Chapter 9

Zweier I-Convergent Double Sequence Spaces Defined by a Modulus Function

9.1 Introduction

An Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.(see[4,47]). If the convexity of the regular function M is replaced by $M(x + y) \leq M(x) + M(y)$ then this function is called as *Modulus function*. This function was introduced by Nakano[58]. Ruckle[64] and Maddox[56] further investigated the modulus function with applications to sequence spaces.

In this chapter we introduce the following class of sequence spaces:

$${}_{2}\mathcal{Z}^{I}(f) = \{(x_{ij}) \in {}_{2}\omega : I - \lim f(|x'_{ij} - L|) = 0, \text{ for some } L \in \mathbb{C} \},$$

$${}_{2}\mathcal{Z}^{I}_{0}(f) = \{(x_{ij}) \in {}_{2}\omega : I - \lim f(|x'_{ij}|) = 0\},$$

$${}_{2}\mathcal{Z}^{I}_{\infty}(f) = \{(x_{ij}) \in {}_{2}\omega : \{(i, j) \in \mathbb{N} \times \mathbb{N} :$$

$$\text{there exist } K > 0 : f(|x'_{ij}|) \ge K \in I\}.$$

$${}_{2}\mathcal{Z}_{\infty}(M) = \{x = (x_{ij}) \in {}_{2}\omega : \sup_{i,j} f(|x'_{ij}|) < \infty\}$$

Throughout we denote

$$m_{2\mathcal{Z}}^{I}(f) = {}_{2}\mathcal{Z}_{\infty}^{I}(f) \cap {}_{2}\mathcal{Z}(f) \text{ and } m_{2\mathcal{Z}_{0}}^{I}(f) = {}_{2}\mathcal{Z}_{\infty}^{I}(f) \cap {}_{2}\mathcal{Z}_{0}(f).$$

Throughout the article, for the sake of convenience we will denote by $Z^{p}(x_{ij}) = x^{'}, Z^{p}(y_{ij}) = y^{'}, Z^{p}(z_{ij}) = z^{'}$ for $x, y, z \in \omega$.

[&]quot;Under the leadership of our dear masters Banach and Steinhauss we were practicing in Lwów intricacies of mathematics"- Orlicz-1968.

9.2 Main Results

Theorem 9.2.1. For any modulus function f, the classes of sequences ${}_{2}\mathcal{Z}^{I}(f), {}_{2}\mathcal{Z}^{I}_{0}(f), m^{I}_{2\mathcal{Z}}(f)$ and $m^{I}_{2\mathcal{Z}_{0}}(f)$ are linear spaces.

Proof. We shall prove the result for the space $_2\mathcal{Z}^I(f)$. The proof for the other spaces will follow similarly. Let $(x_{ij}), (y_{ij}) \in _2\mathcal{Z}^I(f)$ and let α, β be scalars. Then

$$I - \lim f(|x'_{ij} - L_1|) = 0, \text{ for some} L_1 \in \mathbb{C} ;$$

 $I - \lim f(|y'_{ij} - L_2|) = 0, \text{ for some} L_2 \in \mathbb{C} ;$

That is for a given $\epsilon > 0$, we have

$$A_1 = \{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x'_{ij} - L_1|) > \frac{\epsilon}{2}\} \in I,$$
 [9.1]

$$A_{2} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|y_{ij}' - L_{2}|) > \frac{\epsilon}{2}\} \in I.$$
[9.2]

Since f is a modulus function, we have

$$f(|(\alpha x_{ij}^{'} + \beta y_{ij}^{'}) - (\alpha L_{1} + \beta L_{2})) \leq f(|\alpha||x_{ij}^{'} - L_{1}|) + f(|\beta||y_{ij}^{'} - L_{2}|)$$
$$\leq f(|x_{ij}^{'} - L_{1}|) + f(|y_{ij}^{'} - L_{2}|)$$

Now, by [9.1] and [9.2],

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|(\alpha x_{ij}' + \beta y_{ij}') - (\alpha L_1 + \beta L_2)|) > \epsilon\} \subset A_1 \cup A_2.$$

Therefore $(\alpha x_{ij} + \beta y_{ij}) \in {}_{2}\mathcal{Z}^{I}(f)$. Hence ${}_{2}\mathcal{Z}^{I}(f)$ is a linear space.

