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A Multi-Scale Analysis of Algerian 

Oil Borehole Logs Using the 

Empirical Mode Decomposition 

Said Gaci 

Sonatrach, Division Exploration, Boumerdès, Algeria. Email: said_gaci@yahoo.com 

Summary 

This paper presents a multi-scale analysis of well logs recorded in four Algerian 

oil exploration boreholes, using a scale-based decomposition method, namely 

Empirical Mode Decomposition (EMD). The main strength of the latter, compared 

with the traditional approaches, lies in its adaptiveness to study nonlinear and 

non-stationary data. 

Here, the well log data are decomposed into Intrinsic Mode Functions (IMFs) 

which are investigated considering the lithological subintervals which compose the 

studied depth interval. For each subinterval, the mean wavenumber (km) of each 

IMF mode (m) indicates that the EMD method acts as an almost a dyadic filter bank. 

Moreover, the complexity degree of each lithological unit can be measured by the 

slope (ρ) of the linear fit of the plot km vs. m in the log-linear plan. The results show 

that for a given well, the lithological subintervals are characterized by distinct ρ 

values. However, the average ρ values estimated for each lithology are very close. 

Thus, a ρ value can not characterize a given lithology. 
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7.1  Introduction 

In oil and gas exploration, well logs are detailed records of rock and fluid 

properties of the geological formations crossed by a borehole. The measurements 

include electrical properties (resistivity and conductivity at various frequencies), 

acoustic properties, radioactive, electromagnetic, nuclear magnetic resonance, 

and other properties of the rocks and their contained fluids. An interpretation of 

these measurements allows to locate and quantify possible depth intervals 

containing hydrocarbons. 

Traditionally, well log data are analyzed using decomposition techniques, such 

as Fourier decomposition or wavelet decomposition using basis functions. 

However, the main shortcoming of these tools is originated from the fact that the 

basis functions are fixed and do not necessarily match the varying nature 

(non-stationarity and nonlinearity) of those signals. 

The Fourier-based analysis does not lead to significant interpretation unless the 

signal to be analyzed is linear and stationary. As regards the wavelet transform, it 

is a time-frequency analysis method which gives best results, whereas it fails to 

get fine resolutions in both time domain and frequency domain simultaneously 

due to the limitation of Heisenberg-Gabor inequality. 

Due to nonlinearity and non-stationarity nature of well logs, their analysis 

requires data-driven methods, without a priori assumptions basis, i.e. analytical 

methods using adaptive bases that are derived from the data and appropriate to 

describe their multi-scale behavior. For this purpose, such a method has been 

suggested to analyze nonlinear and non-stationary borehole measurements: 

Empirical Mode Decomposition (EMD). 

This adaptive time-frequency data analysis method has been proposed by 

http://www.glossary.oilfield.slb.com/Display.cfm?Term=resistivity
http://www.glossary.oilfield.slb.com/Display.cfm?Term=conductivity
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Huang et al. (1998, 1999). It gained an increasing attention in a broad range of 

applications (Gloersen and Huang, 2003; Chiew et al., 2004; Huang and Wu., 

2008; Bekara and Van der Baan, 2009; Han and Van der Baan, 2011 ; De Michelis 

et al., 2012). 

The EMD technique consists of decomposing the signal into a sum of 

oscillatory functions, namely Intrinsic Mode Functions (IMFs), displaying 

different mean frequencies (or wavenumbers). The investigation of complexity 

nature of the well logs can be performed by analyzing the number of scales 

associated with the phenomenon described by the signal, as well as the 

relationship between the IMFs index and the mean wavenumber. 

This rest of this paper is structured as follows: Firstly, we give a brief 

mathematical description of the EMD algorithm. In section 2, the physical 

properties measured by the well logs explored in our application are presented, 

followed by a lithological description of the logged interval in the considered 

boreholes. The analysis and discussion of the obtained results are presented in 

Section 3. Finally, the main findings and the perspectives of our research are 

given in Section 4. 

7.2  EMD Algorithm 

The EMD algorithm is the main part of the Hilbert-Huang Transform. It 

provides an efficient tool to decompose a nonlinear and non-stationary signal into 

a sum of Intrinsic Mode Functions (IMFs) (or modes) without a priori basis as 

required by traditional Fourier and wavelet-based methods (Huang et al. 1998; 

1999; Flandrin et Gonçalvès, 2004). 

Each IMF have a characteristic frequency (Wu and Huang, 2004; Flandrin et al. 

