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Preface

Sequence spaces play an important role in various fields of Real Analysis, Complex
Analysis, Functional Analysis and Topology. These are very useful tools in
demonstrating abstract concepts through constructing examples and counter examples.
The topic “Sequence Spaces” is very broad in its own sense as one can study from
various point of views, e.g. Schauder decomposition, α−, β−, and γ − duals, matrix
transformations, measures of noncompactness, topological properties and geometric
properties. The central theme of the present book is to introduce and study Zweier
I-Convergent sequence spaces.

The structure of this text is straightforward. There are six chapters devoted to the
various aspects of the theory. Each chapter is divided into sections. The numbers in the
square brackets refers to the references listed in the bibliography.

As usual chapter 1, is devoted to the background materials which begins with the
notations and conventions and some basic definitions which are needed throughout the
work. This chapter concludes with an introduction to the Ideals which also includes
some elementary properties.

In chapter 2, we introduce the Zweier I-convergent sequence spaces ZI ,ZI
0 and ZI

∞.
We prove the decomposition theorem and study topological, algebraic properties and
inclusion relations of these spaces.

In chapter 3, we introduce the Paranorm Zweier I-convergent sequence spaces
ZI(q),ZI

0 (q) and ZI
∞(q) for q = (qk), a sequence of positive real numbers. We study

some topological properties, prove the decomposition theorem and study some inclusion
relations on these spaces.

In chapter 4, we introduce the sequence spaces ZI(M),ZI
0 (M) and ZI

∞(M) using
the Orlicz function M . We study the algebraic properties and inclusion relations on these
spaces.

In chapter 5, we introduce the sequence spaces ZI(f), ZI
0 (f) and ZI

∞(f) for a
modulus function f and study some of the topological and algebraic properties on these
spaces.
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In chapter 6, we introduce the sequence spaces ZI(F ), ZI
0 (F ) and ZI

∞(F ) for a
sequence of modulii F = (fk) and study some of the topological and algebraic
properties on these spaces.

In chapter 7, This is a precise chapter which is very special as it is designed only to
study some inclusion relations between various zweier sequence spaces studied
previously.

In chapter 8, we introduce the sequence spaces 2ZI(F ), 2ZI
0 (F ) and 2ZI

∞(F ) for a
sequence of modulii F = (fk) and study some of the topological and algebraic properties
on these spaces.

In chapter 9, we introduce the sequence spaces 2ZI(f), 2ZI
0 (f) and 2ZI

∞(f) for a
modulus function f and study some of the topological and algebraic properties on these
spaces.

In chapter 10, we introduce the sequence spaces 2ZI(M), 2ZI
0 (M), 2ZI

∞(M) for an
Orlicz function M and study some of the topological and algebraic properties on these
spaces.

The book ends with a fairly exhaustive bibliography of books and research articles
consulted for the work.

This work was supported by the research grant No: 2/40(41)/2014/R and D - II/322 of
National Board of Higher Mathematics (NBHM), Department of Atomic Energy (DAE),
Goverment of India, INDIA.
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Chapter 1

Basic Definitions and Notations

“One cannot escape the feeling that these mathematical formulae have an independent existence and an
intelligence of their own, that they are wiser than we are, wiser even than their discoverers, that we get more
out of them than we originally put into them.”





Chapter 1 Basic Definitions and Notations

The term sequence has a great role in Analysis. Convergence of
sequences has always remained a subject of interest to the
mathematicians. Several new types of convergence of sequences
appeared, many of them are analogous to the statistical convergence. The
concept of I-convergence gives a unifying approach to such type of
convergence. Statistical convergence has several applications in different
fields of Mathematics, Number Theory, Trigonometric Series,
Summability Theory, Probability Theory, Measure Theory, Optimization
and Approximation Theory. The notion of Ideal convergence corresponds
to a generalization of the statistical convergence.

Notations

N := The set of all natural numbers.

R := The set of all real numbers.

C := The set of all complex numbers.

lim
k

: means lim
k→∞

.

sup
k

: means sup
k≥1

.

inf
k

: means inf
k≥1

, unless otherwise stated.∑
k

: means summation over k = 1 to k = ∞, unless otherwise

stated.

x := (xk), the sequence whose kth term is xk.

θ := (0, 0, 0, .....), the zero sequence.

ek := (0, 0, .., 1, 0, 0, ..), the sequence whose kth component is 1 and
others are zeroes, for all k ∈ N.
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Zweier I-Convergent Sequence Spaces and Their Properties

e := (1, 1, 1, 1, ......).

p := (pk), the sequence of strictly positive reals.

w := {x = (xk) : xk ∈ R (or C)}, the space of all sequences, real
or complex.

l : {x ∈ w :
∑
k

|xk| <∞}.

l∞ := {x ∈ w : sup
k
|xk| <∞}, the space of bounded sequences.

c0 := {x ∈ w : lim
k
|xk| = 0}, the space of null sequences.

c := {x ∈ w : lim
k
xk = l, for some l ∈ C}, the space of convergent

sequences.

l∞, c0, c are Banach spaces with the usual norm

‖x‖ = sup
k
|xk|.

l1 := {a = (ak) :
∑
k

|xk| < ∞}, the space of absolutely convergent

series.

w∞ := {x ∈ w : sup
n

1
n

∑
k

|xk| < ∞}, the space of strongly Cesàro-

bounded sequences.

w0 := {x ∈ w : lim
n

1
n

∑
k

|xk| = 0}, the space of strongly Cesàro-null
sequences.

lp := {x ∈ w :
∑
k

|xk|p <∞}, 0 < p <∞.

wp := {x ∈ w : lim
n

1
n

∑
k

|xk − l|p = 0; for some l ∈ C}.
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Chapter 1 Basic Definitions and Notations

In the case 1 ≤ p < ∞, the space lp and wp are Banach spaces normed
by

‖x‖ =

(∑
k

|xk|p
) 1

p

and

‖x‖ = sup

(
1

n

n∑
k=1

|xk|p
) 1

p

,

respectively. If 0 < p < 1, then lp and wp are complete p-normed spaces,
p-normed by

‖x‖ =
∑
k

|xk|p

and

‖x‖ =
1

n

n∑
k

|xk|p,

respectively.

The following subspaces of w were first introduced and discussed by
Maddox [56] and Simons [69];

l(p) := {x ∈ w :
∑
k

|xk|pk <∞}.

l∞(p) := {x ∈ w : sup
k
|xk|pk <∞}.

c(p) := {x ∈ w : lim
k
|xk − l|pk = 0, for some l ∈ C}.

c0(p) := {x ∈ w : lim
k
|xk|pk = 0}.

w∞(p) := {x ∈ w : sup
k

( 1
n

n∑
k=1

|xk|pk) <∞}.

w(p) := {x ∈ w : lim
n

( 1
n

n∑
k=1

|xk − l|pk) = 0, for some l ∈ C}.
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Zweier I-Convergent Sequence Spaces and Their Properties

w0(p) := {x ∈ w : lim
n

( 1
n

n∑
k=1

|xk|pk) = 0}.

Let p = (pk) be bounded. Then c0(p) is a linear metric space paranormed
by:

g1(x) = sup
k
|xk|

pk
M ,

where M = max(1, sup
k
pk). l∞(p) and c(p) are paranormed by g1(x)

defined above if and only if inf
k
pk > 0. l(p) and w(p) are paranormed by:

g2(x) =

(∑
k

|xk|pk
) 1

M

.

Remark 1.1. If pk = 1, for all k, then l∞(p) = l∞, c0(p) = c0, c(p) = c,
l(p) = l and w(p) = w.

Definition 1.2. [48] A paranorm is a function g : X → R which satisfies
the following axioms: for any x, y, x0 ∈ X , λ, λ0 ∈ C,

[i] g(x) = 0 if x = θ;

[ii] g(x) = g(−x);

[iii] g(x+ y) ≤ g(x) + g(y);

[iv] the scalar multiplication is continuous, that is λ→ λ0, x→ x0 imply
λx→ λ0x0. In other words,

|λ− λ0| → 0, g(x− x0)→ 0 imply g(λx− λ0x0)→ 0.

A paranormed space is a linear space X with a paranorm g and it is
written as (X, g).

Any function g which satisfies all the conditions [i]-[iv] together with
the condition

6 Science Publishing Group



Chapter 1 Basic Definitions and Notations

[v] g(x) = 0 if and only if x = θ,

is called a total paranorm on X and the pair (X, g) is called total
paranormed space.

Example 1.3. lp is totally paranormed for any p = (pk) ∈ l∞.

Definition 1.4. [68] Let X and Y be two nonempty subsets of the space
w. Let A = (ank), (n, k = 1, 2, .....) be an infinite matrix with elements of
real or complex numbers.

We write

An(x) =
∑
k

ankxk,

provided the series converges. Then Ax = (An(x)) is called the
A-transform of x.

Also

lim
n
Ax = lim

n→∞
An(x)

whenever it exists [68]. If x ∈ X implies Ax ∈ Y , we say that A defines a
(matrix) transformation from X into Y and we denote it by A : X → Y .
By (X, Y ) we mean the class of matrices A that maps X into Y .

Definition 1.5. [58] A continuous function M : R → R is called convex
if

M

(
u+ v

2

)
≤ M(u) +M(v)

2
, for all u, v ∈ R.

If in addition, the two sides of above are not equal for u 6= v, then we
call M to be strictly convex.

Definition 1.6. [55,58] A continuous function M : R → R is said to be
uniformly convex if for any ε > 0 and any u0 > 0 there exists δ > 0 such
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Zweier I-Convergent Sequence Spaces and Their Properties

that

M

(
u+ v

2

)
≤ (1− δ)M(u) +M(v)

2
, for all u, v ∈ R

satisfying |u− v| ≥ εmax{|u|, |v|} ≥ εu0.

Remark 1.7. If M is convex function and M(0) = 0, then
M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

Definition 1.8. An Orlicz function is a function M : [0,∞) → [0,∞)

which is continuous, nondecreasing and convex with M(0) = 0,
M(x) > 0 for x > 0 and M(x)→∞, as x→∞.

If convexity of M is replaced by M(x + y) ≤ M(x) + M(y), then it is
called a Modulus function, defined and discussed by Nakano [58], Ruckle
[62-64].

An Orlicz functionM can always be represented in the following integral
form M(x) =

∫ x
0
η(t)dt, where η is known as the kernel of M, is right

differentiable for t ≥ 0, η(0) = 0, η(t) > 0, η is non-decreasing and
η(t)→∞ as t→∞.

Lindenstrauss and Tzafriri [55] used the idea of Orlicz function to
construct the sequence space;

lM :=

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
;

which is a Banach space with the norm

‖x‖M = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

Remark 1.9. An Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

8 Science Publishing Group



Chapter 1 Basic Definitions and Notations

For more details on Orlicz sequence spaces we refer to [55], [21-28].

Definition 1.10. An Orlicz function M is said to satisfy the
∆2 − condition (M ∈ ∆2 for short) if there exist constant K ≥ 2 and
u0 > 0 such that

M(2u) ≤ KM(u)

whenever |u| ≤ u0.

Definition 1.11. Let Λ = (λk) be a sequence of non-zero scalars. Then
for E, a sequence space, The Multiplier Sequence E(Λ), associated with
the sequence Λ is defined as

E(Λ) = {(xk) ∈ w : (λkxk) ∈ E}.

Statistical convergence is a generalization of the usual notion of
convergence that parallels the usual theory of convergence. The concept
of Statistical convergence was first introduced by Fast [12] and also
independently by Schoenberg [67] for real and complex sequences.

Definition 1.12. [47] A sequence x = (xk) is called Statistically
Convergent to L if

lim
n

1

n
|{k : |xk − L| ≥ ε, k ≤ n}| = 0;

where the vertical bars indicate the number of elements in the set.

Remark 1.13. A sequence which converges statistically need not be
convergent.

Example 1.14. Define the sequence x = (xk) by

xk =

k, if k = n2, n ∈ N,

0, otherwise ,
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and let L = 0. Then

{k ∈ N : |xk − L| ≥ ε} ⊂ {1, 4, 9, 16, ...., k2, ...}.

We have that

δ({k ∈ N : |xk − L| ≥ ε}) = 0, for every ε > 0.

This implies that the sequence (xk) converges statistically to zero. But
the sequence (xk) does not converge to L.

Remark 1.15. A sequence which converges statistically need not be
bounded. c.f([5], [7-9], [11], [13], [21-28], [29-38], [39-46].)

Asymptotic and Logarithmic Density 1.16. If A ⊆ N, then χA denotes
characteristic function of the set A, i.e.

χA(k) = 1 if k ∈ A

and
χA(k) = 0 if k ∈ N− A.

Put

dn(A) =
1

n

n∑
k=1

χA(k),

δn(A) =
1

Sn

n∑
k=1

χA(k)

k
,

where

Sn =
n∑
k=1

1

k
.

Then the numbers

d(A) = lim inf
n→∞

dn(A),

10 Science Publishing Group



Chapter 1 Basic Definitions and Notations

d̄(A) = lim sup
n→∞

dn(A),

are called the lower and upper asymptotic density of A,
respectively(cf.[60],p.71). Similarly, the numbers

δ(A) = lim inf
n→∞

δn(A),

δ̄(A) = lim sup
n→∞

δn(A),

are called the lower and upper logarithmic density of A, respectively. If
there exists

lim
n→∞

dn(A) = d(A),

and
lim
n→∞

δn(A) = δ(A),

then d(A) and δ(A) are called the asymptotic and logarithmic density of A
respectively. It is well known fact, that for each A ⊆ N,

d(A) ≤ δ(A) ≤ δ̄(A) ≤ d̄(A).

Hence if d(A) exists, then δ(A) also exists and d(A) = δ(A). The
numbers d(A), d̄(A), d(A), δ(A), δ̄(A), δ(A) belong to the interval [0,1].
Owing to the well known formula

Sn =
n∑
k=1

1

k
= ln n+ γ + 0(

1

n
), n→∞,

where γ is the Eulers constant.

Definition 1.17. Let X 6= φ. A class I ⊂ 2X of subsets of X is said to
be an Ideal in X if

[i] ∅ ∈ I;

[ii] A,B ∈ I imply A ∪B ∈ I;

Science Publishing Group 11
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[iii] A ∈ I, B ⊂ A imply B ∈ I .

An ideal is called non-trivial ifX 6∈ I while an admissible ideal I further
satisfies {x} ∈ I for each x ∈ X .

Definition 1.18. Let X 6= φ. A non-empty class £ ⊂ 2X of subsets of X
is said to be Filter in X if

[i] ∅ 6∈ £;

[ii] A,B ∈ £ imply A
⋂
B ∈ £;

[iii] A ∈ £, B ⊃ A imply B ∈ £,

The following Proposition expresses the relation between the notions of
Ideals and Filters.

Proposition 1.19. Let I be a non-trivial ideal in X , X 6= φ. Then the
class

£(I) = {M ⊆ X : ∃A ∈ I : M = X − A},

is a filter on X.

The concept of statistical convergence and the study of similar type of
convergence lead to the introduction of the notion of I-convergence of
sequences. The notion gives a unifying look at many types of
convergence related to statistical convergence.

Definition 1.20. Let I be a non-trivial ideal in N. A sequence x = xk of
real numbers is said to be I-convergent to ξ ∈ R if for every ε > 0 the set

A(ε) = {k : |xk − ξ| ≥ ε} ∈ I.

If x = (xk) is I-convergent to ξ we write I − limxk = ξ and the number
ξ is called the I-limit of x = (xk).

12 Science Publishing Group



Chapter 1 Basic Definitions and Notations

The concept of I-convergence satisfies some usual axioms of
convergence listed below:

[i] Every stationary sequence x = (ξ, ξ, .....ξ, .......) I-converges to ξ.

[ii] The uniqueness of limit: If I − limx = ξ and I − limx = η, then
ξ = η.

[iii] If I − limx = ξ, then for each subsequence y of x we have
I − lim y = ξ.

[iv] If each subsequence y of a sequence x has a subsequence z
I-convergent to ξ, then x is I-convergent to ξ.

Examples of Ideals 1.21.

[i] I0 = ∅. This is the minimal non-empty non-trivial ideal in N. A
sequence is I0 convergent if and only if it is constant.

[ii] Let φ 6= M ⊆ N , M 6= N. LetIM = 2M . Then IM is a non trivial
ideal in N. A sequence x = (xk) is IM -convergent if and only if it is
constant on N-M.

[iii] Let If denotes the class of all finite subsets of N. Then If is an
admissible ideal in N and If -convergence coincides with the usual
convergence in R.

[iv] Let
Id = {A ⊆ N : d(A) = 0}.

Then Id is an admissible ideal in N and Id-convergence coincides
with the statistical convergence.

[v] Let
Iδ = {A ⊆ N : δ(A) = 0}.

Science Publishing Group 13



Zweier I-Convergent Sequence Spaces and Their Properties

Then Iδ is an admissible ideal in N and we call the Iδ-convergence
the logarithmic statistical convergence.