We state the following result without proof in view of Theorem 2.1.

Chapter 9 Zweier I-Convergent Double Sequence Spaces Defined by a Modulus Function

Theorem 9.2.2. The spaces $m_{_2\mathcal{Z}}^I(f)$ and $m_{_2\mathcal{Z}_0}^I(f)$ are normed linear spaces, normed by

$$||x_{ij}'||_* = \sup_{i,j} f(|x_{ij}'|).$$
[9.3]

Theorem 9.2.3. A sequence $x = (x_{ij}) \in m_{2\mathcal{Z}}^I(f)$ I-converges if and only if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{k}^{'} - x_{N_{\epsilon}}^{'}|) < \epsilon\} \in m_{2\mathcal{Z}}^{I}(f)$$

$$[9.4]$$

Proof. Suppose that $L = I - \lim x'$. Then

$$B_{\epsilon} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |x'_{ij} - L| < \frac{\epsilon}{2}\} \in m_{2\mathcal{Z}}^{I}(f). \text{ For all } \epsilon > 0.$$

Fix an $N_{\epsilon} \in B_{\epsilon}$. Then we have

$$|x'_{N_{\epsilon}} - x'_{ij}| \le |x'_{N_{\epsilon}} - L| + |L - x'_{ij}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which holds for all $(i, j) \in B_{\epsilon}$. Hence

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x'_{ij} - x'_{N_{\epsilon}}|) < \epsilon\} \in m^{I}_{2\mathcal{Z}}(f).$$

Conversely, suppose that

$$\{(i,j)\in\mathbb{N}\times\mathbb{N}:f(|x_{ij}^{'}-x_{N_{\epsilon}}^{'}|)<\epsilon\}\in m_{2\mathcal{Z}}^{I}(f).$$

That is

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij}' - x_{N_{\epsilon}}'| < \epsilon\} \in m_{2\mathcal{Z}}^{I}(f)$$

for all $\epsilon > 0$. Then the set

$$C_{\epsilon} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : x'_{ij} \in [x'_{N_{\epsilon}} - \epsilon, x'_{N_{\epsilon}} + \epsilon]\} \in m_{2\mathcal{Z}}^{I}(f) \text{ for all } \epsilon > 0.$$

Let $J_{\epsilon} = [x'_{N_{\epsilon}} - \epsilon, x'_{N_{\epsilon}} + \epsilon]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in m_{2\mathcal{Z}}^{I}(f)$ as well as $C_{\frac{\epsilon}{2}} \in m_{2\mathcal{Z}}^{I}(f)$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in m_{2\mathcal{Z}}^{I}(f)$. This implies that

$$J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi$$

Zweier I-Convergent Sequence Spaces and Their Properties

that is

$$\{(i,j)\in\mathbb{N}\times\mathbb{N}:x_{ij}^{'}\in J\}\in m_{2\mathcal{Z}}^{I}(f)$$

that is

 $diamJ \leq diamJ_{\epsilon}$

where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals

$$J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq Z_{ij} \supseteq \dots$$

with the property that $diam I_{ij} \leq \frac{1}{2} diam I_{k-1}$ for (k=2,3,4,....) and $\{(i,j) \in \mathbb{N} \times \mathbb{N} : x'_{ij} \in I_{ij}\} \in m^I_{2\mathcal{Z}}(f)$ for (k=1,2,3,4,....).

Then there exists a $\xi \in \cap I_k$ where $(i, j) \in \mathbb{N} \times \mathbb{N}$ such that $\xi = I - \lim x'$. So that $f(\xi) = I - \lim f(x')$, that is $L = I - \lim f(x')$.