2004), and must satisfy two simple conditions: 
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1) The difference between the number of local extrema and the number of 

zero-crossings must be zero or at most one. 

2) At any time point, the mean value of two envelopes estimated by the local 

maxima and local minima is zero. 

The decomposition process, called also a shifting process, is an iterative 

procedure which can be summarized as follows: 

Step 1: Identify all local extrema (maxima and minima) of the signal X(z). 

Step 2: Generate the upper U(z) and lower L(z) envelope of the signal 

connecting, respectively, the local maxima and minima by cubic spline 

interpolation. 

Step 3: Estimate the local mean envelope m(z) of the signal: 

 
   

2

zLzU
zm




.
 

Step 4: Extract the local mean m(z) from the signal:      zmzXzh 1 . 

Step 5: Replace the signal X(z) by h1(z), and reiterate Steps 1-4 until the 

resulting signal satisfies the two IMF conditions. 

The above shifting process should be stopped by any of the following criteria: 

after extracting n IMFs, the residue, rn(z) is either an IMF or a monotonic 

function. More details on the EMD algorithm and stopping criteria can be found 

in the literature (Huang et al. 1998, 1999, 2003, 2008; Huang, 2005; Flandrin 

and Gonçalvès, 2004; Rilling et al., 2003; Rilling and Flandrin, 2008). 

After completion of EMD the signal can be written as follows: 
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      zrzzX n

n

m

m 
1

IMF  (1) 

where n is the total number of the IMF components .i.e. it is decomposed into n 

IMFs with one residual. 

As it can be noted, the characteristic scale is increasing with the mode index m. 

Each mode is characterized by a different mean wavenumber estimated by the 

following relation: 

 

 

 








0

0

dkkS

dkkSk

k

m

m

m  (2) 

where Sm(k) is the Fourier spectrum of m
th 

IMF mode (IMFm). It represents an 

energy weighted mean wavenumber in the Fourier power spectrum (Huang et 

al., 1998). 

The mode number m of the IMF and the mean wavenumber are related by an 

exponential law: 

 
m

m kk  0  (3) 

where k0 is a constant and ρ is the slope of the linear fit in the log-linear plot. That 

means that km of IMFm is approximately ρ times of the next one (IMFm+1). This 

relation indicates that EMD behaves as an adaptive dyadic filter bank of constant- 

bandpass filters when applied to fractional Gaussian noise (fGn) (Flandrin and 

Goncalvès, 2004; Flandrin et al., 2004), and white noise (which is a special case 

of fGn) (Wu and Huang, 2004). For such stochastic noises, the ρ value is very 

close to 2, as is the case of turbulence time series (Huang et al., 2008). This 
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parameter measures the multi-scale features and the complexity degree of the 

signal. When its value decreases, more scales are involved in the description of 

the phenomenon. 

On the other hand, it is demonstrated that for white noise (Flandrin et al., 2004; 

Wu and Huang, 2004), the EMD acts as a dyadic filter bank and the power spectra 

of all IMFs collapse to a single shape along the axis of logarithm of period or 

frequency. Therefore, the expected number of all IMFs is close to log2(N) where 

N is the length of the considered time series. However, in the case of non-white 

noise data, the total number of IMFs could be smaller than log2(N) since some 

scales might be ignored. This may be also explained by the mode mixing in some 

scales originated from the intermittent behavior of the signal. 

In this study, the EMD algorithm is implemented to decompose log 

measurements recorded in four Algerian exploration boreholes drilled in different 

geological settings. The aim is to analyze heterogeneities characterizing 

lithological units crossed by the wells. 

7.3  Well Log Measurements 

Boreholes can provide geological information by measuring the geophysical 

properties of the penetrated formation using wire line logs. Many different 

parameters of the rocks can be measured and interpreted in term of lithological 

porosity and of quantity and type of fluids within the pores. The logs studied in 

this work are: P and S-wave velocities (Vp and Vs), bulk density (rhob), neutron 

porosity (nphi), Gamma ray (GR), electrical resistivity (LLD, AT20 and AT90), 

photoelectric absorption factor (PEF) and natural gamma ray spectroscopy (Th, 

U and K). 
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7.4  Geological Setting 

The log data under study are recorded in four (04) Algerian boreholes (W1, 

W2, W3 and W4), drilled, for the needs of the oil/gas exploration, in different 

locations in Algeria: southwestern (W1 and W2), south-central (W3) and 

south-eastern (W4). 