[vi] The examples [iv] and [v] can be generalised by choosing cn > 0,
such that

∞∑
n=1

cn = +∞.

Putting

hm(A) =

∑
i≤m,i∈A

ci

m∑
i=1

ci

(m=1,2,3......) .

Denote by h(A) the limm→∞ hm(A). Then

Ih = {A ⊆ N : h(A) = 0},

is an admissible ideal in N and Id and Iδ-convergence are special
cases of Ih convergence.

[vii] Let u(A) denotes the uniform density of the set A. Then

Iu = {A ⊆ N : u(A) = 0},

is an admissible ideal in N and Iu-convergence will be called the
uniform statistical convergence.

[viii] Let T = (tn,k) be a non-negative regular matrix, then for eachA ⊆ N
the series

d
(n)
T (A) =

∞∑
k=1

tn,kχA(k) (n=1,2,3......) ,

converges if there exist

dT (A) = lim
n→∞

d
(n)
T (A).
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Chapter 1 Basic Definitions and Notations

Then dT (A) is called the T-density of A. Putting

IdT = {A ⊆ N : dT (A) = 0},

then IdT is an admissible ideal in N.

[ix] Let v be a finite additive measure defined on a class U of subsets of N
which contains all finite subsets of N and v({n}) = 0 for each n ∈ N.
v(A) ≤ v(B) if A,B ∈ U , A ⊆ B. Then

Iv = {A ⊆ N : v(A) = 0}

is an admissible ideal in N.

[x] Let µm : 2N → [0, 1], m=1,2,.... be finitely additive measures defined
on 2N . If there exists

µ(A) = lim
m→∞

µm(A),

then µ(A) is called the measure of A, and

Iµ = {A ⊆ N : µ(A) = 0},

is an admissible ideal in N.

[xi] Let

N =
∞⋃
j=1

Dj,

be a decomposition of N (i.e Dk ∩ Dl = φ for k 6= l). Assume
that Dj(j = 1, 2, ....) are infinite sets. Choose Dj = {2j−1(2s −
1) : s = 1, 2...}. Denote by J the class of all A ⊆ N such that A
intersects only a finite number of Dj . Then it is easy to see that J is
an admissible ideal in N.

[xii] The concept of density ρ of sets A ⊆ N is axiomatically introduced.
Using this concept we can define the ideal

Iρ = {A ⊆ N : ρ(A) = 0},
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Zweier I-Convergent Sequence Spaces and Their Properties

and obtain Iρ-convergence as a generalization of statistical
convergence.

Relation between I-Convergence and µ-statistical Convergence 1.22.

The approach of Connor[7-9] towards the generalization of statistical
convergence is based on using a finite additive measure µ defined on the
field Γ of subsets of N with µ({k}) = 0 for each k ∈ N and such that
A,B ∈ Γ, A ⊆ B implies µ(A) ≤ µ(B). If we put

I = {A ∈ Γ : µ(A) = 0},

then it is easy to verify that I is an admissible Ideal in N and

£(I) = {B ⊆ N : µ(B) = 1}.

Conversely, if I is an admissible Ideal in N, then we put

Γ = I ∪£(I).

Then Γ is a field (Algebra) of subsets of N. Define µ : Γ → {0, 1} as
follows:

µ(M) = 0 if M ∈ I

µ(M) = 1 if M ∈ £(I).

Now it is easy to see that I ∩ £(I) = φ and µ({k}) = 0. Also the
monotonicity and additivity of µ is preserved. Hence these two approaches
towards generalization of statistical convergence seem to be equivalent in
such a sense that each of them can be replaced by the other.

Fundamental arithmatical properties of I-convergence 1.23.

I-Convergence has arithmatical properties similar to the properties of the
usual convergence.
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Chapter 1 Basic Definitions and Notations

Theorem 1.24. Let I be a non-trivial ideal in N

(i) If I − limxn = ξ, I − lim yn = η, then I − lim(xn + yn) = ξ + η.

(ii) If I − limxn = ξ, I − lim yn = η, then I − lim(xn.yn) = ξ.η.

(iii) If I is an admissible ideal in N, then limn→∞ xn = ξ implies
I − limxn = ξ.

Definition 1.25. A sequence (xk) ∈ ω is said to be I-convergent to a
number L if for every ε > 0. {k ∈ N : |xk − L| ≥ ε} ∈ I. In this case we
write I − limxk = L. The space cI of all I-convergent sequences to L is
given by

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥ ε} ∈ I, for some L∈ C }.

Definition 1.26. A sequence (xk) ∈ ω is said to be I-null if L = 0 . In
this case we write I − limxk = 0.

Definition 1.27. A sequence (xk) ∈ ω is said to be I-cauchy if for every
ε > 0 there exists a number m = m(ε) such that {k ∈ N : |xk−xm| ≥ ε} ∈
I.

Definition 1.28. A sequence (xk) ∈ ω is said to be I-bounded if there
exists M >0 such that {k ∈ N : |xk| > M} ∈ I.

Definition 1.29. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X →
R is said to satisfy Lipschitz condition if |~(x)− ~(y)| ≤ K|x− y| where
K is known as the Lipschitz constant. The class of K-Lipschitz functions
defined on D is denoted by ~ ∈ (D,K).

Definition 1.30. A convergence field of I-convergence is a set

F (I) = {x = (xk) ∈ l∞ : there exists I − limx ∈ R}.
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The convergence field F (I) is a closed linear subspace of l∞ with respect
to the supremum norm, F (I) = l∞ ∩ cI .

Define a function ~ : F (I) → R such that ~(x) = I − limx, for all
x ∈ F (I), then the function ~ : F (I)→ R is a Lipschitz function.

Definition 1.31. A sequence space E is said to be solid or normal if
(αkxk) ∈ E whenever (xk) ∈ E and for all sequence αk of scalars with
|αk| ≤ 1 for all k ∈ N.

Definition 1.32. A sequence space E is said to be a sequence algebra if

(xk) ∗ (yk) = (xkyk) ∈ E whenever (xk), (yk) ∈ E.

Definition 1.33. A sequence space E is said to be convergencefree if
(yk) ∈ E whenever (xk) ∈ E and xk = 0 implies yk = 0.

Definition 1.34. A sequence space E is said to be symmetric if (xk) ∈ E
implies (xπ(k)) ∈ E where π is a permutation on N.

Definition 1.35. A sequence spaceE is said to be monotone if it contains
the canonical preimages of its step spaces. (c.f.[2], [4], [6], [10], [17], [47],
[48-49], [53-54], [60-61], [65-66], [70], [71-773], [74], [74], [76]).
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Chapter 2

Zweier I-Convergent Sequence
Spaces

“In most sciences one generation tears down what another has built and what one has established another
undoes. In mathematics alone each generation builds a new story to the old structure.”- Hankel.





Chapter 2 Zweier I-Convergent Sequence Spaces

2.1 Introduction

Let l∞, c and c0 denote the Banach spaces of bounded,convergent and
null sequences respectively normed by ||x||∞ = sup

k
|xk|.

Each linear subspace of ω, for example, λ, µ ⊂ ω is called a sequence
space.

A sequence space X with linear topology is called a K-space provided
each of maps pi : X −→ C defined by pi(x) = xi is continuous for all
i ∈ N.

A K-space λ is called an FK-space provided λ is a complete linear metric
space.

An FK-space whose topology is normable is called a BK-space.

Let λ and µ be two sequence spaces and A = (ank) is an infinite matrix
of real or complex numbers (ank), where n, k ∈ N. Then we say that A
defines a matrix mapping from λ to µ, and we denote it by writing
A : λ −→ µ.

If for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A
transform of x is in µ, where

(Ax)n =
∑
k

ankxk, (n ∈ N). [2.1]

By (λ : µ), we denote the class of matrices A such that A : λ −→ µ.

Thus, A ∈ (λ : µ) if and only if series on the right side of [2.1] converges
for each n ∈ N and every x ∈ λ.

The approach of constructing new sequence spaces by means of the
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matrix domain of a particular limitation method have been recently
employed by Altay,Başar and Mursaleen[1], Başar and Altay[3],
Malkowsky[57], Ng and Lee[59], and Wang[74]. Şengönül[68] defined
the sequence y = (yi) which is frequently used as the Zp transform of the
sequence x = (xi) i.e,

yi = pxi + (1− p)xi−1

where x−1 = 0, p 6= 1, 1 < p < ∞ and Zp denotes the matrix Zp = (zik)

defined by

zik =


p, (i = k),

1− p, (i− 1 = k); (i, k ∈ N),

0, otherwise.

Following Başar and Altay[3], Şengönül[68] introduced the Zweier
sequence spaces Z and Z0 as follows

Z = {x = (xk) ∈ ω : Zpx ∈ c}

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.

Here we list below some of the results of [68] which we will need as
a reference in order to establish analogously some of the results of this
article.

Theorem 2.1.1. [68, Theorem 2.1] The sets Z and Z0 are the linear
spaces with the co-ordinate wise addition and scalar multiplication which
are the BK-spaces with the norm

||x||Z = ||x||Z0 = ||Zpx||c.

Theorem 2.1.2. [68, Theorem 2.2] The sequence spaces Z and Z0 are
linearly isomorphic to the spaces c and c0 respectively, i.e Z ∼= c and
Z0
∼= c0[See (Theorem 2.2.[18])]
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Theorem 2.1.3. [68, Theorem 2.3] The inclusions Z0 ⊂ Z strictly hold
for p 6= 1.

Theorem 2.1.4. [68, Theorem 2.6] Z0 is solid.

Theorem 2.1.5. [68, Theorem 3.6] Z is not a solid sequence space.

The following Lemmas will be used for establishing some results of this
article.

Lemma 2.1.6. Let E be a sequence space. If E is solid then E is
monotone. (see [20], page 53).

Lemma 2.1.7. If I ⊂ 2N and M⊆ N. If M /∈I, then M∩N /∈I.
(see [71-72]).

2.2 Main Results

In this chapter we introduce the following classes of sequence spaces.

ZI = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = L, for some L∈ C} ∈ I}

ZI0 = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = 0} ∈ I}

ZI∞ = {x = (xk) ∈ ω : sup
k
|Zpx| <∞}.

We also denote by
mI
Z = Z∞ ∩ ZI

and
mI
Z0

= Z∞ ∩ ZI0

Throughout the article, for the sake of convenience now we will denote
by Zp(xk) = x/, Zp(yk) = y/, Zp(zk) = z/ for x, y, z ∈ ω.

Science Publishing Group 23



Zweier I-Convergent Sequence Spaces and Their Properties

Theorem 2.2.1. The classes of sequences ZI ,ZI0 ,mI
Z andmI

Z0
are linear

spaces.

Proof. We shall prove the result for the space ZI . The proof for the other
spaces will follow similarly. Let (xk), (yk) ∈ ZI and let α, β be scalars.
Then

I − lim |x/k − L1| = 0, for some L1 ∈ C;

I − lim |y/k − L2| = 0, for some L2 ∈ C;

That is for a given ε > 0, we have

A1 = {k ∈ N : |x/k − L1| >
ε

2
} ∈ I, [2.2]

A2 = {k ∈ N : |y/k − L2| >
ε

2
} ∈ I. [2.3]

we have

|(αx/k + βy
/
k)− (αL1 + βL2)| ≤ |α|(|x/k − L1|) + |β|(|y/k − L2|)

≤ |x/k − L1| + |y/k − L2|

Now, by [2.2] and [2.3], {k ∈ N : |(αx/k + βy
/
k) − (αL1 + βL2)| > ε}

⊂ A1 ∪ A2. Therefore (αxk + βyk) ∈ ZI

Hence ZI is a linear space.

Theorem 2.2.2. The spaces mI
Z and mI

Z0
are normed linear

spaces,normed by

||x/k||∗ = sup
k
|Zp(x)|. [2.4]

where x/k = Zp(x)

Proof. It is clear from Theorem 2.2.1 that mI
Z and mI

Z0
are linear spaces.

It is easy to verify that [2.4] defines a norm on the spaces mI
Z and mI

Z0
.
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Chapter 2 Zweier I-Convergent Sequence Spaces

Theorem 2.2.3. A sequence x = (xk) ∈ mI
Z I-converges if and only if

for every ε > 0 there exists Nε ∈ N such that

{k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z [2.5]

Proof. Suppose that L = I − limx/. Then

Bε = {k ∈ N : |x/k − L| <
ε

2
} ∈ mI

Z for all ε > 0.

Fix an Nε ∈ Bε. Then we have

|x/Nε − x
/
k| ≤ |x

/
Nε
− L|+ |L− x/k| <

ε

2
+
ε

2
= ε

which holds for all k ∈ Bε.

Hence {k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z .

Conversely, suppose that {k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z . That is
{k ∈ N : |x/k − x

/
Nε
| < ε} ∈ mI

Z for all ε > 0. Then the set

Cε = {k ∈ N : x
/
k ∈ [x

/
Nε
− ε, x/Nε + ε]} ∈ mI

Z for all ε > 0.

Let Jε = [x
/
Nε
− ε, x/Nε + ε]. If we fix an ε > 0 then we have Cε ∈ mI

Z as
well as C ε

2
∈ mI

Z . Hence Cε ∩ C ε
2
∈ mI

Z . This implies that

J = Jε ∩ J ε
2
6= φ

that is
{k ∈ N : x

/
k ∈ J} ∈ m

I
Z

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........
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with the property that diamIk ≤ 1
2
diamIk−1 for (k=2,3,4,.....) and

{k ∈ N : x
/
k ∈ Ik} ∈ mI

Z for (k=1,2,3,4,......). Then there exists a ξ ∈ ∩Ik
where k ∈ N such that ξ/ = I − limx/, that is L = I − limx/.

Theorem 2.2.4. Let I be an admissible ideal. Then the following are
equivalent.

(a) (xk) ∈ ZI ;

(b) there exists (yk) ∈ Z such that xk = yk, for a.a.k.r.I;

(c) there exists (yk) ∈ Z and (zk) ∈ ZI0 such that xk = yk + zk for all
k ∈ N and {k ∈ N : |yk − L| ≥ ε} ∈ I ;

(d) there exists a subset K = {k1 < k2....} of N such that K ∈ £(I) and
lim
n→∞

|xkn − L| = 0.

Proof. (a) implies (b). Let (xk) ∈ ZI . Then there exists L ∈ C such that

{k ∈ N : |x/k − L| ≥ ε} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{k ≤ mt : |x/k − L| ≥
1

t
} ∈ I.

Define a sequence (yk) as

yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈ N.

yk =

{
xk, if |x/k − L| < t−1,

L, otherwise.

26 Science Publishing Group



Chapter 2 Zweier I-Convergent Sequence Spaces

Then (yk) ∈ Z and form the following inclusion

{k ≤ mt : xk 6= yk} ⊆ {k ≤ mt : |x/k − L| ≥ ε} ∈ I.

We get xk = yk, for a.a.k.r.I.

(b) implies (c). For (xk) ∈ ZI . Then there exists (yk) ∈ Z such that
xk = yk, for a.a.k.r.I. Let K = {k ∈ N : xk 6= yk}, then K ∈ I . Define a
sequence (zk) as

zk =

{
xk − yk, if k ∈ K,

0, otherwise.

Then zk ∈ ZI0 and yk ∈ Z.

(c) implies (d). Let P1 = {k ∈ N : |zk| ≥ ε} ∈ I and

K = P c
1 = {k1 < k2 < k3 < ...} ∈ £(I).

Then we have lim
n→∞

|xkn − L| = 0.

(d) implies (a). Let K = {k1 < k2 < k3 < ...} ∈ £(I) and lim
n→∞

|xkn −
L| = 0. Then for any ε > 0, and Lemma , we have

{k ∈ N : |x/k − L| ≥ ε} ⊆ Kc ∪ {k ∈ K : |x/k − L| ≥ ε}.

Thus (xk) ∈ ZI .

Theorem 2.2.5. The inclusions ZI0 ⊂ ZI ⊂ ZI∞ are proper.

Proof. Let (xk) ∈ ZI . Then there exists L ∈ C such that

I − lim |x/k − L| = 0

We have |x/k| ≤ 1
2
|x/k − L|+ 1

2
|L|. Taking the supremum over k on both

sides we get (xk) ∈ ZI∞. The inclusion ZI0 ⊂ ZI is obvious.
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Theorem 2.2.6. The function ~ : mI
Z → R is the Lipschitz function,

where
mI
Z = ZI ∩ Z∞, and hence uniformly continuous.

Proof. Let x, y ∈ mI
Z , x 6= y. Then the sets

Ax = {k ∈ N : |x/k − ~(x/)| ≥ ||x/ − y/||∗} ∈ I,

Ay = {k ∈ N : |y/k − ~(y/)| ≥ ||x/ − y/||∗} ∈ I.