Theorem 9.2.4. Let f and g be modulus functions that satisfy the \triangle_2 condition. If X is any of the spaces $_2\mathcal{Z}^I$, $_2\mathcal{Z}^I_0$, $m^I_{_2\mathcal{Z}}$ and $m^I_{_2\mathcal{Z}_0}$, then the
following assertions hold

(a) $X(g) \subseteq X(f.g)$, (b) $X(f) \cap X(g) \subseteq X(f+g)$

Proof. (a) Let $(x_{ij}) \in {}_2\mathcal{Z}_0^I(g)$. Then

$$I - \lim_{ij} g(|x'_{ij}|) = 0$$
[9.5]

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \epsilon$ for $0 < t < \delta$. Write $y_{ij} = g(|x'_{ij}|)$ and consider

$$\lim_{i,j} f(y_{ij}) = \lim_{i,j} f(y_k)_{y_{ij} < \delta} + \lim_{i,j} f(y_{ij})_{y_{ij} > \delta}$$

We have

$$\lim_{i,j} f(y_{ij}) \le f(2) \lim_{i,j} (y_{ij})$$
[9.6]

For $y_{ij} > \delta$, we have $y_{ij} < \frac{y_{ij}}{\delta} < 1 + \frac{y_{ij}}{\delta}$. Since f is non-decreasing, it follows that

$$f(y_{ij}) < f(1 + \frac{y_{ij}}{\delta}) < \frac{1}{2}f(2) + \frac{1}{2}f(\frac{2y_k}{\delta})$$

Since f satisfies the \triangle_2 -condition, we have

$$f(y_{ij}) < \frac{1}{2}K\frac{y_{ij}}{\delta}f(2) + \frac{1}{2}K\frac{y_{ij}}{\delta}f(2) = K\frac{y_{ij}}{\delta}f(2)$$

Hence

$$\lim_{i,j} f(y_{ij}) \le \max(1, K)\delta^{-1}f(2)\lim_{i,j}(y_{ij}).$$
[9.7]

From [9.5], [9.6] and [9.7], we have $(x_{ij}) \in {}_2\mathcal{Z}_0^I(f.g)$. Thus ${}_2\mathcal{Z}_0^I(g) \subseteq {}_2\mathcal{Z}_0^I(f.g)$. The other cases can be established following similar technique.

(b) Let $(x_{ij}) \in {}_{2}\mathcal{Z}_{0}^{I}(f) \cap {}_{2}\mathcal{Z}_{0}^{I}(g)$. Then $I - \lim_{i,j} f(|x'_{ij}|) = 0$ and $I - \lim_{i,j} g(|x'_{ij}|) = 0$

The rest of the proof follows from the following equality

$$\lim_{i,j} (f+g)(|x'_{ij}|) = \lim_{ij} f(|x'_{ij}|) + \lim_{i,j} g(|x'_{ij}|).$$

Corollary 9.2.5. $X \subseteq X(f)$ for $X = {}_2\mathcal{Z}^I, {}_2\mathcal{Z}^I_0, m_{2\mathcal{Z}}^I$ and $m_{2\mathcal{Z}_0}^I$.

Theorem 9.2.6. The spaces $_2\mathcal{Z}_0^I(f)$ and $m_{_2\mathcal{Z}_0}^I(f)$ are solid and monotone.

Proof. We shall prove the result for the sequence space $_2\mathcal{Z}_0^I(f)$. Let $(x_{ij}) \in _2\mathcal{Z}_0^I(f)$. Then

$$I - \lim_{i,j} f(|x'_{ij}|) = 0.$$
[9.8]

Zweier I-Convergent Sequence Spaces and Their Properties

Let (α_{ij}) be a sequence of scalars with $|\alpha_{ij}| \leq 1$ for all $(i, j) \in \mathbb{N} \times \mathbb{N}$. Then the result follows from [9.8] and the following inequality

$$f(|\alpha_{ij}x'_{ij}|) \le |\alpha_{ij}|f(|x'_{ij}|) \le f(|x'_{ij}|) \text{ for all } (i,j) \in \mathbb{N} \times \mathbb{N}$$

That the space $_2\mathcal{Z}_0^I(f)$ is monotone follows from the Lemma 1.12. For $m_{_2\mathcal{Z}_0}^I(f)$ the result can be proved similarly.

Theorem 9.2.7. The spaces $_2\mathcal{Z}^I(f)$ and $m_{_2\mathcal{Z}}^I(f)$ are neither solid nor monotone in general.