As regards well W1, the considered depth interval (905.256-1340m) 

corresponds to the lower Devonian reservoir. From a lithological point of view, 

this interval is described as follows: 

 Layer L1 (905-1130m): alternation of SANDSTONE and SHALE, with 

some LIMESTONE layers. 

 Layer L2 (1130-1340m): SANDSTONE, passing sometimes into 

SILTSTONE and LIMESTONE. 

Regarding well (W2), the investigated depth interval (1149.096-1386.84m) 

corresponding to the lowest Devonian reservoir. Lithologically, this interval 

presents an alternation of LIMESTONE, and SANDSTONE, with SHALE. 

For well W3, the analyzed depth range (2579.0652-2716.2252m) corresponds 

to the Triassic reservoir. It is composed of the alternation of SANDSTONE, and 

SHALE. 

The investigated log data of Well W4 are recorded between the depths of 

3496.6656m and 4800.7524m. This depth interval corresponds to the Lias 

reservoir. It is mainly marked by SHALE, and by the presence of fine layers of 

SANDSTONE. 
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7.5  Results and Discussion 

This section is devoted to analyze the results obtained using the EMD method 

from the log data recorded in the considered boreholes (Table 1). The 

measurements corresponding to wells W1, W2, W3 and W4, are presented, 

respectively, in Figures 1, 2, 3 and 4. All the used logs are recorded with a 

sampling rate of 0.1524m. 

For the needs of our analysis, the studied depth intervals are divided into main 

lithological units: 

 Well W1 (905.256-1130.046 m: alternation sandstone /shale, and 

1130.046-1340m: sandstone). 

 Well W2 (1149.096-1257.4524 m: sandstone, and 1257.4524-1386.84 m: 

shale). 

 Well W3 (2579.0652- 2655.1128m: sandstone, and 2655.1128-2716.225m: 

shale). 

 Well W4 (3496.6656-4800.7524m: shale). 

As detailed in section 2, the EMD method is applied to logs recorded in the 

considered boreholes in order to decompose them into their corresponding IMFs. 

For each log, the power spectra of all the obtained IMFs are computed for the 

lithological subintervals into which the entire logged depth interval has been 

divided, and the mean wavenumber (km) is estimated for each subinterval. 

Afterwards, the relation (3) is used to evaluate the ρ value, which represents 

slope of the graph km versus index m in the log-linear plan. 
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Table 1. Physical properties recorded in the considered wells (W1, W2, W3 and W4). 

Physical property  Symbol/ Unit Well W1 Well W2 Well W3 Well W4 

P-wave seismic velocity Vp (m/s) x x  x 

S-wave seismic velocity  Vs (m/s)  x  x 

Bulk density  rhob (g/cm3) x  x  

Neutron porosity  nphi (%) x    

Gamma Ray  GR (API) x x x x 

Photoelectric absorption factor PEF x  x  

deep dual laterolog  LLD (Ohm.m) x    

Array Induction Two Foot Resistivity AT20 (Ohm.m)  x  x 

Array Induction Two Foot Resistivity AT90 (Ohm.m)  x  x 

Thorium gamma ray spectroscopy  Th (ppm) x  x  

Uranium gamma ray spectroscopy U(ppm) x    

Potassium gamma ray spectroscopy K(%)   x  

 

Figure 1. Physical logs measured within the depth interval (905 - 1340m) in  

borehole W1. Log: decimal logarithm. 

Alternation Sandstone /Shale Sandstone  
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Figure 2. Physical properties measured within the depth interval (1149 -1387m)  

in borehole W2. Symbols as in Table 1. Log: decimal logarithm. 

 

Figure 3. Physical properties measured within the depth interval (2579 - 2716m)  

in borehole W3. Symbols as in Table 1. 
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Figure 4. Physical properties measured within the depth interval (3497 -4801 m)  

in borehole W4. Symbols as in Table 1. Log: decimal logarithm. 

 

Figure 5. From top to bottom: Vp log recorded in borehole W1; 10 IMFs and  

residue resulting from EMD (given in m/s). The vertical red line denotes the  

separation between the layers composing the studied depth interval. 
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In this paper, only the results obtained from Vp log recorded in well W1 are 

presented. Figure 5 reports the 10 IMFs and residue resulting from EMD, and the 

boundary between the layers (Alternation Sandstone /Shale, and Sandstone), 

found in the studied depth interval, is marked by a red vertical line. Graphically, it 

can be noted that the characteristic spatial scale of fluctuations in each IMF is 

increasing with the mode number m, and each IMF has its specific mean 

wavenumber. Hence, the data are divided into locally non-overlapping depth 

scale components. 