Thus the sets,

Bx = {k ∈ N : |x/k − ~(x/)| < ||x/ − y/||∗} ∈ mI
Z ,

By = {k ∈ N : |y/k − ~(y/)| < ||x/ − y/||∗} ∈ mI
Z .

Hence also B = Bx ∩By ∈ mI
Z , so that B 6= φ. Now taking k in B,

|~(x/)− ~(y/)| ≤ |~(x/)− x/k|+ |x
/
k − y

/
k|+ |y

/− ~(y/)| ≤ 3||x/− y/||∗.

Thus ~ is a Lipschitz function. For mI
Z0

the result can be proved
similarly.

Theorem 2.2.7. If x, y ∈ mI
Z , then (x.y) ∈ mI

Z and ~(xy) = ~(x)~(y).

Proof. For ε > 0

Bx = {k ∈ N : |x/ − ~(x/)| < ε} ∈ mI
Z ,

By = {k ∈ N : |y/ − ~(y/)| < ε} ∈ mI
Z .

Now,

|x/.y/ − ~(x/)~(y/)| = |x/.y/ − x/~(y/) + x/~(y/)− ~(x/)~(y/)|

≤ |x/||y/ − ~(y/)|+ |~(y/)||x/ − ~(x/)| [2.6]
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As mI
Z ⊆ Z∞, there exists an M ∈ R such that |x/| < M and

|~(y/)| < M . Using eqn[2.6] we get

|x/.y/ − ~(x/)~(y/)| ≤Mε+Mε = 2Mε

For all k ∈ Bx ∩ By ∈ mI
Z . Hence (x.y) ∈ mI

Z and ~(xy) = ~(x)~(y).
For mI

Z0
the result can be proved similarly.

Theorem 2.2.8. The spaces ZI0 and mI
Z0

are solid and monotone .

Proof. We shall prove the result for ZI0 . Let (xk) ∈ ZI0 . Then

I − lim
k
|x/k| = 0 [2.7]

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Then the
result follows from [2.7] and the following inequality |αkx/k| ≤ |αk||x

/
k| ≤

|x/k| for all k ∈ N. That the spaceZI0 is monotone follows from the Lemma
2.1.6. For mI

Z0
the result can be proved similarly.

Theorem 2.2.9. The spaces ZI and mI
Z are neither monotone nor solid,

if I is neither maximal nor I = If in general .

Proof. Here we give a counter example. Let I = Iδ. Consider the K-step
space XK of X defined as follows, Let (xk) ∈ X and let (yk) ∈ XK be
such that

(y
/
k) =

{
(x

/
k), if k is odd,

1, otherwise.

Consider the sequence (x
/
k) defined by (x

/
k) = k−1 for all k ∈ N. Then

(xk) ∈ ZI but its K-stepspace preimage does not belong to ZI . Thus ZI

is not monotone. Hence ZI is not solid.

Theorem 2.2.10. The spaces ZI and ZI0 are sequence algebras.
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Proof. We prove that ZI0 is a sequence algebra. Let (xk), (yk) ∈ ZI0 .
Then

I − lim |x/k| = 0

and
I − lim |y/k| = 0

Then we have
I − lim |(x/k.y

/
k)| = 0

Thus (xk.yk) ∈ ZI0 . Hence ZI0 is a sequence algebra. For the space ZI ,
the result can be proved similarly.

Theorem 2.2.11. The spaces ZI and ZI0 are not convergence free in
general.

Proof. Here we give a counter example. Let I = If . Consider the
sequence (x

/
k) and (y

/
k) defined by

x
/
k =

1

k
and y

/
k = k for all k ∈ N

Then (xk) ∈ ZI and ZI0 , but (yk) /∈ ZI and ZI0 . Hence the spaces ZI

and ZI0 are not convergence free.

Theorem 2.2.12. If I is not maximal and I 6= If , then the spaces ZI and
ZI0 are not symmetric.

Proof. Let A ∈ I be infinite. If

x
/
k =

{
1, for k ∈ A,
0, otherwise.

Then by lemma 1.16. xk ∈ ZI0 ⊂ ZI . Let K ⊂ N be such that K /∈ I
and N −K /∈ I . Let φ : K → A and ψ : N −K → N − A be bijections,
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then the map π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but xπ(k) /∈ ZI and xπ(k) /∈ ZI0 . Hence ZI and ZI0
are not symmetric.

Theorem 2.2.13. The sequence spaces ZI and ZI0 are linearly
isomorphic to the spaces cI and cI0 respectively, i.e ZI ∼= cI and ZI0 ∼= cI0.

Proof. We shall prove the result for the space ZI and cI . The proof for
the other spaces will follow similarly. We need to show that there exists a
linear bijection between the spacesZI and cI . Define a map T : ZI −→ cI

such that x→ x/ = Tx

T (xk) = pxk + (1− p)xk−1 = x
/
k

where x−1 = 0, p 6= 1, 1 < p <∞. Clearly T is linear. Further, it is trivial
that x = 0 = (0, 0, 0, ......) whenever Tx = 0 and hence injective. Let
x
/
k ∈ cI and define the sequence x = xk by

xk = M
k∑
i=0

(−1)k−iNk−ix
/
i . (i ∈ N)

where M = 1
p

and N = 1−p
p

. Then we have

lim
k→∞

pxk + (1− p)xk−1 = p lim
k→∞

M
k∑
i=0

(−1)k−iNk−ix
/
i+

(1− p) lim
k→∞

M
k−1∑
i=0

(−1)k−iNk−ix
/
i = lim

k→∞
x
/
k

which shows that x ∈ ZI .
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Hence T is a linear bijection. Also we have ||x||∗ = ||Zpx||c. Therefore

||x||∗ = sup
k∈N
|pxk + (1− p)xk−1|

= sup
k∈N
|pM

k∑
i=0

(−1)k−iNk−ix
/
i + (1− p)M

k−1∑
i=0

(−1)k−iNk−ix
/
i |

= sup
k∈N
|x/k| = ||x

/||cI

Hence ZI ∼= cI .
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“There is no place in the world for ugly mathematics. It may be very hard to define mathematical beauty but
that is just as true of beauty of any kind , we may not know quite, what we mean by a beautiful poem, but
that does not prevent us from recognizing one when we read it.”-Hardy





Chapter 3 On Paranorm Zweier I-Convergent Sequence Spaces

3.1 Introduction

The following subspaces of ω were first introduced and discussed by
Maddox [56] :

l(p) := {x ∈ ω :
∑
k

|xk|pk <∞},

l∞(p) := {x ∈ ω : sup
k
|xk|pk <∞},

c(p) := {x ∈ ω : lim
k
|xk − l|pk = 0, for some l ∈ C },

c0(p) := {x ∈ ω : lim
k
|xk|pk = 0, },

where p = (pk) is a sequence of strictly positive real numbers.

After then Lascarides[53-54] defined the following sequence spaces :

l∞{p} := {x ∈ ω : there exists r > 0 such that sup
k
|xkr|pktk <∞},

c0{p} := {x ∈ ω : there exists r > 0 such that lim
k
|xkr|pktk = 0, },

l{p} := {x ∈ ω : there exists r > 0 such that
∞∑
k=1

|xkr|pktk <∞},

Where tk = p−1k , for all k ∈ N.

Recently Khan and Ebadullah [38] introduced the following classes of
sequence spaces:

ZI = {(xk) ∈ ω : {k ∈ N : I − limZpx = L for some L} ∈ I};

ZI0 = {(xk) ∈ ω : {k ∈ N : I − limZpx = 0} ∈ I};

ZI∞ = {(xk) ∈ ω : sup
k
|Zpx| <∞}.

Science Publishing Group 35



Zweier I-Convergent Sequence Spaces and Their Properties

We also denote by

mI
Z = Z∞ ∩ ZI ;

and

mI
Z0

= Z∞ ∩ ZI0 .

In this chapter we introduce the following classes of sequence spaces:

ZI(q) = {(xk) ∈ ω : {k ∈ N : |Zpx− L|qk ≥ ε} ∈ I, for some L∈ C };

ZI0 (q) = {(xk) ∈ ω : {k ∈ N : |Zpx|qk ≥ ε} ∈ I};

ZI∞(q) = {(xk) ∈ ω : sup
k
|Zpx|qk <∞}.

We also denote by

mI
Z(q) = ZI∞(q) ∩ ZI(q);

and

mI
Z0

(q) = ZI∞(q) ∩ ZI0 (q);

where q = (qk), is a sequence of positive real numbers.

Throughout the chapter, for the sake of convenience we will denote by
Zpx = x/, Zpy = y/, Zpz = z/ for all x, y, z ∈ ω.

3.2 Main Results

Theorem 3.2.1. The classes of sequences ZI(q),ZI0 (q),mI
Z(q) and

mI
Z0

(q) are linear spaces.

Proof. We shall prove the result for the space ZI(q). The proof for the
other spaces will follow similarly.
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Let (xk), (yk) ∈ ZI(q) and let α, β be scalars. Then for a given ε > 0

we have

{k ∈ N : |x/k − L1|qk ≥
ε

2M1

, for some L1 ∈ C } ∈ I;

{k ∈ N : |y/k − L2|qk ≥
ε

2M2

, for some L2 ∈ C } ∈ I;

where
M1 = Dmax{1, sup

k
|α|qk};

M2 = Dmax{1, sup
k
|β|qk};

and
D = max{1, 2H−1} where H = sup

k
qk ≥ 0.

Let

A1 = {k ∈ N : |x/k − L1|qk <
ε

2M1

, for some L1 ∈ C } ∈ £(I);

A2 = {k ∈ N : |y/k − L2|qk <
ε

2M2

, for some L2 ∈ C } ∈ £(I);

be such that Ac1, A
c
2 ∈ I . Then

A3 = {k ∈ N : |(αx/k + βy
/
k)− (αL1 + βL2)|qk) < ε}

⊇ {k ∈ N : |α|qk |x/k − L1|qk <
ε

2M1

|α|qkD}

∩{k ∈ N : |β|qk |y/k − L2|qk <
ε

2M2

|β|qkD}.

Thus Ac3 ⊆ Ac1 ∪Ac2 ∈ I . Hence (αxk + βyk) ∈ ZI(q). Therefore ZI(q)
is a linear space. The rest of the result follows similarly.

Theorem 3.2.2. Let (qk) ∈ l∞. Then mI
Z(q) and mI

Z0
(q) are paranormed

spaces, paranormed by

g(x) = sup
k
|xk|

qk
M , where M = max{1, sup

k
qk}.
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Proof. Let x = (xk), y = (yk) ∈ mI
Z(q).

[i] Clearly, g(x) = 0 if and only if x = 0.

[ii] g(x) = g(−x) is obvious.

[iii] Since qk
M
≤ 1 and M > 1,using Minkowski’s inequality we have

sup
k
|xk + yk|

qk
M ≤ sup

k
|xk|

qk
M + sup

k
|yk|

qk
M .

[iv] Now for any complex λ we have (λk) such that λk → λ, (k → ∞).

Let xk ∈ mI
Z(q) such that |xk − L|qk ≥ ε. Therefore,

g(x− Le) = sup
k
|xk − L|

qk
M ≤ sup

k
|xk|

qk
M + sup

k
|L|

qk
M ,

where e = (1, 1, 1.....). Hence

g(λnxk − λL) ≤ g(λnxk) + g(λL) = λng(x) + λg(L),

as k → ∞. Hence mI
Z(q) is a paranormed space. The rest of the

result follows similarly.

Theorem 3.2.3. mI
Z(q) is a closed subspace of l∞(q).

Proof. Let (x
(n)
k ) be a Cauchy sequence in mI

Z(q) such that x(n) → x.
We show that x ∈ mI

Z(q). Since (x
(n)
k ) ∈ mI

Z(q), then there exists an such
that

{k ∈ N : |x(n) − an| ≥ ε} ∈ I.

We need to show that

[i] (an) converges to a.

[ii] If U = {k ∈ N : |xk − a| < ε}, then U c ∈ I .
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[i] Since (x
(n)
k ) is a Cauchy sequence in mI

Z(q) then for a given ε > 0,
there exists k0 ∈ N such that

sup
k
|x(n)k − x

(i)
k | <

ε

3
, for all n, i ≥ k0

For a given ε > 0, we have

Bni = {k ∈ N : |x(n)k − x
(i)
k | <

ε

3
},

Bi = {k ∈ N : |x(i)k − ai| <
ε

3
},

Bn = {k ∈ N : |x(n)k − an| <
ε

3
}.

Then Bc
ni, B

c
i , B

c
n ∈ I .

Let

Bc = Bc
ni ∪Bc

i ∪Bc
n,

where

B = {k ∈ N : |ai − an| < ε}.

Then Bc ∈ I . We choose k0 ∈ Bc, then for each n, i ≥ k0, we have

{k ∈ N : |ai − an| < ε} ⊇ {k ∈ N : |x(i)k − ai| <
ε

3
}

∩{k ∈ N : |x(n)k − x
(i)
k | <

ε

3
} ∩ {k ∈ N : |x(n)k − an| <

ε

3
}.

Then (an) is a Cauchy sequence of scalars in C , so there exists a scalar
a ∈ C such that an → a, as n→∞.

[ii] Let 0 < δ < 1 be given. Then we show that if

U = {k ∈ N : |xk − a|qk < δ},
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then U c ∈ I . Since x(n) → x, then there exists q0 ∈ N such that

P = {k ∈ N : |x(q0) − x| < (
δ

3D
)M}. [3.1]

which implies that P c ∈ I .

The number q0 can be so chosen that together with [3.1], we have

Q = {k ∈ N : |aq0 − a|qk < (
δ

3D
)M},

such that Qc ∈ I

Since
{k ∈ N : |x(q0) − aq0|qk ≥ δ} ∈ I.

Then we have a subset S of N such that Sc ∈ I , where

S = {k ∈ N : |x(q0) − aq0|qk < (
δ

3D
)M}.

Let
U c = P c ∪Qc ∪ Sc,

where
U = {k ∈ N : |xk − a|qk < δ}.

Therefore for each k ∈ U c, we have

{k ∈ N : |xk − a|qk < δ} ⊇ {k ∈ N : |x(q0) − x|qk < (
δ

3D
)M}

∩{k ∈ N : |x(q0) − aq0 |qk < (
δ

3D
)M} ∩ {k ∈ N : |aq0 − a|qk < (

δ

3D
)M}.

Then the result follows.

Since the inclusions mI
Z(q) ⊂ l∞(q) and mI

Z0
(q) ⊂ l∞(q) are strict so in

view of Theorem 2.2.3 we have the following result.
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Theorem 3.2.4. The spaces mI
Z(q) and mI

Z0
(q) are nowhere dense

subsets of l∞(q).

Theorem 3.2.5. The spaces mI
Z(q) and mI

Z0
(q) are not separable.

Proof. We shall prove the result for the space mI
Z(q). The proof for the

other spaces will follow similarly.

Let M be an infinite subset of N of increasing natural numbers such that
M ∈ I . Let

qk =

{
1, if k ∈M ,
2, otherwise.

Let

P0 = {(xk) : xk = 0 or 1, for k ∈M and xk = 0, otherwise}.

Clearly P0 is uncountable. Consider the class of open balls

B1 = {B(z,
1

2
) : z ∈ P0}.

Let C1 be an open cover of mI
Z(q) containing B1. Since B1 is

uncountable, so C1 cannot be reduced to a countable subcover for mI
Z(q).

Thus mI
Z(q) is not separable.

Theorem 3.2.6. Let G = sup
k
qk < ∞ and I an admissible ideal. Then

the following are equivalent:

[a] (xk) ∈ ZI(q);

[b] there exists(yk) ∈ Z(q) such that xk = yk, for a.a.k.r.I;

[c] there exists(yk) ∈ Z(q) and (xk) ∈ ZI0 (q) such that xk = yk + zk for
all k ∈ N and {k ∈ N : |yk − L|qk) ≥ ε} ∈ I ;
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[d] there exists a subset

K = {k1 < k2....} of N,

such that K ∈ £(I) and

lim
n→∞

|xkn − L|qkn = 0.

Proof.

[a] implies [b].

Let (xk) ∈ ZI(q). Then there exists L ∈ C such that

{k ∈ N : |x/k − L|
qk ≥ ε} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{k ≤ mt : |x/k − L|
qk ≥ t−1} ∈ I.

Define a sequence (yk) as

yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈ N,

yk =

{
xk, if |x/k − L|qk < t−1,
L, otherwise.

Then (yk) ∈ Z(q) and from the following inclusion

{k ≤ mt : xk 6= yk} ⊆ {k ≤ mt : |x/k − L|
qk) ≥ ε} ∈ I,

we get xk = yk, for a.a.k.r.I.
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[b] implies [c].

For (xk) ∈ ZI(q), there exists (yk) ∈ Z(q) such that xk = yk, for
a.a.k.r.I. Let

K = {k ∈ N : xk 6= yk},

then k ∈ I . Define a sequence (zk) as

zk =

{
xk − yk, if k ∈ K,

0, otherwise.

Then zk ∈ ZI0 (q) and yk ∈ Z(q).

