu-9.11 118