As regards Figure 6, it displays the power spectral densities (PSDs) of all 

IMFs (from 1 to 10) plotted in a log-log plan (left side) and the mean 

wavenumber versus the mode number m viewed in a log-linear plan (right side). 

The top and bottom panels correspond to the first and second lithological 

subintervals, respectively. For both investigated lithological units, an 

exponential decrease of the mean wavenumber with the mode number m is 

observed. This behavior power law is expressed by: 
m

m kk  0  where 

ρ=1.860 ±0.016 and 1.784 ±0.021 is determined, respectively, for the first and 

second lithological units. This property corresponds to an almost dyadic filter 

bank in the wavenumber domain. 

For recall, a dyadic filter bank is a set of band-pass filters presenting a constant 

band-pass shape (e.g., a Gaussian distribution) but with adjacent filters covering 

half or double of the frequency range of any single filter in the bank. The 

frequency ranges of the filters can be overlapped. 

The above analysis, performed on Vp log corresponding to well W1, has been 

extended to the other well logs, and the results obtained from wells W1, W2 , W3 

and W4 are summarized, respectively, in Tables 2, 3, 4, and 5. Each table gives 

the number of total log points N, the expected total number of IMFs log2(N) 
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(which is the case of white noise data), the actual total number of IMFs, the 

lithology of the depth subintervals and the estimated ρ value corresponding to 

each lithological subinterval. 

 

Figure 6. On the left: Power spectral densities of all IMFs (from 1 to 10) obtained  

from Vp log in Figure 5 using EMD method (each color corresponds to a IMF). On  

the right: representation of the mean wavenumber vs. mode number m in a log-linear 

plan. The top and the bottom panels correspond, respectively, to the two layers 

composing the studied depth interval: alternation Sandstone /Shale and Shale. 

From Tables 2-5, it can be seen that for all the investigated logs, the total 

number of IMFs resulting from the EMD decomposition is less than log2(N). 

This statement may be explained by the fact that the investigated logs are not 

purely stochastic noise and probably show intermittency properties in certain 

scales causing mode mixing. 
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Table 2. Results obtained from the application of EMD method to logs  

recorded in well W1. 

W1 Log (N= 2854) IMFs number (log2(N)~11) Lithology ρ value 

Vp 10 Alternation 1.860 ±0.016 

  Sandstone 1.784 ±0.021 

rhob 9 Alternation 2.202 ±0.021 

  Sandstone 2.124 ±0.040 

nphi 9 Alternation 2.066 ±0.020 

  Sandstone 1.910 ±0.020 

GR 9 Alternation 2.062 ±0.024 

  Sandstone 1.833 ±0.013 

PEF 9 Alternation 2.029 ±0.017 

  Sandstone 1.878 ±0.023 

LLD 9 Alternation 1.895 ±0.022 

  Sandstone 1.948 ±0.017 

Th 9 Alternation 2.173 ±0.020 

  Sandstone 1.948 ±0.017 

U 9 Alternation 2.083 ±0.015 

  Sandstone 1.974 ±0.020 

Average for well W1 1.985± 0.020 

Table 3. Results obtained from the application of EMD method to logs  

recorded in well W2. 

W2 Log (N=1561) IMFs number (log2(N)~11) Lithology ρ value 

Vp 8 Sandstone 1.960 ±0.024 

  Shale 2.022 ±0.031 

Vs 7 Sandstone 2.198 ±0.031 

  Shale 1.968 ±0.025 

GR 8 Sandstone 1.958 ±0.017 

  Shale 1.907 ±0.028 

AT20 8 Sandstone 1.981 ±0.033 

  Shale 1.851 ±0.020 

AT90 8 Sandstone 1.691 ±0.028 

  Shale 1.746 ±0.023 

Average for well W2 1.928 ±0.026 
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Table 4. Results obtained from the application of EMD method to logs  

recorded in well W3. 

W3 Log (N=901) IMFs number (log2(N)~10) Lithology ρ value 

rhob 7 Sandstone 1.873 ±0.039 

  Shale 1.735 ±0.039 

PEF 7 Sandstone 1.808 ±0.017 

  Shale 1.801 ±0.014 

GR 7 Sandstone 1.803 ±0.013 

  Shale 1.902 ±0.023 

Th 8 Sandstone 1.955 ±0.015 

  Shale 2.103 ±0.020 

K 7 Sandstone 1.857 ±0.026 

  Shale 1.924 ±0.037 

Average for well W3 1.876±0.024 

Table 5. Results obtained from the application of EMD method to logs  

recorded in well W4. 