[c] implies [d].

Suppose [c] holds. Let ε > 0 be given. Let

P1 = {k ∈ N : |z/k|
qk ≥ ε} ∈ I,

and
K = P c

1 = {k1 < k2 < k3 < ...} ∈ £(I).

Then we have
lim
n→∞

|x/kn − L|
qkn = 0.

[d] implies [a].

Let
K = {k1 < k2 < k3 < ...} ∈ £(I)

and
lim
n→∞

|x/kn − L|
qkn = 0.

Then for any ε > 0, and Lemma 3.1.1., we have

{k ∈ N : |x/k − L|
qk ≥ ε} ⊆ Kc ∪ {k ∈ K : |x/k − L|

qk ≥ ε}.
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Thus (xk) ∈ ZI(q).

Theorem 3.2.7. Let h = inf
k
qk and G = sup

k
qk. Then the following

results are equivalent.

[a] G <∞ and h > 0.

[b] ZI0 (q) = ZI0 .

Proof. Suppose that G <∞ and h > 0, then the inequalities

min{1, sh} ≤ sqk ≤ max{1, sG},

hold for any s > 0 and for all k ∈ N. Therefore the equivalence of [a] and
[b] is obvious.

Theorem 3.2.8. Let (qk) and (rk) be two sequences of positive real
numbers. Then mI

Z0
(q) ⊇ mI

Z0
(r) if and only if lim

k∈K
inf qk

rk
> 0, where

Kc ⊆ N such that K ∈ I.

Proof. Let lim
k∈K

inf qk
rk
> 0 and (xk) ∈ mI

Z0
(r). Then there exists β > 0

such that qk > βrk, for all sufficiently large k ∈ K. Since (xk) ∈ mI
Z0

(r)

for a given ε > 0, we have

B0 = {k ∈ N : |xk|rk ≥ ε} ∈ I

Let G0 = Kc ∪B0 then G0 ∈ I. Then for all sufficiently large k ∈ G0,

{k ∈ N : |xk|qk) ≥ ε} ⊆ {k ∈ N : |xk|βrk) ≥ ε} ∈ I.

Therefore (xk) ∈ mI
Z0

(q). The converse part of the result follows
obviously.
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Theorem 3.2.9. Let (qk) and (rk) be two sequences of positive real
numbers. Then mI

Z0
(r) ⊇ mI

Z0
(q) if and only if lim

k∈K
inf rk

qk
> 0, where

Kc ⊆ N such that K ∈ I.

Proof. The proof follows similarly as the proof of Theorem 3.2.8.

Theorem 3.2.10. Let (qk) and (rk) be two sequences of positive real
numbers. Then mI

0(r) = mI
0(q) if and only if lim

k∈K
inf qk

rk
> 0, and

lim
k∈K

inf rk
qk
> 0, where K ⊆ N such that Kc ∈ I.

Proof. By combining Theorem 3.2.8 and 3.2.9 we get the required result.
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“Mathematics is a free flow of thoughts and concepts which a mathematicians, in the same way as musician
does with the tones of music and a poet with words, puts together into theorems and theories”- Orlicz.





Chapter 4 Zweier I-Convergent Sequence Spaces Defined by Orlicz Function

4.1 Introduction

An Orlicz function is a function M : [0,∞) → [0,∞) which is
continuous, nondecreasing and convex with M(0) = 0, M(x) > 0 for
x > 0 and M(x)→∞, as x→∞.

If convexity of M is replaced by M(x + y) ≤ M(x) + M(y), then it is
called a Modulus function, defined and discussed by Nakano [58], Ruckle
[62-64].

An Orlicz functionM can always be represented in the following integral
form M(x) =

∫ x
0
η(t)dt, where η is known as the kernel of M, is right

differentiable for t ≥ 0, η(0) = 0, η(t) > 0, η is non-decreasing and
η(t)→∞ as t→∞.

Lindenstrauss and Tzafriri [55] used the idea of Orlicz sequence space;

lM :=

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
;

which is a Banach space with the norm

‖x‖M = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

Remark . An Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

For more details on Orlicz sequence spaces we refer to [55], [21-28].
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4.2 Main Results

In this chapter we introduce the following classes of sequence spaces:

ZI(M) = {(xk) ∈ ω : I − limM(
|x/k − L|

ρ
) = 0 for some L and ρ > 0},

ZI0 (M) = {(xk) ∈ ω : I − limM(
|x/k|
ρ

) = 0 for some ρ > 0},

ZI∞(M) = {(xk) ∈ ω : sup
k
M(
|x/k|
ρ

) <∞ for some ρ > 0}.

Also we denote by

mI
Z(M) = Z∞(M) ∩ ZI(M)

and

mI
Z0

(M) = Z∞(M) ∩ ZI0 (M).

Theorem 4.2.1. For any Orlicz function M , the classes of sequences
ZI(M),ZI0 (M),mI

Z(M) and mI
Z0

(M) are linear spaces.

Proof. We shall prove the result for the space ZI(M). The proof for the
other spaces will follow similarly.

Let (xk), (yk) ∈ ZI(M) and let α, β be scalars. Then there exists
positive numbers ρ1 and ρ2 such that

I − limM(
|x/k − L1|

ρ1
) = 0, for some L1 ∈ C;

I − limM(
|y/k − L2|

ρ2
) = 0, for some L2 ∈ C.
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That is for a given ε > 0, we have

A1 = {k ∈ N : M(
|x/k − L1|

ρ1
) >

ε

2
} ∈ I, [4.1]

A2 = {k ∈ N : M(
|y/k − L2|

ρ2
) >

ε

2
} ∈ I. [4.2]

Let ρ3 = max{2|α|ρ1, 2|β|ρ2}. Since M is non-decreasing and convex
function, we have

M(
|(αx/k + βy

/
k)− (αL1 + βL2)|
ρ3

)

≤M(
|α||x/k − L1|

ρ3
) +M(

|β||y/k − L2|
ρ3

)

≤M(
|x/k − L1|

ρ1
) +M(

|y/k − L2|
ρ2

).

Now, by [4.1] and [4.2],

{k ∈ N : M(
|(αx/k + βy

/
k)− (αL1 + βL2)|
ρ3

) > ε} ⊂ A1 ∪ A2.

Therefore
(αxk + βyk) ∈ ZI(M).

Hence ZI(M) is a linear space.

Theorem 4.2.2. The spaces mI
Z(M) and mI

Z0
(M) are Banach spaces

normed by

||xk|| = inf{ρ > 0 : sup
k
M(
|xk|
ρ

) ≤ 1}.

Proof. Proof of this result is easy in view of the existing techniques and
therefore is omitted.
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Theorem 4.2.3. Let M1 and M2 be Orlicz functions that satisfy the 42-
condition. Then

[a] X(M2) ⊆ X(M1.M2);

[b] X(M1) ∩X(M2) ⊆ X(M1 +M2) for X = ZI ,ZI0 ,mI
Z and mI

Z0
.

Proof. [a] Let (xk) ∈ ZI0 (M2). Then there exists ρ > 0 such that

I − lim
k
M2(
|x/k|
ρ

) = 0. [4.3]

Let ε > 0 and choose δ with 0 < δ < 1 such that M1(t) < ε for
0 ≤ t ≤ δ. Write

yk = M2(
|x/k|
ρ

),

and consider

lim
0≤yk≤δ,k∈N

M1(yk) = lim
yk≤δ,k∈N

M1(yk) + lim
yk>δ,k∈N

M1(yk).

We have
lim

yk≤δ,k∈N
M1(yk) ≤M1(2). lim

yk≤δ,k∈N
(yk). [4.4]

For (yk) > δ, we have

(yk) < (
yk
δ

) < 1 + (
yk
δ

).

Since M1 is non-decreasing and convex, it follows that

M1(yk) < M1(1 + (
yk
δ

)) <
1

2
M1(2) +

1

2
M1(

2yk
δ

).

Since M1 satisfies the42-condition, we have

M1(yk) <
1

2
K(

yk
δ

)M1(2) +
1

2
K(

yk
δ

)M1(2) = K(
yk
δ

)M1(2).
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Hence

lim
yk>δ,k∈N

M1(yk) ≤ max(1, Kδ−1M1(2)) lim
yk>δ,k∈N

(yk). [4.5]

From [4.3], [4.4] and [4.5], we have (xk) ∈ ZI0 (M1.M2). Thus

ZI0 (M2) ⊆ ZI0 (M1.M2).

The other cases can be proved similarly.

[b] Let
(xk) ∈ ZI0 (M1) ∩ ZI0 (M2).

Then there exists ρ > 0 such that

I − lim
k
M1(
|x/k|
ρ

) = 0

and

I − lim
k
M2(
|x/k|
ρ

) = 0.

The rest of the proof follows from the following equality

lim
k∈N

(M1 +M2)(
|x/k|
ρ

) = lim
k∈N

M1(
|x/k|
ρ

) + lim
k∈N

M2(
|x/k|
ρ

).

Therem 4.2.4. The spaces ZI0 (M) and mI
Z0

(M) are solid and monotone.

Proof. We shall prove the result for ZI0 (M). For mI
Z0

(M) the result can
be proved similarly. Let (xk) ∈ ZI0 (M). Then there exists ρ > 0 such that

I − lim
k
M(
|x/k|
ρ

) = 0. [4.6]

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Then the
result follows from [4.6] and the following inequality

M(
|αkx/k|
ρ

) ≤ |αk|M(
|x/k|
ρ

) ≤M(
|x/k|
ρ

) for all k ∈ N.
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By Lemma 4.1.1, a sequence space E is solid implies that E is monotone.
We have the space ZI0 (M) is monotone.

Theorem 4.2.5. The spaces ZI(M) and mI
Z(M) are neither solid nor

monotone in general.

Proof. Here we give a counter example.

Let I = Iδ and M(x) = x2 for all x ∈ [0,∞). Consider the K-step
space XK(M) of X(M) defined as follows, let (xk) ∈ X(M) and let
(yk) ∈ XK(M) be such that

yk =

{
xk, if k is even,
0, otherwise.

Consider the sequence xk defined by xk = 1 for all k ∈ N. Then
(xk) ∈ ZI(M) but its K-stepspace preimage does not belong to ZI(M).

Thus ZI(M) is not monotone. Hence ZI(M) is not solid.

Theorem 4.2.6. The spaces ZI0 (M) and ZI(M) are not convergence free
in general.

Proof. Here we give a counter example. Let I = If and M(x) = x3 for
all x ∈ [0,∞). Consider the sequence (xk) and (yk) defined by

xk =
1

k
and yk = k for all k ∈ N.

Then (xk) ∈ ZI(M) and ZI0 (M), but (yk) /∈ ZI(M) and ZI0 (M).
Hence the spaces ZI(M) and ZI0 (M) are not convergence free.

Theorem 4.2.7. The spaces ZI0 (M) and ZI(M) are sequence algebras.

Proof. We prove that ZI0 (M) is a sequence algebra. For the space
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ZI(M), the result can be proved similarly. Let (xk), (yk) ∈ ZI0 (M). Then

I − limM(
|x/k|
ρ1

) = 0 for some ρ1 > 0

and

I − limM(
|y/k|
ρ2

) = 0 for some ρ2 > 0.

Let ρ = ρ1.ρ2 > 0. Then we can show that

I − limM(
|(x/k.y

/
k)|

ρ
) = 0.

Thus
(xk.yk) ∈ ZI0 (M).

Hence ZI0 (M) is a sequence algebra.

Theorem 4.2.8. Let M be an Orlicz function. Then the inclusions
ZI0 (M) ⊂ ZI(M) ⊂ ZI∞(M) hold.

Proof. Let (xk) ∈ ZI(M). Then there exists L ∈ C and ρ > 0 such that

I − limM(
|x/k − L|

ρ
) = 0.

We have

M(
|x/k|
2ρ

) ≤ 1

2
M(
|x/k − L|

ρ
) +

1

2
M(
|L|
ρ

).

Taking supremum over k both sides we get

(xk) ∈ ZI∞(M).

The inclusion
ZI0 (M) ⊂ ZI(M)
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is obvious.

Theorem 4.2.9. If I is not maximal and I 6= If , then the spaces ZI(M)

and ZI0 (M) are not symmetric.

Proof. Let A ∈ I be infinite and M(x) = x for all x ∈ [0,∞). If

xk =

{
1, for k ∈ A,
0, otherwise.

Then (xk) ∈ ZI0 (M) ⊂ ZI(M), by lemma 3.1.8. Let K ⊂ N be such
that K /∈ I and N−K /∈ I . Let φ : K → A and ψ : N−K → N− A be
bijections, then the map π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but (xπ(k)) /∈ ZI(M) and (xπ(k)) /∈ ZI0 (M). Hence
ZI0 (M) and ZI(M)are not symmetric.

56 Science Publishing Group



Chapter 5

On Some Zweier I-Convergent
Sequence Spaces Defined by a
Modulus Function

“Good mathematicians see analogies between theorems or theories, the very best ones see analogies between
analogies”- Banach.





Chapter 5 On Some Zweier I-Convergent Sequence Spaces Defined by a Modulus Function

5.1 Introduction

Ruckle[62-64] used the idea of a modulus function f to construct the
sequence space

X(f) = {x = (xk) :
∞∑
k=1

f(|xk|) <∞}.

This space is an FK space, and Ruckle[62] proved that the intersection of
all suchX(f) spaces is φ, the space of all finite sequences. The spaceX(f)

is closely related to the space `1 which is an X(f) space with f(x) = x for
all real x ≥ 0. Thus Ruckle[62-64] proved that, for any modulus f ,

X(f) ⊂ `1 and X(f)α = `∞

where

X(f)α = {y = (yk) ∈ ω :
∞∑
k=1

f(|ykxk|) <∞}

The space X(f) is a Banach space with respect to the norm

||x|| =
∞∑
k=1

f(|xk|) <∞.(See[62]).

Spaces of the type X(f) are a special case of the spaces structured by
Gramsch in[16]. From the point of view of local convexity, spaces of the
type X(f) are quite pathological. Therefore symmetric sequence spaces,
which are locally convex have been frequently studied by Garling[14-15],
Köthe[50], Kolk[51-52] and Ruckle[29-31].

In this chapter we introduce the following class of sequence spaces.

Science Publishing Group 59



Zweier I-Convergent Sequence Spaces and Their Properties

ZI(f) = {(xk) ∈ ω : there is L ∈ C such that

for ε > 0, {k ∈ N : f(|xk − L|) ≥ ε} ∈ I},

ZI0 (f) = {(xk) ∈ ω : for a given ε > 0, {k ∈ N : f(|xk|) ≥ ε} ∈ I},

ZI∞(f) = {(xk) ∈ ω : {k ∈ N : f(|xk|) ≥M} ∈ I, for each fixed M>0}.

We also denote by

mI
Z(f) = Z∞(f) ∩ ZI(f)

and
mI
Z0

(f) = Z∞(f) ∩ ZI0 (f).

5.2 Main Results

Theorem 5.2.1. For any modulus function f , the classes of sequences
ZI(f),ZI0 (f),mI

Z(f) and mI
Z0

(f) are linear spaces.

Proof. We shall prove the result for the space ZI(f). The proof for the
other spaces will follow similarly. Let (xk), (yk) ∈ ZI(f) and let α, β be
scalars. Then

I − lim f(|xk − L1|) = 0, for someL1 ∈ C ;

I − lim f(|yk − L2|) = 0, for someL2 ∈ C ;

That is for a given ε > 0, we have

A1 = {k ∈ N : f(|xk − L1|) >
ε

2
} ∈ I, [5.1]

A2 = {k ∈ N : f(|yk − L2|) >
ε

2
} ∈ I. [5.2]
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Since f is a modulus function, we have

f(|(αxk + βyk)− (αL1 + βL2)|) ≤ f(|α||xk − L1|) + f(|β||yk − L2|)

≤ f(|xk − L1|) + f(|yk − L2|)

Now, by [5.1] and [5.2], {k ∈ N: f(|(αxk + βyk)− (αL1 + βL2)|) > ε}
⊂ A1 ∪ A2. Therefore (αxk + βyk) ∈ ZI(f). Hence ZI(f) is a linear
space.

We state the following result without proof in view of Theorem 5.2.1.

Theorem 5.2.2. The spacesmI
Z(f) andmI

Z0
(f) are normed linear spaces,

normed by
||xk||∗ = sup

k
f(|xk|). [5.3]

Theorem 5.2.3. A sequence x = (xk) ∈ mI
Z(f) I-converges if and only

if for every ε > 0 there exists Nε ∈ N such that

{k ∈ N : f(|xk − xNε |) < ε} ∈ mI
Z(f). [5.4]

Proof. Suppose that L = I − limx. Then

Bε = {k ∈ N : |xk − L| <
ε

2
} ∈ mI

Z(f). For all ε > 0.

