
Chapter 3

On Paranorm Zweier
I-Convergent Sequence Spaces

“There is no place in the world for ugly mathematics. It may be very hard to define mathematical beauty but
that is just as true of beauty of any kind , we may not know quite, what we mean by a beautiful poem, but
that does not prevent us from recognizing one when we read it.”-Hardy
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3.1 Introduction

The following subspaces of ω were first introduced and discussed by
Maddox [56] :

l(p) := {x ∈ ω :
∑
k

|xk|pk <∞},

l∞(p) := {x ∈ ω : sup
k
|xk|pk <∞},

c(p) := {x ∈ ω : lim
k
|xk − l|pk = 0, for some l ∈ C },

c0(p) := {x ∈ ω : lim
k
|xk|pk = 0, },

where p = (pk) is a sequence of strictly positive real numbers.

After then Lascarides[53-54] defined the following sequence spaces :

l∞{p} := {x ∈ ω : there exists r > 0 such that sup
k
|xkr|pktk <∞},

c0{p} := {x ∈ ω : there exists r > 0 such that lim
k
|xkr|pktk = 0, },

l{p} := {x ∈ ω : there exists r > 0 such that
∞∑
k=1

|xkr|pktk <∞},

Where tk = p−1k , for all k ∈ N.

Recently Khan and Ebadullah [38] introduced the following classes of
sequence spaces:

ZI = {(xk) ∈ ω : {k ∈ N : I − limZpx = L for some L} ∈ I};

ZI0 = {(xk) ∈ ω : {k ∈ N : I − limZpx = 0} ∈ I};

ZI∞ = {(xk) ∈ ω : sup
k
|Zpx| <∞}.
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We also denote by

mI
Z = Z∞ ∩ ZI ;

and

mI
Z0

= Z∞ ∩ ZI0 .

In this chapter we introduce the following classes of sequence spaces:

ZI(q) = {(xk) ∈ ω : {k ∈ N : |Zpx− L|qk ≥ ε} ∈ I, for some L∈ C };

ZI0 (q) = {(xk) ∈ ω : {k ∈ N : |Zpx|qk ≥ ε} ∈ I};

ZI∞(q) = {(xk) ∈ ω : sup
k
|Zpx|qk <∞}.

We also denote by

mI
Z(q) = ZI∞(q) ∩ ZI(q);

and

mI
Z0

(q) = ZI∞(q) ∩ ZI0 (q);

where q = (qk), is a sequence of positive real numbers.

Throughout the chapter, for the sake of convenience we will denote by
Zpx = x/, Zpy = y/, Zpz = z/ for all x, y, z ∈ ω.

3.2 Main Results

Theorem 3.2.1. The classes of sequences ZI(q),ZI0 (q),mI
Z(q) and

mI
Z0

(q) are linear spaces.

Proof. We shall prove the result for the space ZI(q). The proof for the
other spaces will follow similarly.
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Let (xk), (yk) ∈ ZI(q) and let α, β be scalars. Then for a given ε > 0

we have

{k ∈ N : |x/k − L1|qk ≥
ε

2M1

, for some L1 ∈ C } ∈ I;

{k ∈ N : |y/k − L2|qk ≥
ε

2M2

, for some L2 ∈ C } ∈ I;

where
M1 = Dmax{1, sup

k
|α|qk};

M2 = Dmax{1, sup
k
|β|qk};

and
D = max{1, 2H−1} where H = sup

k
qk ≥ 0.

Let

A1 = {k ∈ N : |x/k − L1|qk <
ε

2M1

, for some L1 ∈ C } ∈ £(I);

A2 = {k ∈ N : |y/k − L2|qk <
ε

2M2

, for some L2 ∈ C } ∈ £(I);

be such that Ac1, A
c
2 ∈ I . Then

A3 = {k ∈ N : |(αx/k + βy
/
k)− (αL1 + βL2)|qk) < ε}

⊇ {k ∈ N : |α|qk |x/k − L1|qk <
ε

2M1

|α|qkD}

∩{k ∈ N : |β|qk |y/k − L2|qk <
ε

2M2

|β|qkD}.

Thus Ac3 ⊆ Ac1 ∪Ac2 ∈ I . Hence (αxk + βyk) ∈ ZI(q). Therefore ZI(q)
is a linear space. The rest of the result follows similarly.

Theorem 3.2.2. Let (qk) ∈ l∞. Then mI
Z(q) and mI

Z0
(q) are paranormed

spaces, paranormed by

g(x) = sup
k
|xk|

qk
M , where M = max{1, sup

k
qk}.
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Proof. Let x = (xk), y = (yk) ∈ mI
Z(q).

[i] Clearly, g(x) = 0 if and only if x = 0.

[ii] g(x) = g(−x) is obvious.