Proof. We prove this result by providing a counter example. Let $I = I_{\delta}$ and $f(x) = x^2$ for all $x \in [0, \infty)$. Consider the K-step space $X_K(f)$ of X defined as follows

Let $(x_{ij}) \in X$ and let $(y_{ij}) \in X_K$ be such that

$$(y_{ij}) = \begin{cases} (x_{ij}) & \text{if i+j is even,} \\ 0, & otherwise. \end{cases}$$

Consider the sequence (x_{ij}) defined by $(x_{ij}) = 1$ for all $(i, j) \in \mathbb{N} \times \mathbb{N}$. Then $(x_{ij}) \in {}_2\mathcal{Z}^I(f)$ but its K-stepspace preimage does not belong to ${}_2\mathcal{Z}^I(f)$. Thus ${}_2\mathcal{Z}^I(f)$ is not monotone. Hence ${}_2\mathcal{Z}^I(f)$ is not solid.

Theorem 9.2.8. The spaces ${}_{2}\mathcal{Z}^{I}(f)$ and ${}_{2}\mathcal{Z}^{I}_{0}(f)$ are sequence algebras.

Proof. We prove that the sequence space $_2\mathcal{Z}_0^I(f)$ is a sequence algebra. Let $(x_{ij}), (y_{ij}) \in _2\mathcal{Z}_0^I(f)$. Then

$$I - \lim f(|x_{ij}^{'}|) = 0$$
 and $I - \lim f(|y_{ij}^{'}|) = 0$

Then we have

$$I - \lim f(|x_{ij}'.y_{ij}'|) = 0$$

Thus $(x_{ij}.y_{ij}) \in {}_2\mathcal{Z}_0^I(f)$ is a sequence algebra. For the space ${}_2\mathcal{Z}_0^I(f)$, the result can be proved similarly.

Theorem 9.2.9. The spaces $_2\mathcal{Z}^I(f)$ and $_2\mathcal{Z}^I_0(f)$ are not convergence free in general.

Proof. We give a counter example to prove this result.

Let $I = I_f$ and $f(x) = x^3$ for all $x \in [0, \infty)$. Consider the sequence (x_{ij}) and (y_{ij}) defined by

$$x_{ij} = \frac{1}{i+j}$$
 and $y_{ij} = i+j$ for all $(i,j) \in \mathbb{N} \times \mathbb{N}$.

Then $(x_{ij}) \in {}_2\mathcal{Z}^I(f)$ and ${}_2\mathcal{Z}^I_0(f)$, but $(y_{ij}) \notin {}_2\mathcal{Z}^I(f)$ and ${}_2\mathcal{Z}^I_0(f)$. Hence the spaces ${}_2\mathcal{Z}^I_0(f)$ and ${}_2\mathcal{Z}^I_0(f)$ are not convergence free.

Theorem 9.2.10. If I is not maximal and $I \neq I_f$, then the spaces ${}_2\mathcal{Z}^I(f)$ and ${}_2\mathcal{Z}^I_0(f)$ are not symmetric.

Proof. Let $A \in I$ be infinite and f(x) = x for all $x \in [0, \infty)$. If

$$x_{ij} = \begin{cases} 1, & \text{for } (i,j) \in A, \\ 0, & otherwise. \end{cases}$$

Then by lemma 1.14 $(x_{ij}) \in {}_2\mathcal{Z}_0^I(f) \subset {}_2\mathcal{Z}^I(f)$. Let $K \subset \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N} - K \notin I$. Let $\phi : K \to A$ and $\psi : \mathbb{N} - K \to \mathbb{N} - A$ be bijections, then the map $\pi : \mathbb{N} \to \mathbb{N}$ defined by

$$\pi(k) = \begin{cases} \phi(k), & \text{for } k \in K, \\ \psi(k), & otherwise. \end{cases}$$

is a permutation on \mathbb{N} , but $x_{\pi(m)\pi(n)} \notin _2 \mathbb{Z}^I(f)$ and $x_{\pi(m)\pi(n)} \notin _2 \mathbb{Z}^I_0(f)$. Hence $_2 \mathbb{Z}^I(f)$ and $_2 \mathbb{Z}^I_0(f)$ are not symmetric.