Fix an Nε ∈ Bε. Then we have

|xNε − xk| ≤ |xNε − L|+ |L− xk| <
ε

2
+
ε

2
= ε

which holds for all k ∈ Bε. Hence {k ∈ N : f(|xk−xNε|) < ε} ∈ mI
Z(f).

Conversely, suppose that {k ∈ N : f(|xk − xNε|) < ε} ∈ mI
Z(f). That

is {k ∈ N : (|xk − xNε |) < ε} ∈ mI
Z(f) for all ε > 0. Then the set

Cε = {k ∈ N : xk ∈ [xNε − ε, xNε + ε]} ∈ mI
Z(f) for all ε > 0.
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Let Jε = [xNε− ε, xNε + ε]. If we fix an ε > 0 then we have Cε ∈ mI
Z(f)

as well as C ε
2
∈ mI

Z(f). Hence Cε ∩ C ε
2
∈ mI

Z(f). This implies that

Jε ∩ J ε
2
6= φ

that is
{k ∈ N : xk ∈ J} ∈ mI

Z(f)

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

with the property that diamIk ≤ 1
2
diamIk−1 for (k=2,3,4,.....) and

{k ∈ N : xk ∈ Ik} ∈ mI
Z(f) for (k=1,2,3,4,......). Then there exists a

ξ ∈ ∩Ik where k ∈ N such that ξ = I−limx. So that f(ξ) = I−lim f(x),
that is L = I − lim f(x).

Theorem 5.2.4. Let f and g be modulus functions that satisfy the
42-condition. If X is any of the spaces ZI ,ZI0 ,mI

Z and mI
Z0

etc, then the
following assertions hold.
(a) X(g) ⊆ X(f.g),
(b) X(f) ∩X(g) ⊆ X(f + g).

Proof. (a) Let (xk) ∈ ZI0 (g). Then

I − lim
k
g(|xk|) = 0. [5.5]

Let ε > 0 and choose δ with 0 < δ < 1 such that f(t) < ε for
0 < t < δ. Write yk = g(|xk|) and consider lim

k
f(yk) = lim

k
f(yk)yk<δ +

lim
k
f(yk)yk>δ. We have

lim
k
f(yk) ≤ f(2) lim

k
(yk) [5.6]

62 Science Publishing Group



Chapter 5 On Some Zweier I-Convergent Sequence Spaces Defined by a Modulus Function

For yk > δ, we have yk < yk
δ
< 1 + yk

δ
. Since f is non-decreasing, it

follows that

f(yk) < f(1 +
yk
δ

) <
1

2
f(2) +

1

2
f(

2yk
δ

)

Since f satisfies the42-condition, we have

f(yk) <
1

2
K
yk
δ
f(2) +

1

2
K
yk
δ
f(2) = K

yk
δ
f(2)

Hence
lim
k
f(yk) ≤ max(1, K)δ−1f(2) lim

k
(yk). [5.7]

From [5.5], [5.6] and [5.7] we have (xk) ∈ ZI0 (f.g).

Thus ZI0 (g) ⊆ ZI0 (f.g). The other cases can be proved similarly.

(b) Let (xk) ∈ ZI0 (f) ∩ ZI0 (g). Then

I − lim
k
f(|xk|) = 0 and I − lim

k
g(|xk|) = 0

The rest of the proof follows from the following equality

lim
k

(f + g)(|xk|) = lim
k
f(|xk|) + lim

k
g(|xk|).

Corollary 5.2.5. X ⊆ X(f) for X =ZI ,ZI0 ,mI
Z and mI

Z0
.

Theorem 5.2.6. The spaces ZI0 (f) and mI
Z0

(f) are solid and monotone.

Proof. We shall prove the result for ZI0 (f). Let (xk) ∈ ZI0 (f). Then

I − lim
k
f(|xk|) = 0. [5.8]

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Then the
result follows from [5.8] and the following inequality

f(|αkxk|) ≤ |αk|f(|xk|) ≤ f(|xk|) for all k ∈ N.
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That the space ZI0 (f) is monotone follows from the Lemma 5.1.1. For
mI
Z0

(f) the result can be proved similarly.

Theorem 5.2.7. The spaces ZI(f) and mI
Z(f) are neither solid nor

monotone in general .

Proof. Here we give a counter example. Let I = Iδ and f(x) = x2 for
all x ∈ [0,∞). Consider the K-step space XK(f) of X defined as follows.

Let (xk) ∈ X and let (yk) ∈ XK be such that

(yk) =

{
(xk), if k is even,

0, otherwise.

Consider the sequence (xk) defined by (xk) = 1 for all k ∈ N. Then
(xk) ∈ ZI(f) but its K-stepspace preimage does not belong to ZI(f).

Thus ZI(f) is not monotone. Hence ZI(f) is not solid.

Theorem 5.2.8. The spaces ZI(f) and ZI0 (f) are sequence algebras.

Proof. We prove that ZI0 (f) is a sequence algebra. Let
(xk), (yk) ∈ ZI0 (f). Then

I − lim f(|xk|) = 0

and

I − lim f(|yk|) = 0

Then we have

I − lim f(|(xk.yk)|) = 0

Thus (xk.yk) ∈ ZI0 (f) is a sequence algebra. For the space ZI0 (f), the
result can be proved similarly.
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Theorem 5.2.9. The spaces ZI(f) and ZI0 (f) are not convergence free
in general.

Proof. Here we give a counter example. Let I = If and f(x) = x3 for
all x ∈ [0,∞). Consider the sequence (xk) and (yk) defined by

xk =
1

k
and yk = k for all k ∈ N

Then (xk) ∈ ZI(f) and ZI0 (f), but (yk) /∈ ZI(f) and ZI0 (f). Hence the
spaces ZI0 (f) and ZI0 (f) are not convergence free.

Theorem 5.2.10. If I is not maximal and I 6= If , then the spaces ZI(f)

and ZI0 (f) are not symmetric.

Proof. Let A ∈ I be infinite and f(x) = x for all x ∈ [0,∞). If

xk =

{
1, for k ∈ A,
0, otherwise.

Then by lemma 1.22 (xk) ∈ ZI0 (f) ⊂ ZI(f). Let K ⊂ N be such that
K /∈ I and N − K /∈ I . Let φ : K → A and ψ : N − K → N − A be
bijections, then the map π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but xπ(k) /∈ ZI(f) and xπ(k) /∈ ZI0 (f). HenceZI(f)

and ZI0 (f) are not symmetric.

Theorem 5.2.11. Let f be a modulus function. Then ZI0 (f) ⊂ ZI(f) ⊂
ZI∞(f).

Proof. Let (xk) ∈ ZI(f). Then there exists L ∈ C such that

I − lim f(|xk − L|) = 0
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We have f(|xk|) ≤ 1
2
f(|xk − L|) + f 1

2
(|L|). Taking the supremum over

k on both sides we get (xk) ∈ ZI∞(f). The inclusion ZI0 (f) ⊂ ZI(f) is
obvious.

Theorem 5.2.12. The function ~ : mI
Z(f)→ R is the Lipschitz function,

where mI
Z(f) = ZI∞(f) ∩ ZI(f), and hence uniformly continuous.

Proof. Let x, y ∈ mI
Z(f), x 6= y. Then the sets

Ax = {k ∈ N : |xk − ~(x)| ≥ ||x− y||∗} ∈ I,

Ay = {k ∈ N : |yk − ~(y)| ≥ ||x− y||∗} ∈ I.

Thus the sets,

Bx = {k ∈ N : |xk − ~(x)| < ||x− y||∗} ∈ mI
Z(f),

By = {k ∈ N : |yk − ~(y)| < ||x− y||∗} ∈ mI
Z(f).

Hence also B = Bx ∩By ∈ mI
Z(f), so that B 6= φ. Now taking k in B,

|~(x)− ~(y)| ≤ |~(x)− xk|+ |xk − yk|+ |yk − ~(y)| ≤ 3||x− y||∗.

Thus ~ is a Lipschitz function. For the space mI
Z0

(f) the result can be
proved similarly.

Theorem 5.2.13. If x, y ∈ mI
Z(f), then (x.y) ∈ mI

Z(f) and
~(xy) = ~(x)~(y).

Proof. For ε > 0

Bx = {k ∈ N : |xk − ~(x)| < ε} ∈ mI
Z(f),

Bx = {k ∈ N : |yk − ~(y)| < ε} ∈ mI
Z(f).
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Now,

|xkyk − ~(x)~(y)| = |xkyk − xk~(y) + xk~(y)− ~(x)~(y)|

≤ |xk||yk − ~(y)|+ |~(y)||xk − ~(x)| [5.9]

As mI
Z(f) ⊆ ZI∞(f), there exists an M ∈ R such that |xk| < M and

|~(y)| < M .

Using eqn [5.9] we get

|xkyk − ~(x)~(y)| ≤Mε+Mε = 2Mε

For all k ∈ Bx ∩ By ∈ mI(f). Hence (x.y) ∈ mI
Z(f) and ~(xy) =

~(x)~(y). For the space mI
Z0

(f) the result can be proved similarly.
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“The essence of mathematics lies in its freedom”- Cantor.





Chapter 6 Zweier I-Convergent Sequence Spaces Defined by a Sequence of Modulii

6.1 Introduction

Recently Khan and Ebadullah[31] introduced the following classes of
sequences

ZI(f) = {(xk) ∈ ω : {k ∈ N : f(|xk − L|) ≥ ε, for some L∈ C } ∈ I},

ZI0 (f) = {(xk) ∈ ω : {k ∈ N : f(|xk|) ≥ ε} ∈ I},

ZI∞(f) = {(xk) ∈ ω : {k ∈ N : f(|xk|) ≥M, for each fixed M>0} ∈ I}.

We also denote by

mI
Z(f) = ZI∞(f) ∩ ZI(f)

and

mI
Z0

(f) = ZI∞(f) ∩ ZI0 (f).

In this chapter we introduce the following class of sequence spaces.

ZI(F ) = {(xk) ∈ ω : {k ∈ N : fk(|xk−L|) ≥ ε, for some L∈ C } ∈ I},

ZI0 (F ) = {(xk) ∈ ω : {k ∈ N : fk(|xk|) ≥ ε} ∈ I},

ZI∞(F ) = {(xk) ∈ ω : {k ∈ N : fk(|xk|) ≥M, for each fixed M>0} ∈ I}.

We also denote by

mI
Z(F ) = Z∞(F ) ∩ ZI(F )

and

mI
Z0

(F ) = Z∞(F ) ∩ ZI0 (F ).

Science Publishing Group 71



Zweier I-Convergent Sequence Spaces and Their Properties

6.2 Main Results

Theorem 6.2.1. For a sequence of modulii F = (fk), the classes of
sequences ZI(F ),ZI0 (F ),mI

Z(F ) and mI
Z0

(F ) are linear spaces.

Proof. We shall prove the result for the space ZI(F ). The proof for the
other spaces will follow similarly. Let (xk), (yk) ∈ ZI(F ) and let α, β be
scalars. Then

I − lim fk(|xk − L1|) = 0, for someL1 ∈ C ;

I − lim fk(|yk − L2|) = 0, for someL2 ∈ C ;

That is for a given ε > 0, we have

A1 = {k ∈ N : fk(|xk − L1|) >
ε

2
} ∈ I, [6.1]

A2 = {k ∈ N : fk(|yk − L2|) >
ε

2
} ∈ I. [6.2]

Since fk is a modulus function, we have

fk(|(αxk + βyk)− (αL1 + βL2) ≤ fk(|α||xk − L1|) + fk(|β||yk − L2|)

≤ fk(|xk − L1|) + fk(|yk − L2|)

Now, by [6.1] and [6.2], {k ∈ N: fk(|(αxk+βyk)− (αL1 +βL2)|) > ε}
⊂ A1 ∪ A2. Therefore (αxk + βyk) ∈ ZI(F ). Hence ZI(F ) is a linear
space.

We state the following result without proof in view of Theorem 6.2.1.

Theorem 6.2.2. The spaces mI
Z(F ) and mI

Z0
(F ) are normed linear

spaces, normed by
||xk||∗ = sup

k
fk(|xk|). [6.3]
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Theorem 6.2.3. A sequence x = (xk) ∈ mI
Z(F ) I-converges if and only

if for every ε > 0 there exists Nε ∈ N such that

{k ∈ N : fk(|xk − xNε|) < ε} ∈ mI
Z(F ). [6.4]

Proof. Suppose that L = I − limx. Then

Bε = {k ∈ N : |xk − L| <
ε

2
} ∈ mI

Z(F ). For all ε > 0.

Fix an Nε ∈ Bε.Then we have

|xNε − xk| ≤ |xNε − L|+ |L− xk| <
ε

2
+
ε

2
= ε

which holds for all k ∈ Bε. Hence {k ∈ N : fk(|xk−xNε|) < ε} ∈ mI
Z(F ).

Conversely, suppose that {k ∈ N : fk(|xk − xNε|) < ε} ∈ mI
Z(F ). That

is {k ∈ N : (|xk − xNε|) < ε} ∈ mI
Z(F ) for all ε > 0. Then the set

Cε = {k ∈ N : xk ∈ [xNε − ε, xNε + ε]} ∈ mI
Z(F ) for all ε > 0.

Let Jε = [xNε− ε, xNε + ε]. If we fix an ε > 0 then we have Cε ∈ mI
Z(F )

as well as C ε
2
∈ mI

Z(F ). Hence Cε ∩ C ε
2
∈ mI

Z(F ). This implies that

Jε ∩ J ε
2
6= φ

that is
{k ∈ N : xk ∈ J} ∈ mI

Z(F )

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

Science Publishing Group 73



Zweier I-Convergent Sequence Spaces and Their Properties

with the property that diamIk ≤ 1
2
diamIk−1 for (k=2,3,4,.....) and {k ∈

N : xk ∈ Ik} ∈ mI
Z(F ) for (k=1,2,3,4,......). Then there exists a ξ ∈ ∩Ik

where k ∈ N such that ξ = I − limx. So that fk(ξ) = I − lim fk(x), that
is L = I − lim fk(x).

Theorem 6.2.4. Let (fk) and (gk) be modulus functions for some fixed
k that satisfy the 42-condition. If X is any of the spaces ZI ,ZI0 ,mI

Z and
mI
Z0

etc, then the following assertions hold.
(a) X(gk) ⊆ X(fk.gk),
(b) X(fk) ∩X(gk) ⊆ X(fk + gk).

Proof. (a) Let (xn) ∈ ZI0 (gk). Then

I − lim
n
gk(|xn|) = 0 [6.5]

Let ε > 0 and choose δ with 0 < δ < 1 such that fk(t) < ε for 0 <

t < δ. Write yn = gk(|xn|) and consider lim
n
fk(yn) = lim

n
fk(yn)yn<δ +

lim
n
fk(yn)yn>δ. We have

lim
n
fk(yn) ≤ fk(2) lim

n
(yn). [6.6]

For yn > δ, we have yn < yn
δ
< 1 + yn

δ
. Since fk is non-decreasing, it

follows that

fk(yn) < fk(1 +
yn
δ

) <
1

2
fk(2) +

1

2
fk(

2yn
δ

)

Since fk satisfies the42-condition, we have

fk(yn) <
1

2
K
yn
δ
fk(2) +

1

2
K
yn
δ
fk(2) = K

yn
δ
fk(2)

Hence
lim
n
fk(yn) ≤ max(1,K)δ−1fk(2) lim

n
(yn). [6.7]

74 Science Publishing Group



Chapter 6 Zweier I-Convergent Sequence Spaces Defined by a Sequence of Modulii

From [6.5], [6.6] and [6.7], we have (xn) ∈ ZI0 (fk.gk).

Thus ZI0 (gk) ⊆ ZI0 (fk.gk). The other cases can be proved similarly.

(b) Let (xn) ∈ ZI0 (fk) ∩ ZI0 (gk). Then

I − lim
n
fk(|xn|) = 0 and I − lim

n
gk(|xn|) = 0

The rest of the proof follows from the following equality

lim
n

(fk + gk)(|xn|) = lim
n
fk(|xn|) + lim

n
gk(|xn|).

Corollary 6.2.5. X ⊆ X(fk) for some fixed k and X =ZI ,ZI0 ,mI
Z and

mI
Z0

.

Theorem 6.2.6. The spaces ZI0 (F ) and mI
Z0

(F ) are solid and monotone.

Proof. We shall prove the result for ZI0 (F ). Let (xk) ∈ ZI0 (F ). Then

I − lim
k
fk(|xk|) = 0 [6.8]

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Then the
result follows from [6.8] and the following inequality

fk(|αkxk|) ≤ |αk|fk(|xk|) ≤ fk(|xk|) for all k ∈ N.

That the space ZI0 (F ) is monotone follows from the Lemma 6.1.1. For
mI
Z0

(F ) the result can be proved similarly.

Theorem 6.2.7. The spaces ZI(F ) and mI
Z(F ) are neither solid nor

monotone in general .