[iii] Since qk
M
≤ 1 and M > 1,using Minkowski’s inequality we have

sup
k
|xk + yk|

qk
M ≤ sup

k
|xk|

qk
M + sup

k
|yk|

qk
M .

[iv] Now for any complex λ we have (λk) such that λk → λ, (k → ∞).

Let xk ∈ mI
Z(q) such that |xk − L|qk ≥ ε. Therefore,

g(x− Le) = sup
k
|xk − L|

qk
M ≤ sup

k
|xk|

qk
M + sup

k
|L|

qk
M ,

where e = (1, 1, 1.....). Hence

g(λnxk − λL) ≤ g(λnxk) + g(λL) = λng(x) + λg(L),

as k → ∞. Hence mI
Z(q) is a paranormed space. The rest of the

result follows similarly.

Theorem 3.2.3. mI
Z(q) is a closed subspace of l∞(q).

Proof. Let (x
(n)
k ) be a Cauchy sequence in mI

Z(q) such that x(n) → x.
We show that x ∈ mI

Z(q). Since (x
(n)
k ) ∈ mI

Z(q), then there exists an such
that

{k ∈ N : |x(n) − an| ≥ ε} ∈ I.

We need to show that

[i] (an) converges to a.

[ii] If U = {k ∈ N : |xk − a| < ε}, then U c ∈ I .
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[i] Since (x
(n)
k ) is a Cauchy sequence in mI

Z(q) then for a given ε > 0,
there exists k0 ∈ N such that

sup
k
|x(n)k − x

(i)
k | <

ε

3
, for all n, i ≥ k0

For a given ε > 0, we have

Bni = {k ∈ N : |x(n)k − x
(i)
k | <

ε

3
},

Bi = {k ∈ N : |x(i)k − ai| <
ε

3
},

Bn = {k ∈ N : |x(n)k − an| <
ε

3
}.

Then Bc
ni, B

c
i , B

c
n ∈ I .

Let

Bc = Bc
ni ∪Bc

i ∪Bc
n,

where

B = {k ∈ N : |ai − an| < ε}.

Then Bc ∈ I . We choose k0 ∈ Bc, then for each n, i ≥ k0, we have

{k ∈ N : |ai − an| < ε} ⊇ {k ∈ N : |x(i)k − ai| <
ε

3
}

∩{k ∈ N : |x(n)k − x
(i)
k | <

ε

3
} ∩ {k ∈ N : |x(n)k − an| <

ε

3
}.

Then (an) is a Cauchy sequence of scalars in C , so there exists a scalar
a ∈ C such that an → a, as n→∞.

[ii] Let 0 < δ < 1 be given. Then we show that if

U = {k ∈ N : |xk − a|qk < δ},
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then U c ∈ I . Since x(n) → x, then there exists q0 ∈ N such that

P = {k ∈ N : |x(q0) − x| < (
δ

3D
)M}. [3.1]

which implies that P c ∈ I .

The number q0 can be so chosen that together with [3.1], we have

Q = {k ∈ N : |aq0 − a|qk < (
δ

3D
)M},

such that Qc ∈ I

Since
{k ∈ N : |x(q0) − aq0|qk ≥ δ} ∈ I.

Then we have a subset S of N such that Sc ∈ I , where

S = {k ∈ N : |x(q0) − aq0|qk < (
δ

3D
)M}.

Let
U c = P c ∪Qc ∪ Sc,

where
U = {k ∈ N : |xk − a|qk < δ}.

Therefore for each k ∈ U c, we have

{k ∈ N : |xk − a|qk < δ} ⊇ {k ∈ N : |x(q0) − x|qk < (
δ

3D
)M}

∩{k ∈ N : |x(q0) − aq0 |qk < (
δ

3D
)M} ∩ {k ∈ N : |aq0 − a|qk < (

δ

3D
)M}.

Then the result follows.

Since the inclusions mI
Z(q) ⊂ l∞(q) and mI

Z0
(q) ⊂ l∞(q) are strict so in

view of Theorem 2.2.3 we have the following result.
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Theorem 3.2.4. The spaces mI
Z(q) and mI

Z0
(q) are nowhere dense

subsets of l∞(q).

Theorem 3.2.5. The spaces mI
Z(q) and mI

Z0
(q) are not separable.

Proof. We shall prove the result for the space mI
Z(q). The proof for the

other spaces will follow similarly.

Let M be an infinite subset of N of increasing natural numbers such that
M ∈ I . Let

qk =

{
1, if k ∈M ,
2, otherwise.

Let

P0 = {(xk) : xk = 0 or 1, for k ∈M and xk = 0, otherwise}.

Clearly P0 is uncountable. Consider the class of open balls

B1 = {B(z,
1

2
) : z ∈ P0}.

Let C1 be an open cover of mI
Z(q) containing B1. Since B1 is

uncountable, so C1 cannot be reduced to a countable subcover for mI
Z(q).