W4 Log (N=8558) IMFs number (log2(N)~13) Lithology ρ value 

Vp 10 Shale 2.265 ±0.011 

Vs 11 Shale 2.031 ±0.011 

GR 11 Shale 2.149 ±0.012 

AT20 12 Shale 1.931 ±0.011 

AT90 12 Shale 1.853 ±0.008 

Average for well W4 2.046 ±0.011 

As described in Section 2, ρ value provides a measure of multi-scale aspects of 

the signal and complexity of the analyzed phenomenon. Indeed, a lower value 

implies that more scales are considered in EMD decomposition. Hence, the 

studied signal displays a more complex behavior. 

In this view, this parameter is estimated for all the available datasets related to 

the considered boreholes in order to characterize heterogeneities occurred in the 

studied depth ranges. Figure 7 reports the estimated ρ values corresponding to the 

different lithological units for all the analyzed well logs. The obtained results 

show that for a given well, the investigated lithological subintervals are generally 
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characterized by distinct ρ values, except for PEF log (well w3) where sandstone 

and shale layers are described by very close values. As it can be noted from 

Figure 8, the histogram of ρ values calculated for all the borehole logs follows a 

normal distribution with a mean value of 1.952 and a standard-deviation of 0.137 

where ρ value varies between 1.691±0.028 and 2.265±0.011. It is also noted that 

for a given well, logs are described by different ρ values, thus by a range of 

complexity levels, which depend on the lithology and the recorded physical 

property. 

On the other hand, an average ρ value is computed for each borehole: 1.985± 

0.020 (W1), 1.928 ±0.026 (W2), 1.876±0.024 (W3) and 2.046±0.011 (W4). All 

these values are very close to 2 and the slight difference may be originated from 

intermittency. This result illustrates that the EMD acts as an almost dyadic filter 

bank in the wavenumber domain, as previously obtained for stochastic 

simulations of fGn and white noise, as well as for turbulence time series. 

 

Figure 7. The ρ value estimated for all the lithological subintervals corresponding  

to all the analyzed well logs. 
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Figure 8. Histograms of the ρ value obtained from logs recorded in the  

considered boreholes. 

Now, the next step is a lithological characterization that consists of calculating 

an average ρ value related to each specific lithology for each borehole taken 

independently, then for all the available boreholes (Table 6). It is worth 

mentioning that the lithology crossed by the considered boreholes is described by 

very close average ρ values, thus a specific lithology cannot be characterized by a 

ρ value. An investigation on a large number of well logs is in progress in order to 

establish a relation between lithology and ρ value. 

Table 6. Average ρ values of each lithology crossed by the considered wells. 

Lithology Well Averaged ρ value 

Alternation W1 2.046 ± 0.019 

Sandstone W1 1.925 ± 0.021 

 W2 1.958 ± 0.027 

 W3 1.859 ± 0.022 

 W1, 2 & 3 1.916 ± 0.023 

Shale W2 1.899 ± 0.025 

 W3 1.893 ± 0.026 

 W4 2.046 ± 0.011 

 W2, 3 & 4 1.946 ± 0.021 
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7.6  Conclusion 

In this paper, we analyzed the multi-scales features of physical measurements 

recorded in four Algerian exploration boreholes, drilled in different geological 

settings, using the EMD decomposition. The latter highlighted the complexity and 

the multi-scale nature of logs related to lithology traversed by the considered wells. 

It is found that the EMD analysis behaves as an almost dyadic filter bank in 

wavenumber domain. Besides, using the ρ coefficient, it offers the opportunity to 

characterize subsurface heterogeneities: the lower ρ value, the more complex the 

explored geological medium. However, this technique fails to assign a specific ρ 

value to a given lithology. An extended investigation on a larger number of 

datasets, corresponding to boreholes drilled in diverse geological settings, is 

needed to a clear relation between this parameter, lithology and the measured 

physical property. 

Acknowledgment 

I acknowledge SONATRACH- Division Exploration for providing the data 

published in this paper. 

References 

[1] Bekara, M., and Van der Baan, M., 2009. Random and coherent noise attenuation 

by empirical mode decomposition: Geophysics, 74 (5), V89-V98, doi: 

10.1190/1.3157244. 

