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Introduction

Abstract
We introduce elementary results on the prime numbers and the first criteria to determine
them, the representations of integers as sums of squares and the conjectures about
representations with higher powers of integers. The factorization of integer polynomials
and quadratic bilinear forms are presented, they are related to the units of the quadratic
fields.





Chapter 1 Introduction

A group (G, ∗) is provided with an asssociative law ∗ with a unit element e, e ∗ x =

x ∗ e = x for every x in G, and each element x in G has an unique symmetric x′ in G,
x′ ∗ x = x ∗ x′ = e. An Abelian group is a commutative group. Then (x ∗ y)′ = x′ ∗ y′

for all x and y of G and the quotients x ∗ y′ = y′ ∗ x and x′ ∗ y = y ∗ x′ belong to G. A
subgroup F is stable for the law and the inverse of every element of F belongs to F .

A homomorphism h between groups (G, ∗G) and (G′, ∗G′) is a mapping from G to G′

that preserves the laws of the groups,

h(x ∗G y) = h(x) ∗G′ h(y),

hence the unit element of G′ is eG′ = h(eG) and the inverse in G′ is h′(x), x in G. An
isomorphism is a bijective homomorphism and an endomorphisms h maps G into G. The
kernel of a homomorphism is

kerh = {x ∈ G : h(x) = eG′},

it reduces to {eG} if h is injective.

Let H be a subgroup of G, the quotient group of G and H is

G/H = {x̄ = x ∗G H = H ∗G x, x ∈ G}.

With an homomorphisme h : G 7→ G′, h(G) is isomorph to G/ kerh.

A ring (A,+, .) provided with additive and multiplicative laws is a commutative group
for the addition such that the multiplication is associative and distributive with respect to
the addition, (a+ b).c = a.c+ b.c. If (A, .) is commutative, A is a commutative ring. The
kernel of f defined on A is sub-rings of A and the image f(A) of A by f is a sub-rings
of A′.

An ideal I is a sub-group of a ring (A,+, .) such that the relation x − y belongs to
I is compatible with the addition and the multiplication of A, for all x in I and a in A,
a + x and ax belong to I . Equivalently, there exists a homomorphism h : A 7→ B such
that kerh = I . An ideal aA generated by a single element a of A is a principal ideal. A
principal ring (A,+, .) is a ring with a unit element for the multiplication and such that
every ideal of A is principal.
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A field is a ring with a unit element for the multiplication and such that every non zero
element has an inverse. A commutative and unitary ringA is a field if and only if its ideals
reduce to {0} and A.

A homomorphism h between commutative rings (A,+, .) and (A′,+, .) preserves the
additive law

f(x+ y) = f(x) + f(y)

this equality implies

f
(kx
n

)
)

=
k

n
f(x)

and f(n) = nf(1). If (A,+, .) is a field, every element of A′ has a symmetric

1 = f(x).f(x′), f(x.x′) = f(1).

If f preserves the multiplicative law

f(x.y) = f(x).f(y)

and this implies f(1) = 1.

1.1 Factorization of the Integers

For every p of Z \ {0, 1}, the set pZ = {kp, k ∈ Z} is an ideal of Z generated by the
integers divided by p. It is a proper ideal if p is prime. The quotient space
Fp = Z/pZ = {0, 1, . . . , p− 1} is the finite ring of the elements of Z modulo p and pZ
is the kernel of f(k) = kp on Z. If p is prime, Fp is a field.

Let P be the set of the prime numbers of N, they can be divided only by the unit number
1 and themselves. A prime number p satisfies Euclid’s property

p | ab implies p | a or p | b. (1.1)

where the notation n | p means n divides p in N.

Every integer n has a unique factorization according to prime integers p1, . . . , pIn

n =

In∏
i=1

pαii (1.2)
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where αi ≥ 1 is the highest exponent of pi such that pαii |n. The unicity of this
factorization is a consequence of Euclid’s property. Fermat proposed methods for the
factorization of large numbers. If an odd integer n is not prime, there exists a divisor of
n, p ≥ q + 1 where q =

[√
n].

Large tables of the prime numbers and their cardinal have been calculated very early.
Erastothene sieves to find them consists in removing all multiples of an integer, starting
from 2 (300 A.D.). It is known from Pythagore that the cardinal of P is infinite. Several
approximations and expressions of the cardinal π(n) of the prime numbers lower than a
value n have been formulated since the 18th century by Euler, Legendre, Riemann and
Dirichlet.

Integers a and b are relatively primes if their greatest common divisor gcd(a, b) is 1.
Euclid’s division provides an algorithm to determine the greatest common divisor of two
numbers a and b. Let q0, q1, . . . , qn and r1, . . . , rn+1 be integer sequences such that
0 < rk+1 < rk and

a = q0b+ r1,

b = q1r1 + r2,

rk = qk+1rk+1 + rk+2, k = 1, . . . , n− 1,

rn+1 = 0,

then gcd(a, b) = rn.