Theorem 9.2.11. Let f be a modulus function. Then ${}_{2}\mathcal{Z}_{0}^{I}(f) \subset {}_{2}\mathcal{Z}_{0}^{I}(f) \subset {}_{2}\mathcal{Z}_{\infty}^{I}(f).$

Proof. Let $(x_{ij}) \in {}_2\mathcal{Z}^I(f)$. Then there exists $L \in \mathbb{C}$ such that

$$I - \lim f(|x'_{ij} - L|) = 0$$

We have $f(|x'_{ij}|) \leq f(|x'_{ij} - L|) + f(|L|)$. Taking the supremum over (i, j) on both sides we get $(x_{ij}) \in {}_2\mathcal{Z}^I_{\infty}(f)$. The inclusion ${}_2\mathcal{Z}^I_0(f) \subset {}_2\mathcal{Z}^I(f)$ is obvious.

Theorem 9.2.12. The function $\hbar : m_{2\mathcal{Z}}^{I}(f) \to \mathbb{R}$ is the Lipschitz function, where $m_{2\mathcal{Z}}^{I}(f) = {}_{2}\mathcal{Z}_{\infty}^{I}(f) \cap {}_{2}\mathcal{Z}^{I}(f)$, and hence uniformly continuous.

Proof. Let $x, y \in m_{2\mathcal{Z}}^{I}(f), x \neq y$. Then the sets

$$A_x = \{(i, j) \in \mathbb{N} \times \mathbb{N} : |x_k - \hbar(x)| \ge ||x - y||_*\} \in I,$$
$$A_y = \{(i, j) \in \mathbb{N} \times \mathbb{N} : |y_k - \hbar(y)| \ge ||x - y||_*\} \in I.$$

Thus the sets,

$$B_x = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - \hbar(x)| < ||x - y||_*\} \in m_{2\mathcal{Z}}^I(f),$$
$$B_y = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |y_k - \hbar(y)| < ||x - y||_*\} \in m_{2\mathcal{Z}}^I(f).$$

Hence also $B = B_x \cap B_y \in m_{2\mathcal{Z}}^I(f)$, so that $B \neq \Phi$. A Now taking (i, j) in B,

$$|\hbar(x) - \hbar(y)| \le |\hbar(x) - x_{ij}| + |x_{ij} - y_{ij}| + |y_{ij} - \hbar(y)| \le 3||x - y||_*.$$

Thus \hbar is a Lipschitz function. For the space $m_{2\mathcal{Z}_0}^I(f)$ the result can be proved similarly.

Theorem 9.2.13. If $x, y \in m_{2\mathcal{Z}}^{I}(f)$, then $(x.y) \in m_{2\mathcal{Z}}^{I}(f)$ and $\hbar(xy) = \hbar(x)\hbar(y)$.

Proof. For $\epsilon > 0$

$$B_x = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - \hbar(x)| < \epsilon\} \in m_{2\mathcal{Z}}^I(f),$$
$$B_x = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |y_{ij} - \hbar(y)| < \epsilon\} \in m_{2\mathcal{Z}}^I(f).$$

Now,

$$|x_{ij}y_{ij} - \hbar(x)\hbar(y)| = |x_{ij}y_{ij} - x_{ij}\hbar(y) + x_{ij}\hbar(y) - \hbar(x)\hbar(y)|$$

$$\leq |x_{ij}||y_{ij} - \hbar(y)| + |\hbar(y)||x_{ij} - \hbar(x)| \qquad [9.9]$$

As $m_{2\mathcal{Z}}^{I}(f) \subseteq {}_{2}\mathcal{Z}_{\infty}^{I}(f)$, there exists an $M \in \mathbb{R}$ such that $|x_{ij}| < M$ and $|\hbar(y)| < M$.

Using eqn[9.9] we get

$$|x_{ij}y_{ij} - \hbar(x)\hbar(y)| \le M\epsilon + M\epsilon = 2M\epsilon$$

for all $(i, j) \in B_x \cap B_y \in m^I(f)$. Hence $(x.y) \in m_{2\mathcal{Z}}^I(f)$ and $\hbar(xy) = \hbar(x)\hbar(y)$. For the space $m_{2\mathcal{Z}_0}^I(f)$ the result can be proved similarly.