[2] Chiew, F., Peel, M., Amirthanathan, G., and Pegram, G.G.S., 2004. Identification of 

oscillations in historicalglobal streamflow data using Empirical Decomposition, 

Seventh IAHS Scientific Assembly-Symposium on Regional Hydrological Impacts 

of Climate Variability and Change with an Emphasis on Less Developed Countries. 



Chapter 7  A Multi-Scale Analysis of Algerian Oil Borehole Logs Using the Empirical  

Mode Decomposition  
 

 275 

[3] De Michelis, P., Consolini, G., and Tozzi, R., 2012. On the multi-scale nature of 

large geomagnetic storms: an empirical mode decomposition analysis, Nonlin. 

Processes Geophys, 19, 667-673. 

[4] Flandrin, P. and Gonçalvès, P., 2004. Empirical mode decompositions as data 

driven wavelet-like expansions, Int. J. Wavelets, Multires. Info. Proc., 2, 477-496. 

[5] Flandrin, P., Rilling, G., and Gonçalvès, P., 2004. Empirical mode decomposition 

as a filter bank, IEEE Sig. Proc. Lett., 11, 112-114. 

[6] Han, J., and Van der Baan, M., 2011. Empirical mode decomposition and robust 

seismic attribute analysis: CSPG CSEG CWLS Convention, 114. 

[7] Gloerson, P. and Huang, N. E., 2003. Comparison of interanual intrinsic modes in 

hemispheric sea ice covers and others geophysical parameters, IEEE Transactions 

on Geoscience and Remote Sensing, 41 (5), 1062-1074. 

[8] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, E. H., Zheng, Q., Tung, C. C. 

and Liu, H. H., 1998. The empirical mode decomposition method and the Hilbert 

spectrum for non-stationary time series analysis, Proc. Roy. Soc. London 454A, 

903-995. 

[9] Huang, N. E., Shen, Z. and Long, R. S., 1999. A new view of nonlinear water 

waves — the Hilbert spectrum, Ann. Rev. Fluid Mech. 31, 417-457. 

[10] Huang, N. E., Wu, M. L., Long, S. R., Shen, S. S. P., Qu, W., Gloersen, P., Fan, K. 

L., 2003. A confidence limit for the empirical mode decomposition and Hilbert 

spectral analysis, Proc. R. Soc. London, Ser. A 459 (2037), 2317-2345. 

[11] Huang, N. E., 2005. Hilbert-Huang Transform and Its Applications. World 

Scientific, Ch. 1. Introduction to the hilbert huang trasnform and its related 

mathmetical problems, pp. 1-26. 

[12] Huang, N. E. and Wu, Z., 2008. A review on Hilbert-Huang Transform: Methods 

and its applications to geophysical studies, Rev. Geophys., 46, RG2006,  

doi: 10.1029/2007RG000228. 

[13] Huang, Y., Schmitt, F., Lu, Z., Liu, Y., 2008. An amplitude-frequency study of 

turbulent scaling intermittency using hilbert spectral analysis, Europhys. Lett. 84 

40010. 



 

Advances in Data, Methods, Models and Their Applications in Oil/Gas Exploration 
 

276  

[14] Rilling, G., Flandrin, P., Gonçalvès, P., 2003. On empirical mode decomposition 

and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image 

Processing. 

[15] Rilling, G., Flandrin, P., 2008. One or two frequencies? The empirical mode 

decomposition answers, IEEE Trans. Signal Process, 85-95. 

[16] Wu, Z. and Huang, N. E., 2004. A study of the characteristics of white noise using 

the empirical mode decomposition method, P. Roy. Soc. A-Math. Phy., 460, 

1597-1611. 

 


	said_gaci@yahoo.com 269
	said_gaci@yahoo.com 270
	said_gaci@yahoo.com 271
	said_gaci@yahoo.com 272
	said_gaci@yahoo.com 273
	said_gaci@yahoo.com 274
	said_gaci@yahoo.com 275
	said_gaci@yahoo.com 276
	said_gaci@yahoo.com 277
	said_gaci@yahoo.com 278
	said_gaci@yahoo.com 279
	said_gaci@yahoo.com 280
	said_gaci@yahoo.com 281
	said_gaci@yahoo.com 282
	said_gaci@yahoo.com 283
	said_gaci@yahoo.com 284
	said_gaci@yahoo.com 285
	said_gaci@yahoo.com 286
	said_gaci@yahoo.com 287
	said_gaci@yahoo.com 288
	said_gaci@yahoo.com 289
	said_gaci@yahoo.com 290