Proof. Here we give a counter example. Let I = Iδ and fk(x) = x2 for
some fixed k and for all x ∈ [0,∞). Consider the K-step space XK(fk) of
X defined as follows.
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Let (xn) ∈ X and let (yn) ∈ XK be such that

(yn) =

{
(xn), if n is even,

0, otherwise.

Consider the sequence (xn) defined by (xn) = 1 for all n ∈ N. Then
(xn) ∈ ZI(F ) but its K-stepspace preimage does not belong to ZI(F ).

Thus ZI(F ) is not monotone. Hence ZI(F ) is not solid.

Theorem 6.2.8. The spaces ZI(F ) and ZI0 (F ) are sequence algebras.

Proof. We prove that ZI0 (F ) is a sequence algebra. Let
(xk), (yk) ∈ ZI0 (F ). Then

I − lim fk(|xk|) = 0

and

I − lim fk(|yk|) = 0

Then we have

I − lim fk(|(xk.yk)|) = 0

Thus (xk.yk) ∈ ZI0 (F ) is a sequence algebra. For the space ZI(F ), the
result can be proved similarly.

Theorem 6.2.9. The spaces ZI(F ) and ZI0 (F ) are not convergence free
in general.

Proof. Here we give a counter example. Let I = If and fk(x) = x3 for
some fixed k and for all x ∈ [0,∞). Consider the sequence (xn) and (yn)

defined by

xn =
1

n
and yn = n for all n ∈ N
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Then (xn) ∈ ZI(F ) and ZI0 (F ), but (yn) /∈ ZI(F ) and ZI0 (F ). Hence
the spaces ZI0 (F ) and ZI0 (F ) are not convergence free.

Theorem 6.2.10. If I is not maximal and I 6= If , then the spaces ZI(F )

and ZI0 (F ) are not symmetric.

Proof. Let A ∈ I be infinite and fk(x) = x for some fixed k and for all
x ∈ [0,∞).

If

xn =

{
1, for n ∈ A,
0, otherwise.

Then by lemma 1.22 (xn) ∈ ZI0 (F ) ⊂ ZI(F ). Let K ⊂ N be such that
K /∈ I and N − K /∈ I . Let φ : K → A and ψ : N − K → N − A be
bijections, then the map π : N→ N defined by

π(n) =

{
φ(n), for n ∈ K,
ψ(n), otherwise.

is a permutation on N, but xπ(n) /∈ ZI(F ) and xπ(n) /∈ ZI0 (F ). Hence
ZI(F ) and ZI0 (F ) are not symmetric.

Theorem 6.2.11. ZI0 (F ) ⊂ ZI(F ) ⊂ ZI∞(F ).

Proof. Let (xk) ∈ ZI(F ). Then there exists L ∈ C such that

I − lim fk(|xk − L|) = 0

We have fk(|xk|) ≤ 1
2
fk(|xk−L|)+fk

1
2
(|L|). Taking the supremum over

k on both sides we get (xk) ∈ ZI∞(F ). The inclusion ZI0 (F ) ⊂ ZI(F ) is
obvious.

Theorem 6.2.12. The function ~ : mI
Z(F )→ R is the Lipschitz function,

where mI
Z(F ) = ZI∞(F ) ∩ ZI(F ), and hence uniformly continuous.
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Proof. Let x, y ∈ mI
Z(F ), x 6= y. Then the sets

Ax = {k ∈ N : |xk − ~(x)| ≥ ||x− y||∗} ∈ I,

Ay = {k ∈ N : |yk − ~(y)| ≥ ||x− y||∗} ∈ I.

Thus the sets,

Bx = {k ∈ N : |xk − ~(x)| < ||x− y||∗} ∈ mI
Z(F ),

By = {k ∈ N : |yk − ~(y)| < ||x− y||∗} ∈ mI
Z(F ).

Hence also B = Bx ∩By ∈ mI
Z(F ), so that B 6= φ. Now taking k in B,

|~(x)− ~(y)| ≤ |~(x)− xk|+ |xk − yk|+ |yk − ~(y)| ≤ 3||x− y||∗.

Thus ~ is a Lipschitz function. For the space mI
Z0

(F ) the result can be
proved similarly.

Theorem 6.2.13. If x, y ∈ mI
Z(F ), then (x.y) ∈ mI

Z(F ) and
~(xy) = ~(x)~(y).

Proof. For ε > 0

Bx = {k ∈ N : |xk − ~(x)| < ε} ∈ mI
Z(F ),

Bx = {k ∈ N : |yk − ~(y)| < ε} ∈ mI
Z(F ).

Now,

|xkyk − ~(x)~(y)| = |xkyk − xk~(y) + xk~(y)− ~(x)~(y)|

≤ |xk||yk − ~(y)|+ |~(y)||xk − ~(x)| [6.9]

As mI
Z(F ) ⊆ ZI∞(F ), there exists an M ∈ R such that |xk| < M and

|~(y)| < M .
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Using eqn[6.9] we get

|xkyk − ~(x)~(y)| ≤Mε+Mε = 2Mε

For all k ∈ Bx ∩ By ∈ mI(F ). Hence (x.y) ∈ mI
Z(F ) and ~(xy) =

~(x)~(y). For the space mI
Z0

(F ) the result can be proved similarly.
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Chapter 7 On Certain Class of Zweier I-Convergent Sequence Spaces

7.1 Introduction

Theorem 7.1.1. [68, Theorem 2.1] The sets Z and Z0 are the linear
spaces with the co-ordinate wise addition and scalar multiplication which
are the BK-spaces with the norm

||x||Z = ||x||Z0 = ||Zpx||c.

Theorem 7.1.2. [68, Theorem 2.2] The sequence spaces Z and Z0 are
linearly isomorphic to the spaces c and c0 respectively, i.e Z ∼= c and
Z0
∼= c0.

Theorem 1.3. [68, Theorem 2.3] The inclusions Z0 ⊂ Z strictly hold for
p 6= 1.

7.2 Main Results

Recently Šalát, Tripathy and Ziman[65-66] introduced the following
sequence spaces

cI0 = {(xk) ∈ ω : {k ∈ N : |xk| ≥ ε} ∈ I},

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥ ε} ∈ I, for some L∈ C },

`I∞ = {(xk) ∈ ω : {k ∈ N : |xk| ≥M} ∈ I, for each fixed M>0}.

Analogous to Kostyrko, Šalát and Wilczyński[12], Šalát Tripathy and
Ziman[65-66], Khan and Ebadullah[29,31,37,38] introduced the following
classes of sequences.

ZI0 = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = 0} ∈ I},

“If I feel unhappy, I do mathematics to become happy. If I feel happy, I do mathematics to keep happy.” -Paul
Turan
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ZI = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = L, for some L} ∈ I},

ZI∞ = {x = (xk) ∈ ω : sup
k
|Zpx| <∞}.

In [27] for q = (qk) a sequence of positive reals

ZI0 (q) = {x = (xk) ∈ ω : {k ∈ N : |Zpx|qk ≥ ε} ∈ I},

ZI(q) = {x = (xk) ∈ ω : {k ∈ N : |Zpx−L|qk ≥ ε} ∈ I, for some L∈ C },

ZI∞(q) = {x = (xk) ∈ ω : sup
k
|Zpx|qk <∞}.

In [8] for an Orlicz function M and Zpx = x/

ZI0 (M) = {x = (xk) ∈ ω : I − limM(
|x/k|
ρ

) = 0 for some ρ > 0},

ZI(M) = {x = (xk) ∈ ω : I−limM(
|x/k − L|

ρ
) = 0 for some L and ρ > 0},

ZI∞(M) = {x = (xk) ∈ ω : sup
k
M(
|x/k|
ρ

) <∞ for some ρ > 0}.

In [29] for a modulus function f

ZI0 (f) = {(xk) ∈ ω : for a given ε > 0, {k ∈ N : f(|x/k|) ≥ ε} ∈ I},

ZI(f) = {(xk) ∈ ω : there is L ∈ C such that

for ε > 0, {k ∈ N : f(|x/k − L|) ≥ ε} ∈ I},

ZI∞(f) = {(xk) ∈ ω : {k ∈ N : f(|x/k|) ≥M} ∈ I, for each fixed M>0}.

In [34] for a sequence of modulii F = (fk)

ZI0 (F ) = {(xk) ∈ ω : {k ∈ N : fk(|x/k|) ≥ ε} ∈ I},

ZI(F ) = {(xk) ∈ ω : {k ∈ N : fk(|x/k−L|) ≥ ε, for some L∈ C } ∈ I},

84 Science Publishing Group



Chapter 7 On Certain Class of Zweier I-Convergent Sequence Spaces

ZI∞(F ) = {(xk) ∈ ω : {k ∈ N : fk(|x/k|) ≥M, for each fixed M>0} ∈ I}.

Here we give the canonical inclusion relations

Result 7.2.1. cI0 ⊂ cI ⊂ `I∞.(See[41,57,58]).

Result 7.2.2. ZI0 ⊂ ZI ⊂ ZI∞.(See[12]).

Result 7.2.3. ZI0 (q) ⊂ ZI(q) ⊂ ZI∞(q).(See[27]).

Result 7.2.4. ZI0 (M) ⊂ ZI(M) ⊂ ZI∞(M).(See[35]).

Result 7.2.5. ZI0 (f) ⊂ ZI(f) ⊂ ZI∞(f).(See[29]).

Result 7.2.6. ZI0 (F ) ⊂ ZI(F ) ⊂ ZI∞(F ).
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Chapter 8 Zweier I-Convergent Double Sequence Spaces

8.1 Introduction

At the initial stage the notion of I-convergence was introduced by
Kostyrko, Šalát and Wilczyński[48]. Later on it was studied by Šalát,
Tripathy and Ziman[65], Demirci [10] and many others. I-convergence is
a generalization of Statistical Convergence.

Now we have a list of some basic definitions used in the chapter:

Definition 8.1. A double sequence of complex numbers is defined as a
function x : N×N→ C. We denote a double sequence as (xij), where the
two subscripts run through the sequence of natural numbers independent of
each other. A number a ∈ C is called a double limit of a double sequence
(xij) if for every ε > 0 there exists some N = N(ε) ∈ N such that

|(xij)− a| < ε, for all i, j ≥ N (see [6, 7, 8])

Definition 8.2. A double sequence (xij) ∈ ω is said to be I-convergent
to a number L if for every ε > 0,

{(i, j) ∈ N× N : |xij − L| ≥ ε} ∈ I.

In this case we write I − limxij = L.

Definition 8.3. A double sequence (xij) ∈ ω is said to be I-null if L = 0.
In this case we write

I − limxij = 0.

Definition 8.4. A double sequence (xij) ∈ ω is said to be I-cauchy if for

“Example is the school of mankind, and they will learn at no other.”-Edmund Burke
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every ε > 0 there exist numbers m = m(ε), n= n(ε) such that

{(i, j) ∈ N× N : |xij − xmn| ≥ ε} ∈ I.

Definition 8.5. A double sequence (xij) ∈ ω is said to be I-bounded if
there exists M > 0 such that

{(i, j) ∈ N× N : |xij| > M}.

Definition 8.6. A double sequence space E is said to be solid or normal
if (xij) ∈ E implies (αijxij) ∈ E for all sequence of scalars (αij) with
|αij| < 1 for all (i, j) ∈ N× N.

Definition 8.7. A double sequence space E is said to be monotone if it
contains the canonical preimages of its stepspaces.

Definition 8.8. A double sequence spaceE is said to be convergence free
if (yij) ∈ E whenever (xij) ∈ E and xij = 0 implies yij = 0.

Definition 8.9. A double sequence space E is said to be a sequence
algebra if (xij.yij) ∈ E whenever (xij), (yij) ∈ E.

Definition 8.10. A double sequence space E is said to be symmetric if
(xij) ∈ E implies (xπ(ij)) ∈ E, where π is a permutation on N× N.

In this Chapter we introduce the following classes of sequence space:

2ZI = {x = (xij) ∈ 2ω : I − limZpx = L for some L ∈ C }

2ZI0 = {x = (xij) ∈ 2ω : I − limZpx = 0}

2ZI∞ = {x = (xij) ∈ 2ω : {(i, j) ∈ N× N :

there exist M > 0, |Zpx| ≥M} ∈ I}

2Z∞ = {x = (xij) ∈ 2ω : sup
i,j
|Zpx| <∞}
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We also denote the multiplier double sequence spaces as

2m
I
Z = 2Z∞ ∩ 2ZI and 2m

I
Z0

= 2Z∞ ∩ 2ZI0 .

8.2 Main Results

Theorem 8.2.1. The classes of sequences 2ZI , 2ZI0 , 2m
I
Z and 2m

I
Z0

are
linear spaces.

Proof. We shall prove the result for the space 2ZI . The proof for the
other spaces will follow similarly. Let (xij), (yij) ∈ 2ZI and let α, β be
scalars. Then

I − lim |xij − L1| = 0, for some L1 ∈ C;

I − lim |yij − L2| = 0, for some L2 ∈ C.

That is for a given ε > 0, we have

A1 = {(i, j) ∈ N× N : |xij − L1| >
ε

2
} ∈ I, [8.1]

A2 = {(i, j) ∈ N× N : |yij − L2| >
ε

2
} ∈ I. [8.2]

We have

|(αxij + βyij)− (αL1 + βL2)| ≤ |α|(|xij − L1|) + |β|(|yij − L2|)

≤ |xij − L1|+ |yij − L2|.

Now, by [8.1] and [8.2],

{(i, j) ∈ N× N : |(αxij + βyij)− (αL1 + βL2)| > ε} ⊂ A1 ∪ A2.

Therefore (αxij + βyij) ∈ 2ZI . Hence 2ZI is a linear space.
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We state the following result without proof in view of Theorem 2.1.

Theorem 8.2.2. The spaces 2m
I
Z and 2m

I
Z0

are normed linear spaces,
normed by

||xij||∗ = sup
i,j
|xij|. [8.3]

Theorem 8.2.3. A sequence x = (xij) ∈ 2m
I
Z I-converges if and only if

for every ε > 0 there exists Nε = (m,n) ∈ N× N such that

{(i, j) ∈ N× N : |xij − xNε| < ε} ∈ 2m
I
Z [8.4]

Proof. Suppose that L = I − limx. Then

Bε = {(i, j) ∈ N× N : |xij − L| <
ε

2
} ∈ 2m

I
Z for all ε > 0.

Fix an Nε = (m,n) ∈ Bε. Then we have

|xNε − xij| ≤ |xNε − L|+ |L− xij| <
ε

2
+
ε

2
= ε

which holds for all (i, j) ∈ Bε. Hence
{(i, j) ∈ N× N : |xij − xNε| < ε} ∈ 2m

I
Z .

Conversely, suppose that {(i, j) ∈ N × N : |xij − xNε| < ε} ∈ 2m
I
Z .

That is
{(i, j) ∈ N× N : |xk − xNε| < ε} ∈ 2m

I
Z

for all ε > 0. Then the set

Cε = {(i, j) ∈ N× N : xij ∈ [xNε − ε, xNε + ε]} ∈ 2m
I
Z for all ε > 0.

Let Jε = [xNε − ε, xNε + ε]. If we fix an ε > 0 then we have Cε ∈ 2m
I
Z

as well as C ε
2
∈ 2m

I
Z . Hence Cε ∩ C ε

2
∈ 2m

I
Z . This implies that

J = Jε ∩ J ε
2
6= φ
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that is
{(i, j) ∈ N× N : xij ∈ J} ∈ 2m

I
Z

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

with the property that diamIk ≤ 1
2
diamIk−1 for (k=2,3,4,.....) and

{(i, j) ∈ N× N : xij ∈ Ik} ∈ 2m
I
Z for (k=1,2,3,4,......). Then there exists

a ξ ∈ ∩Ik where (i, j) ∈ N × N such that ξ = I − limx, that is
L = I − limx.

Theorem 8.2.4. Let I be an admissible ideal. Then the following are
equivalent.
(a) (xij) ∈ 2ZI ;
(b) there exists (yij) ∈ 2Z such that xij = yij , for a.a.k.r.I;
(c) there exists(yij) ∈ 2Z and (zij) ∈ 2ZI0 such that xij = yij + zij for all
(i, j) ∈ N× N and

{(i, j) ∈ N× N : |yij − L| ≥ ε} ∈ I;

(d) there exists a subset K = {k1 < k2....} of N such that K ∈ £(I)

and lim
n→∞

|xkn − L| = 0.

Proof. (a) implies (b). Let (xij) ∈ 2ZI . Then there exists L ∈ C such
that

{(i, j) ∈ N× N : |xij − L| ≥ ε} ∈ I.

Let (mt, nt) be an increasing sequence with (mt, nt) ∈ N× N such that

{(i, j) ≤ (mt, nt) : |xij − L| ≥
1

t
} ∈ I.
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Define a sequence (yij) as

yij = xij, for all (i, j) ≤ (m1, n1).

For (mt, nt) < (i, j) ≤ (mt+1, nt+1) for t ∈ N.

yij =

{
xij, if |xij − L| < t−1,

L, otherwise.