Thus mI
Z(q) is not separable.

Theorem 3.2.6. Let G = sup
k
qk < ∞ and I an admissible ideal. Then

the following are equivalent:

[a] (xk) ∈ ZI(q);

[b] there exists(yk) ∈ Z(q) such that xk = yk, for a.a.k.r.I;

[c] there exists(yk) ∈ Z(q) and (xk) ∈ ZI0 (q) such that xk = yk + zk for
all k ∈ N and {k ∈ N : |yk − L|qk) ≥ ε} ∈ I ;

Science Publishing Group 41



Zweier I-Convergent Sequence Spaces and Their Properties

[d] there exists a subset

K = {k1 < k2....} of N,

such that K ∈ £(I) and

lim
n→∞

|xkn − L|qkn = 0.

Proof.

[a] implies [b].

Let (xk) ∈ ZI(q). Then there exists L ∈ C such that

{k ∈ N : |x/k − L|
qk ≥ ε} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{k ≤ mt : |x/k − L|
qk ≥ t−1} ∈ I.

Define a sequence (yk) as

yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈ N,

yk =

{
xk, if |x/k − L|qk < t−1,
L, otherwise.

Then (yk) ∈ Z(q) and from the following inclusion

{k ≤ mt : xk 6= yk} ⊆ {k ≤ mt : |x/k − L|
qk) ≥ ε} ∈ I,

we get xk = yk, for a.a.k.r.I.
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[b] implies [c].

For (xk) ∈ ZI(q), there exists (yk) ∈ Z(q) such that xk = yk, for
a.a.k.r.I. Let

K = {k ∈ N : xk 6= yk},

then k ∈ I . Define a sequence (zk) as

zk =

{
xk − yk, if k ∈ K,

0, otherwise.

Then zk ∈ ZI0 (q) and yk ∈ Z(q).

[c] implies [d].

Suppose [c] holds. Let ε > 0 be given. Let

P1 = {k ∈ N : |z/k|
qk ≥ ε} ∈ I,

and
K = P c

1 = {k1 < k2 < k3 < ...} ∈ £(I).

Then we have
lim
n→∞

|x/kn − L|
qkn = 0.

[d] implies [a].

Let
K = {k1 < k2 < k3 < ...} ∈ £(I)

and
lim
n→∞

|x/kn − L|
qkn = 0.

Then for any ε > 0, and Lemma 3.1.1., we have

{k ∈ N : |x/k − L|
qk ≥ ε} ⊆ Kc ∪ {k ∈ K : |x/k − L|

qk ≥ ε}.
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Thus (xk) ∈ ZI(q).

Theorem 3.2.7. Let h = inf
k
qk and G = sup

k
qk. Then the following

results are equivalent.

[a] G <∞ and h > 0.

[b] ZI0 (q) = ZI0 .

Proof. Suppose that G <∞ and h > 0, then the inequalities

min{1, sh} ≤ sqk ≤ max{1, sG},

hold for any s > 0 and for all k ∈ N. Therefore the equivalence of [a] and
[b] is obvious.

Theorem 3.2.8. Let (qk) and (rk) be two sequences of positive real
numbers. Then mI

Z0
(q) ⊇ mI

Z0
(r) if and only if lim

k∈K
inf qk

rk
> 0, where

Kc ⊆ N such that K ∈ I.

Proof. Let lim
k∈K

inf qk
rk
> 0 and (xk) ∈ mI

Z0
(r). Then there exists β > 0

such that qk > βrk, for all sufficiently large k ∈ K. Since (xk) ∈ mI
Z0

(r)

for a given ε > 0, we have

B0 = {k ∈ N : |xk|rk ≥ ε} ∈ I

Let G0 = Kc ∪B0 then G0 ∈ I. Then for all sufficiently large k ∈ G0,

{k ∈ N : |xk|qk) ≥ ε} ⊆ {k ∈ N : |xk|βrk) ≥ ε} ∈ I.

Therefore (xk) ∈ mI
Z0

(q). The converse part of the result follows
obviously.
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Theorem 3.2.9. Let (qk) and (rk) be two sequences of positive real
numbers. Then mI

Z0
(r) ⊇ mI

Z0
(q) if and only if lim

k∈K
inf rk

qk
> 0, where

Kc ⊆ N such that K ∈ I.

Proof. The proof follows similarly as the proof of Theorem 3.2.8.

Theorem 3.2.10. Let (qk) and (rk) be two sequences of positive real
numbers. Then mI

0(r) = mI
0(q) if and only if lim

k∈K
inf qk

rk
> 0, and

lim
k∈K

inf rk
qk
> 0, where K ⊆ N such that Kc ∈ I.

Proof. By combining Theorem 3.2.8 and 3.2.9 we get the required result.
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