Then (yij) ∈ 2Z and form the following inclusion

{(i, j) ≤ (mt, nt) : xij 6= yij} ⊆ {(i, j) ≤ (mt, nt) : |xij − L| ≥ ε} ∈ I.

We get xij = yij , for a.a.k.r.I.

(b) implies (c). For (xij) ∈ 2ZI , there exists (yij) ∈ 2Z such that
xij = yij , for a.a.k.r.I. Let K = {(i, j) ∈ N× N : xij 6= yij}, then K ∈ I .
Define a sequence (zij) as

zij =

{
xij − yij, if (i, j) ∈ K,

0, otherwise.

Then zij ∈ 2ZI0 and yij ∈ 2Z.

(c) implies (d). Let P1 = {(i, j) ∈ N× N : |zij| ≥ ε} ∈ I and

K = P c
1 = {(i1, j1) < (i2, j2) < ...} ∈ £(I).

Then we have lim
n→∞

|x(in,jn) − L| = 0.

(d) implies (a). Let K = {(i1, j1) < (i2, j2) < ...} ∈ £(I) and
lim
n→∞

|x(in,jn) − L| = 0. Then for any ε > 0, and Lemma 1.17, we have

{(i, j) ∈ N× N : |xij − L| ≥ ε} ⊆ Kc ∪ {(i, j) ∈ K : |xij − L| ≥ ε}.
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Thus (xij) ∈ 2ZI .

Theorem 8.2.5. The inclusions 2ZI0 ⊂ 2ZI ⊂ 2ZI∞ hold and are proper.

Proof. Let (xij) ∈ 2ZI . Then there exists L ∈ C such that

I − lim |xij − L| = 0

We have |xij| ≤ 1
2
|xij − L| + 1

2
|L|. Taking the supremum over (i, j) on

both sides we get (xij) ∈ 2ZI∞. The inclusion 2ZI0 ⊂ 2ZI is obvious.
The strict inclusion is also trivial.

Theorem 8.2.6. The function ~ : 2m
I
Z → R is the Lipschitz function,

where 2m
I
Z = 2ZI ∩ 2Z∞, and hence uniformly continuous.

Proof. Let x, y ∈ 2m
I
Z , x 6= y. Then the sets

Ax = {(i, j) ∈ N× N : |xij − ~(x)| ≥ ||x− y||∗} ∈ I,

Ay = {(i, j) ∈ N× N : |yij − ~(y)| ≥ ||x− y||∗} ∈ I.

Thus the sets,

Bx = {(i, j) ∈ N× N : |xij − ~(x)| < ||x− y||∗} ∈ 2m
I
Z ,

By = {(i, j) ∈ N× N : |yij − ~(y)| < ||x− y||∗} ∈ 2m
I
Z .

Hence also B = Bx ∩By ∈ 2m
I
Z , so that B 6= φ. Now taking (i,j) in B,

|~(x)− ~(y)| ≤ |~(x)− xij|+ |xij − yij|+ |y − ~(y)| ≤ 3||x− y||∗.

Thus ~ is a Lipschitz function. For 2m
I
Z0

the result can be proved
similarly.

Theorem 8.2.7. If x, y ∈ 2m
I
Z , then (x.y) ∈ 2m

I
Z and

~(xy) = ~(x)~(y).
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Proof. For ε > 0

Bx = {(i, j) ∈ N× N : |x− ~(x)| < ε} ∈ 2m
I
Z ,

By = {(i, j) ∈ N× N : |y − ~(y)| < ε} ∈ 2m
I
Z .

Now,

|x.y − ~(x)~(y)| = |x.y − x~(y) + x~(y)− ~(x)~(y)|

≤ |x||y − ~(y)|+ |~(y)||x− ~(x)| [8.5]

As 2m
I
Z ⊆ 2Z∞, there exists an M ∈ R such that ~|x| < M and

|~(y)| < M . Using eqn[8.5] we get

|x.y − ~(x)~(y)| ≤Mε+Mε = 2Mε

For all (i, j) ∈ Bx ∩By ∈ 2m
I
Z . Hence (x.y) ∈ 2m

I
Z and

~(xy) = ~(x)~(y). For 2m
I
Z0

the result can be proved similarly.

Theorem 8.2.8. The spaces 2ZI0 and 2m
I
Z0

are solid and monotone .

Proof. We shall prove the result for 2ZI0 . Let (xij) ∈ ZI0 . Then

I − lim
k
|xij| = 0 [8.6]

Let (αij) be a sequence of scalars with |αij| ≤ 1 for all (i, j) ∈ N × N.
Then the result follows from [8.6] and the following inequality

|αijxij| ≤ |αij||xij| ≤ |xij| for all (i, j) ∈ N× N.

That the space 2ZI0 is monotone follows from the Lemma 1.16. For

2m
I
Z0

the result can be proved similarly.
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Theorem 8.2.9. If I is not maximal, then the space 2ZI is neither solid
nor monotone.

Proof. Here we give a counter example. Let (xij) = 1 for all
(i, j) ∈ N × N. Then (xij) ∈ 2ZI . Let K ⊆ N × N be such that K 6∈ I
and N× N−K 6∈ I . Define the sequence

(yij) =

{
(xij), if (i, j) ∈ K,

0, otherwise.

Then (yij) belongs to the canonical preimage of K-step space of 2ZI but
(yij) 6∈ 2ZI . Hence 2ZI is not monotone.

Theorem 8.2.10. The spaces 2ZI and 2ZI0 are sequence algebras.

Proof. We prove that 2ZI0 is a sequence algebra. Let (xij), (yij) ∈ 2ZI0 .
Then

I − lim |xij| = 0 and I − lim |yij| = 0

Then we have I − lim |(xij.yij)| = 0. Thus (xij.yij) ∈ 2ZI0 . Hence

2ZI0 is a sequence algebra. For the space 2ZI , the result can be proved
similarly.

Theorem 8.2.11. The spaces 2ZI and 2ZI0 are not convergence free in
general.

Proof. Here we give a counter example. Let I = If . Consider the
sequence (xij) and (yij) defined by

xij =
1

i.j
and yij = i.j for all (i,j) ∈ N× N

Then (xij) ∈ 2ZI and 2ZI0 , but (yij) /∈ 2ZI and 2ZI0 . Hence the spaces

2ZI and 2ZI0 are not convergence free.
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Theorem 8.2.12. If I is not maximal and I 6= If , then the spaces 2ZI

and 2ZI0 are not symmetric.

Proof. Let A ∈ I be infinite. If

xij =

{
1, for i , j ∈ A,
0, otherwise.

Then xij ∈ 2ZI0 ⊂ 2ZI . LetK ⊂ N be such thatK /∈ I and N−K /∈ I .
Let φ : K → A and ψ : N − K → N − A be bijections, then the map
π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but x(π(m)π(n)) /∈ 2ZI and x(π(m)π(n)) /∈ 2ZI0 .
Hence 2ZI and 2ZI0 are not symmetric.

Theorem 8.2.13. The sequence spaces 2ZI and 2ZI0 are linearly
isomorphic to the spaces 2c

I and 2c
I
0 respectively, i.e 2ZI ∼= 2c

I and

2ZI0 ∼= 2c
I
0.

Proof. We shall prove the result for the space 2ZI and 2c
I . The proof

for the other spaces will follow similarly. We need to show that there
exists a linear bijection between the spaces 2ZI and 2c

I . Define a map
T : 2ZI −→ 2c

I such that x→ x
′
= Tx

T (xij) = pxij + (1− p)x(i−1)(j−1) = x
′

ij

where x−1 = 0, p 6= 1, 1 < p <∞. Clearly T is linear. Further, it is trivial
that x = 0 = (0, 0, 0, ......) whenever Tx = 0 and hence injective. Let
x

′
ij ∈ 2c

I and define the sequence x = xij by

xij = M
i∑

r=0

j∑
s=0

(−1)(i−r)(j−s)N (i−r)(j−s)x
′

ij
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for (i, j) ∈ N× N and where M = 1
p

and N = 1−p
p

. Then we have

lim
(i,j)→∞

pxij + (1− p)x(i−1)(j−1) =

p lim
(i,j)→∞

M

i∑
r=0

j∑
s=0

(−1)(i−r)(j−s)N (i−r)(j−s)x
′

ij

+(1− p) lim
(i,j)→∞

M
i−1∑
r=0

j−1∑
s=0

(−1)(i−1−r)(j−1−s)N (i−1−r)(j−1−s)x
′

(i−1)(j−1)

= lim
(i,j)→∞

x
′

ij

which shows that x ∈ 2ZI . Hence T is a linear bijection. Also we have
||x||∗ = ||Zpx||c. Therefore

||x||∗ = sup
(i,j)∈N×N

|pxij + (1− p)x(i−1)(j−1)|

= sup
(i,j)∈N×N

|pM
i∑

r=0

j∑
s=0

(−1)(i−r)(j−s)N (i−r)(j−s)x
′

ij

+(1− p)M
i−1∑
r=0

j−1∑
s=0

(−1)(i−1−r)(j−1−s)N (i−1−r)(j−1−s)x
′

(i−1)(j−1)|

= sup
(i,j)∈N×N

|x′

ij| = ||x
′ ||

2cI .

Hence 2ZI ∼= 2c
I .
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Chapter 9 Zweier I-Convergent Double Sequence Spaces Defined by a Modulus Function

9.1 Introduction

An Orlicz function is a function M : [0,∞) → [0,∞), which is
continuous, non-decreasing and convex with M(0) = 0,M(x) > 0 for
x > 0 and M(x) → ∞ as x → ∞.(see[4,47]). If the convexity of the
regular function M is replaced by M(x + y) ≤ M(x) + M(y) then this
function is called as Modulus function. This function was introduced by
Nakano[58]. Ruckle[64] and Maddox[56] further investigated the
modulus function with applications to sequence spaces.

In this chapter we introduce the following class of sequence spaces:

2ZI(f) = {(xij) ∈ 2ω : I − lim f(|x′

ij − L|) = 0, for some L ∈ C },

2ZI0 (f) = {(xij) ∈ 2ω : I − lim f(|x′

ij|) = 0},

2ZI∞(f) = {(xij) ∈ 2ω : {(i, j) ∈ N× N :

there exist K > 0 : f(|x′

ij|) ≥ K ∈ I}.

2Z∞(M) = {x = (xij) ∈ 2ω : sup
i,j

f(|x′

ij|) <∞}

Throughout we denote

mI
2Z(f) = 2ZI∞(f) ∩ 2Z(f) and mI

2Z0
(f) = 2ZI∞(f) ∩ 2Z0(f).

Throughout the article, for the sake of convenience we will denote by
Zp(xij) = x

′
, Zp(yij) = y

′
, Zp(zij) = z

′ for x, y, z ∈ ω.

“Under the leadership of our dear masters Banach and Steinhauss we were practicing in Lwów intricacies of
mathematics”- Orlicz-1968.
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9.2 Main Results

Theorem 9.2.1. For any modulus function f , the classes of sequences

2ZI(f), 2ZI0 (f),mI
2Z(f) and mI

2Z0
(f) are linear spaces.

Proof. We shall prove the result for the space 2ZI(f). The proof for the
other spaces will follow similarly. Let (xij), (yij) ∈ 2ZI(f) and let α, β
be scalars. Then

I − lim f(|x′

ij − L1|) = 0, for someL1 ∈ C ;

I − lim f(|y′

ij − L2|) = 0, for someL2 ∈ C ;

That is for a given ε > 0, we have

A1 = {(i, j) ∈ N× N : f(|x′

ij − L1|) >
ε

2
} ∈ I, [9.1]

A2 = {(i, j) ∈ N× N : f(|y′

ij − L2|) >
ε

2
} ∈ I. [9.2]

Since f is a modulus function, we have

f(|(αx′

ij + βy
′

ij)− (αL1 + βL2)) ≤ f(|α||x′

ij − L1|) + f(|β||y′

ij − L2|)

≤ f(|x′

ij − L1|) + f(|y′

ij − L2|)

Now, by [9.1] and [9.2],

{(i, j) ∈ N× N : f(|(αx′

ij + βy
′

ij)− (αL1 + βL2)|) > ε} ⊂ A1 ∪ A2.

Therefore (αxij + βyij) ∈ 2ZI(f). Hence 2ZI(f) is a linear space.

We state the following result without proof in view of Theorem 2.1.
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Theorem 9.2.2. The spaces mI
2Z(f) and mI

2Z0
(f) are normed linear

spaces, normed by
||x′

ij||∗ = sup
i,j

f(|x′

ij|). [9.3]

Theorem 9.2.3. A sequence x = (xij) ∈ mI
2Z(f) I-converges if and only

if for every ε > 0 there exists Nε ∈ N such that

{(i, j) ∈ N× N : f(|x′

k − x
′

Nε|) < ε} ∈ mI
2Z(f) [9.4]

Proof. Suppose that L = I − limx
′ . Then

Bε = {(i, j) ∈ N× N : |x′

ij − L| <
ε

2
} ∈ mI

2Z(f). For all ε > 0.

Fix an Nε ∈ Bε. Then we have

|x′

Nε − x
′

ij| ≤ |x
′

Nε − L|+ |L− x
′

ij| <
ε

2
+
ε

2
= ε

which holds for all (i, j) ∈ Bε. Hence

{(i, j) ∈ N× N : f(|x′

ij − x
′

Nε|) < ε} ∈ mI
2Z(f).

Conversely, suppose that

{(i, j) ∈ N× N : f(|x′

ij − x
′

Nε|) < ε} ∈ mI
2Z(f).

That is
{(i, j) ∈ N× N : |x′

ij − x
′

Nε| < ε} ∈ mI
2Z(f)

for all ε > 0. Then the set

Cε = {(i, j) ∈ N× N : x
′

ij ∈ [x
′

Nε − ε, x
′

Nε + ε]} ∈ mI
2Z(f) for all ε > 0.

Let Jε = [x
′
Nε
−ε, x′

Nε
+ε]. If we fix an ε > 0 then we have Cε ∈ mI

2Z(f)

as well as C ε
2
∈ mI

2Z(f). Hence Cε ∩ C ε
2
∈ mI

2Z(f). This implies that

Jε ∩ J ε
2
6= φ
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that is
{(i, j) ∈ N× N : x

′

ij ∈ J} ∈ mI
2Z(f)

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Iij ⊇ ...........

with the property that diam Iij ≤ 1
2
diam Ik−1 for (k=2,3,4,.....) and

{(i, j) ∈ N× N : x
′
ij ∈ Iij} ∈ mI

2Z(f) for (k=1,2,3,4,......).

Then there exists a ξ ∈ ∩Ik where (i, j) ∈ N×N such that ξ = I−limx
′ .

So that f(ξ) = I − lim f(x
′
), that is L = I − lim f(x

′
).

Theorem 9.2.4. Let f and g be modulus functions that satisfy the 42-
condition. If X is any of the spaces 2ZI , 2ZI0 ,mI

2Z and mI
2Z0

, then the
following assertions hold
(a)X(g) ⊆ X(f.g),
(b)X(f) ∩X(g) ⊆ X(f + g)

Proof. (a) Let (xij) ∈ 2ZI0 (g). Then

I − lim
ij
g(|x′

ij|) = 0 [9.5]

Let ε > 0 and choose δ with 0 < δ < 1 such that f(t) < ε for 0 < t < δ.
Write yij = g(|x′

ij|) and consider

lim
i,j
f(yij) = lim

i,j
f(yk)yij<δ + lim

i,j
f(yij)yij>δ

We have
lim
i,j
f(yij) ≤ f(2) lim

i,j
(yij) [9.6]
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For yij > δ, we have yij <
yij
δ
< 1 +

yij
δ

. Since f is non-decreasing, it
follows that

f(yij) < f(1 +
yij
δ

) <
1

2
f(2) +

1

2
f(

2yk
δ

)

Since f satisfies the42-condition, we have

f(yij) <
1

2
K
yij
δ
f(2) +

1

2
K
yij
δ
f(2) = K

yij
δ
f(2)

Hence
lim
i,j
f(yij) ≤ max(1, K)δ−1f(2) lim

i,j
(yij). [9.7]

From [9.5], [9.6] and [9.7], we have (xij) ∈ 2ZI0 (f.g). Thus

2ZI0 (g) ⊆ 2ZI0 (f.g). The other cases can be established following similar
technique.

(b) Let (xij) ∈ 2ZI0 (f) ∩ 2ZI0 (g). Then I − lim
i,j
f(|x′

ij|) = 0 and

I − lim
i,j
g(|x′

ij|) = 0

The rest of the proof follows from the following equality

lim
i,j

(f + g)(|x′

ij|) = lim
ij
f(|x′

ij|) + lim
i,j
g(|x′

ij|).

Corollary 9.2.5. X ⊆ X(f) for X = 2ZI , 2ZI0 ,mI
2Z and mI

2Z0
.

Theorem 9.2.6. The spaces 2ZI0 (f) and mI
2Z0

(f) are solid and
monotone.

Proof. We shall prove the result for the sequence space 2ZI0 (f). Let
(xij) ∈ 2ZI0 (f). Then

I − lim
i,j
f(|x′

ij|) = 0. [9.8]
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Let (αij) be a sequence of scalars with |αij| ≤ 1 for all (i, j) ∈ N × N.
Then the result follows from [9.8] and the following inequality

f(|αijx
′

ij|) ≤ |αij|f(|x′

ij|) ≤ f(|x′

ij|) for all (i, j) ∈ N× N.

That the space 2ZI0 (f) is monotone follows from the Lemma 1.12. For
mI

2Z0
(f) the result can be proved similarly.

Theorem 9.2.7. The spaces 2ZI(f) and mI
2Z(f) are neither solid nor

monotone in general .

Proof. We prove this result by providing a counter example. Let I = Iδ

and f(x) = x2 for all x ∈ [0,∞). Consider the K-step space XK(f) of X
defined as follows

Let (xij) ∈ X and let (yij) ∈ XK be such that

(yij) =

{
(xij) if i+j is even,

0, otherwise.

Consider the sequence (xij) defined by (xij) = 1 for all (i, j) ∈ N× N.
Then (xij) ∈ 2ZI(f) but its K-stepspace preimage does not belong to

2ZI(f). Thus 2ZI(f) is not monotone. Hence 2ZI(f) is not solid.

Theorem 9.2.8. The spaces 2ZI(f) and 2ZI0 (f) are sequence algebras.

Proof. We prove that the sequence space 2ZI0 (f) is a sequence algebra.
Let (xij), (yij) ∈ 2ZI0 (f). Then

I − lim f(|x′

ij|) = 0 and I − lim f(|y′

ij|) = 0

Then we have

I − lim f(|x′

ij.y
′

ij|) = 0
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Thus (xij.yij) ∈ 2ZI0 (f) is a sequence algebra. For the space 2ZI0 (f),
the result can be proved similarly.

Theorem 9.2.9. The spaces 2ZI(f) and 2ZI0 (f) are not convergence
free in general.

Proof. We give a counter example to prove this result.

Let I = If and f(x) = x3 for all x ∈ [0,∞). Consider the sequence
(xij) and (yij) defined by

xij =
1

i+ j
and yij = i+ j for all (i, j) ∈ N× N.

Then (xij) ∈ 2ZI(f) and 2ZI0 (f), but (yij) /∈ 2ZI(f) and 2ZI0 (f).
Hence the spaces 2ZI0 (f) and 2ZI0 (f) are not convergence free.

Theorem 9.2.10. If I is not maximal and I 6= If , then the spaces 2ZI(f)

and 2ZI0 (f) are not symmetric.

Proof. Let A ∈ I be infinite and f(x) = x for all x ∈ [0,∞). If

xij =

{
1, for (i, j) ∈ A,
0, otherwise.

Then by lemma 1.14 (xij) ∈ 2ZI0 (f) ⊂ 2ZI(f). Let K ⊂ N be such
that K /∈ I and N−K /∈ I . Let φ : K → A and ψ : N−K → N− A be
bijections, then the map π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but xπ(m)π(n) /∈ 2ZI(f) and xπ(m)π(n) /∈ 2ZI0 (f).
Hence 2ZI(f) and 2ZI0 (f) are not symmetric.
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Theorem 9.2.11. Let f be a modulus function. Then

2ZI0 (f) ⊂ 2ZI(f) ⊂ 2ZI∞(f).

Proof. Let (xij) ∈ 2ZI(f). Then there exists L ∈ C such that

I − lim f(|x′

ij − L|) = 0

We have f(|x′
ij|) ≤ f(|x′

ij − L|) + f(|L|). Taking the supremum over
(i, j) on both sides we get (xij) ∈ 2ZI∞(f). The inclusion

2ZI0 (f) ⊂ 2ZI(f) is obvious.

Theorem 9.2.12. The function ~ : mI
2Z(f) → R is the Lipschitz

function, where mI
2Z(f) = 2ZI∞(f) ∩ 2ZI(f), and hence uniformly

continuous.

Proof. Let x, y ∈ mI
2Z(f), x 6= y. Then the sets

Ax = {(i, j) ∈ N× N : |xk − ~(x)| ≥ ||x− y||∗} ∈ I,

Ay = {(i, j) ∈ N× N : |yk − ~(y)| ≥ ||x− y||∗} ∈ I.

Thus the sets,

Bx = {(i, j) ∈ N× N : |xij − ~(x)| < ||x− y||∗} ∈ mI
2Z(f),

By = {(i, j) ∈ N× N : |yk − ~(y)| < ||x− y||∗} ∈ mI
2Z(f).

Hence alsoB = Bx∩By ∈ mI
2Z(f), so thatB 6= Φ. A Now taking (i, j)

in B,

|~(x)− ~(y)| ≤ |~(x)− xij|+ |xij − yij|+ |yij − ~(y)| ≤ 3||x− y||∗.

Thus ~ is a Lipschitz function. For the space mI
2Z0

(f) the result can be
proved similarly.
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Theorem 9.2.13. If x, y ∈ mI
2Z(f), then (x.y) ∈ mI

2Z(f) and
~(xy) = ~(x)~(y).

Proof. For ε > 0

Bx = {(i, j) ∈ N× N : |xij − ~(x)| < ε} ∈ mI
2Z(f),

Bx = {(i, j) ∈ N× N : |yij − ~(y)| < ε} ∈ mI
2Z(f).

Now,

|xijyij − ~(x)~(y)| = |xijyij − xij~(y) + xij~(y)− ~(x)~(y)|

≤ |xij||yij − ~(y)|+ |~(y)||xij − ~(x)| [9.9]

As mI
2Z(f) ⊆ 2ZI∞(f), there exists an M ∈ R such that |xij| < M and

|~(y)| < M .

Using eqn[9.9] we get

|xijyij − ~(x)~(y)| ≤Mε+Mε = 2Mε

for all (i, j) ∈ Bx ∩By ∈ mI(f). Hence (x.y) ∈ mI
2Z(f) and

~(xy) = ~(x)~(y). For the space mI
2Z0

(f) the result can be proved
similarly.
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Chapter 10 Zweier I-Convergent Double Sequence Spaces Defined by Orlicz Function

10.1 Introduction

Recently Vakeel. A. Khan et. al.[37] introduced and studied the
following classes of sequence spaces:

ZI(M) = {(xk) ∈ ω : I − limM(
|x/k − L|

ρ
) = 0 for some L and ρ > 0},

ZI0 (M) = {(xk) ∈ ω : I − limM(
|x/k|
ρ

) = 0 for some ρ > 0},

ZI∞(M) = {(xk) ∈ ω : sup
k
M(
|x/k|
ρ

) <∞ for some ρ > 0}.

Also we denote by

mI
Z(M) = Z∞(M) ∩ ZI(M)

and
mI
Z0

(M) = Z∞(M) ∩ ZI0 (M).

10.2 Main Results

In this Chapter we introduce the following classes of Zweier
I-Convergent double sequence spaces defined by the Orlicz function.

2ZI(M) = {x = (xij) ∈ 2ω : I − limM(
|x′
ij − L|
ρ

) = 0

for some L ∈ C , and ρ > 0},

2ZI0 (M) = {x = (xij) ∈ 2ω : I − limM(
|x′
ij|
ρ

) = 0 for some ρ > 0},

“Mazur and Orlicz are direct pupils of Banch; they represent the theory of operations today in poland and their
names cover of ”Studia Mathematica” indicate direct continuation of Banach’s scientific programme.”-Hugo
Steinhauss
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2ZI∞(M) = {x = (xij) ∈ 2ω : {(i, j) ∈ N× N : there exist K > 0 :

M(
|x′
ij|
ρ

) ≥ K for some ρ > 0 ∈ I}.

2Z∞(M) = {x = (xij) ∈ 2ω : sup
i,j

M(
|x′
ij|
ρ

) <∞}

Also we denote by

mI
2Z(M) = 2ZI∞(M) ∩ 2ZI(M)

and
mI

2Z0
(M) = 2ZI∞(M) ∩ 2ZI0 (M).

Throughout the chapter, for the sake of convenience, we will denote by
Zp(xk) = x

′
, Zp(yk) = y

′
, Zp(zk) = z

′ for x, y, z ∈ ω.

Theorem 10.2.1. For any Orlicz function M , the classes of sequences

2ZI(M), 2ZI0 (M), 2m
I
Z(M) and 2m

I
Z0

(M) are linear spaces.

Proof. We shall prove the result for the space 2ZI(M). The proof for the
other spaces will follow similarly. Let (xij), (yij) ∈ 2ZI(M) and let α, β
be scalars. Then there exists positive numbers ρ1 and ρ2 such that

I − limM(
|x′
ij − L1|
ρ1

) = 0, for some L1 ∈ C ;

I − limM(
|y′
ij − L2|
ρ2

) = 0, for some L2 ∈ C ;

That is for a given ε > 0, we have

A1 = {(i, j) ∈ N× N : M(
|x′
ij − L1|
ρ1

) >
ε

2
} ∈ I, [10.1]

A2 = {(i, j) ∈ N× N : M(
|y′
ij − L2|
ρ2

) >
ε

2
} ∈ I. [10.2]
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Let ρ3 = max{2|α|ρ1, 2|β|ρ2}. Since M is non-decreasing and convex
function, we have

M(
|(αx′

ij + βy
′
ij)− (αL1 + βL2)|
ρ3

)

≤M(
|α||x′

ij − L1|
ρ3

) +M(
|β||y′

ij − L2|
ρ3

).

≤M(
|x′
ij − L1|
ρ1

) +M(
|y′
ij − L2|
ρ2

)

Now, by [10.1] and [10.2],

{(i, j) ∈ N× N : M(
|(αx′

ij + βy
′
ij)− (αL1 + βL2)|
ρ3

) > ε} ⊂ A1 ∪ A2.

Therefore (αxij + βyij) ∈2 ZI(M). Hence 2ZI(M) is a linear space.

Theorem 10.2.2. The spaces 2m
I
Z(M) and 2m

I
Z0

(M) are Banach spaces
normed by

||xij|| = inf{ρ > 0 : sup
i,j

M(
|xij|
ρ

) ≤ 1}

Proof. Proof of this result is easy in view of the existing techniques and
therefore is omitted.

Theorem 10.2.3. Let M1 and M2 be Orlicz functions that satisfy the42-
condition. Then
(a) X(M2) ⊆ X(M1.M2);

(b) X(M1) ∩ X(M2) ⊆ X(M1 + M2) For X = 2ZI , 2ZI0 , 2m
I
Z and

2m
I
Z0

.

Proof. (a) Let (xij) ∈ 2ZI0 (M2). Then there exists ρ > 0 such that

I − lim
i,j
M2(
|x′
ij|
ρ

) = 0 [10.3]
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Let ε > 0 and choose δ with 0 < δ < 1 such that M1(t) < ε for

0 ≤ t ≤ δ. Write yij = M2(
|x′ij |
ρ

) and consider for all (i, j) ∈ N × N we
have

lim
0≤yij≤δ

M1(yij) = lim
yij≤δ

M1(yij) + lim
yij>δ

M1(yij).

We have

lim
yij≤δ

M1(yij) ≤M1(2) lim
yij≤δ

(yij). [10.4]

For (yij) > δ, we have

(yij) < (
yij
δ

) < 1 + (
yij
δ

).

Since M1 is non-decreasing and convex, it follows that

M1(yij) < M1(1 + (
yij
δ

)) <
1

2
M1(2) +

1

2
M1(

2yij
δ

)

Since M1 satisfies the42-condition, we have

M1(yij) <
1

2
K(

yij
δ

)M1(2) +
1

2
K(

yij
δ

)M1(2) = K(
yij
δ

)M1(2).

Hence

lim
yij>δ

M1(yij) ≤ max(1, Kδ−1M1(2)) lim
yij>δ

(yij). [10.5]

From [10.3], [10.4] and [10.5], we have (xij) ∈ ZI0 (M1).(M2). Thus

ZI0 (M2) ⊆ ZI0 (M1.M2).

The other cases can be proved similarly.
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(b) Let (xk) ∈ ZI0 (M1) ∩ ZI0 (M2). Then there exists ρ > 0 such that

I − lim
k
M1(

|x/k|
ρ

) = 0 and I − lim
k
M2(

|x/k|
ρ

) = 0. The rest of the proof
follows from the following equality

lim
k∈N

(M1 +M2)(
|x/k|
ρ

) = lim
k∈N

M1(
|x/k|
ρ

) + lim
k∈N

M2(
|x/k|
ρ

)

Theorem 10.2.4. The spaces 2ZI0 (M) and 2m
I
Z0

(M) are solid and
monotone .

Proof. We shall prove the result for 2ZI0 (M). For mI
Z0

(M) the result
can be proved similarly. Let (xij) ∈ 2ZI0 (M). Then there exists ρ > 0

such that

I − lim
i,j
M(
|x′
ij|
ρ

) = 0 [10.6]

Let (αij) be a sequence of scalars with |αij| ≤ 1 for all (i, j) ∈ N × N.
Then the result follows from [10.6] and the following inequality for all

M(
|αijx

′
ij|

ρ
) ≤ |αij|M(

|x′
ij|
ρ

) ≤M(
|x′
ij|
ρ

).

By Lemma 1.12, a sequence space E is solid implies that E is monotone.
We have the space 2ZI0 (M) is monotone.

Theorem 10.2.5. The spaces 2ZI(M) and 2m
I
Z(M) are neither solid

nor monotone in general.

Proof. Here we give a counter example. Let I = Iδ and M(x) = x2 for
all x ∈ [0,∞). Consider the K-step space XK(M) of X(M) defined as
follows, Let (xij) ∈ X(M) and let (yij) ∈ XK(M) be such that

yij =

{
xij, if (i+j) is even,
0, otherwise.
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Consider the sequence xij defined by xij = 1 for all (i, j) ∈ N × N.
Then (xij) ∈ 2ZI(M) but its K-stepspace preimage does not belong to

2ZI(M). Thus 2ZI(M) is not monotone.

Hence 2ZI(M) is not solid.

Theorem 10.2.6. The spaces 2ZI0 (M) and 2ZI(M) are not convergence
free in general.

Proof. Here we give a counter example. Let I = If and M(x) = x3 for
all x ∈ [0,∞). Consider the sequence (xij) and (yij) defined by

xij =
1

i+ j
and yij = i+ j

Then (xij) ∈ 2ZI(M) and 2ZI0 (M), but (yij) /∈ 2ZI(M) and 2ZI0 (M).
Hence the spaces 2ZI(M) and 2ZI0 (M) are not convergence free.

Theorem 10.2.7. The spaces 2ZI0 (M) and 2ZI(M) are sequence
algebras.

Proof. We prove that 2ZI0 (M) is a sequence algebra. For the space

2ZI(M), the result can be proved similarly. Let (xij), (yij) ∈ 2ZI0 (M).
Then

I − limM(
|x′
ij|
ρ1

) = 0

and

I − limM(
|y′
ij|
ρ2

) = 0

Let ρ = ρ1.ρ2 > 0. Then we can show that

I − limM(
|(x′

ij.y
′
ij)|

ρ
) = 0.

Thus (xij.yij) ∈ 2ZI0 (M). Hence 2ZI0 (M) is a sequence algebra.
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Theorem 10.2.8. Let M be an Orlicz function. Then the inclusions

2ZI0 (M) ⊂ 2ZI(M) ⊂ 2ZI∞(M)

hold.

Proof: Let (xij) ∈ 2ZI(M). Then there exists L ∈ C and ρ > 0 such
that

I − limM(
|x′
ij − L|
ρ

) = 0.

We haveM(
|x′ij |
2ρ

) ≤ 1
2
M(

|x′ij−L|
ρ

)+ 1
2
M( |L|

ρ
). Taking supremum over (i,j)

both sides we get (xij) ∈ 2ZI∞(M). The inclusion 2ZI0 (M) ⊂ 2ZI(M)

is obvious.

Theorem 10.2.9. If I is not maximal and I 6= If , then the spaces 2ZI(M)

and 2ZI0 (M) are not symmetric.

Proof. Let A ∈ I be infinite and M(x) = x for all x = (xij). If

xij =

{
1, for i, j ∈ A,
0, otherwise.

Then
(xij) ∈ 2ZI0 (M) ⊂ 2ZI(M),

by lemma 1.14. Let K ⊂ N be such that K /∈ I and N−K /∈ I .

Let φ : K → A and ψ : N − K → N − A be bijections, then the map
π : N→ N defined by

π(k) =

{
φ(k), fork ∈ K,
ψ(k), otherwise.

is a permutation on N, but (xπ(i)π(j)) /∈ 2ZI(M) and
(xπ(i)π(j)) /∈ 2ZI0 (M). Hence 2ZI0 (M) and 2ZI(M) are not symmetric.
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