Integers a and b are relatively primes if and only if there exists x and y in Z such that

ax+ by = 1. (1.3)

Theorem 1.1.1 (Euler) For all intergers a and b, there exist x and y in Z such that ax+

by = gcd(a, b).

Proof. Let d = gcd(a, b), the highest interger that divides a and b, a = αd and b = βd

with gcd(α, β) = 1. Then d divides every linear combination a and b, ax+by = d(αx+

βy). The smallest positive linear combination of a and b is equal to d. �

Theorem 1.1.2 (Dirichlet) Let a and b be relatively primes then the sequence

(a+ nb)n∈N contains infinitely many primes to a.
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In this sequence all numbers in the form a + kb are relatively prime to a if a and k
are relatively primes. There are infinitely many primes in a linear form 4n + 1, 4n + 3,
6n+ 1, 6n+ 5 or 8n+ 5 they are special cases of Dirichlet’s theorem.

Patterns of the distribution of P in N and functions generating prime numbers has been
search. Sun and Sun (1992) studied the divisors of Fibonacci’s numbers

Fn = Fn−1 + Fn−2

with F0 = 0 and F1 = 1, and Lucas’s numbers Ln = Ln−1 + Ln−2, with L0 = 2 and
L1 = 1.

Mersenne’s numbers are defined with p prime as

Mp = 2p − 1.

Let p1 < p2 in P such that p2 = rp1 + q with 0 < q < p1

Mp2 = 2q(Mp1 + 1)r − 1 = 2q − 1 (mod Mp1)

which implies Mp1 and Mp2 are mutually prime and all Mersenne’s numbers are
mutually prime but many of them are not primes. If q is a prime factor of Mp, 2p = 1

(mod q) and 2q−1 = 1 (mod q) by Fermat first theorem (Theorem 2.1.1), therefore
p | q − 1.

Fermat’s numbers are defined as

Fn = 22n + 1, n ≥ 0.

For all n and k = 0, . . . , n− 1, they satisfy

Fn = (Fn−1 − 1)2 + 1 = (Fn−k − 1)2k + 1,

they are all mutually primes with

Fn = 2 (mod Fn−k).
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The first ones are F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 and they are
primes. Lucas (1878) proved that

F5 = 232 + 1 = 641× 6700417

and 114689 | F12. If q is a prime factor of Fn, 22n = −1 (mod q) and 22n+1

= 1

(mod q). Let k be the smallest integer such that 2k = 1 (mod q), then k ≤ q − 1 by
Fermat first theorem and k ≤ 2n+1 for q | Fn. It follows that

q | (22n+1

− 2k) = 2k(22n+1−k − 1)

hence 22n+1−k = 1 (mod q) and k < 2n, similarly q | 2k(2q−1−k − 1) implies 2k +

1 ≤ q. Let 2n = ak + b with 0 ≤ b < k, then 22n = (2k)a.2b = 2b (mod q) and
q | 2b + 1. Fermat’s numbers are mutually primes, b is not a power of 2, and b > 0 since
q is odd.

Many prime numbers have a linear form and the graph of every linear function covers
infinitely many prime numbers however they do not generate prime numbers, for
example there are 161 primes lower than 1000, among them there are 25 numbers such
that p1 = 18n+ 5 and 28 numbers such that p2 = 18n+ 11

P1 = {23, 41, 59, 113, 131, 149, 167, 239, 257, 293, 311, 347, 383, 419, 491,

509, 563, 599, 617, 653, 743, 761, 797, 887, 941},

P2 = {29, 47, 83, 101, 137, 173, 191, 227, 263, 281, 317, 353, 389, 443, 461,

479, 569, 587, 641, 659, 677, 821, 839, 857, 911, 929, 947, 983}.

Fermat and Legendre determined the most important criteria to determine whether a
large number belongs to P and large tables of prime numbers have been published. If n
has two possible divisors p1 and p2, the search of the smallest of p1 and p2 may be
performed up to the largest integer smaller or equal to

√
n, the other factor being then

larger than this value.

The rules for an integer to be divided by a prime are simple for 2, 3 or 5. To write an
integer modulo p, let

n =

k∑
i=0

xi. 10k,
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then n = x0 (mod 2) and 2 | n if and only if 2 | x0. For the division by 3, n =
∑k
i=0 xi

(mod 3) and 3 | n if and only if 3 |
∑k
i=0 xi. In the same way, n = x0 + 2

∑k
i=1 xi

(mod 4), n = x0 (mod 5)

n =

k∑
i=0

{x6i − x6i+3 + 3(x6i+1 − x6i+4) + 2(x6i+2 − x6i+5)}, (mod 7),

n = x0 +

k∑
i=1

(−1)ixi (mod 11),

n =

k∑
i=0

{3(x6i+4 − x6i+1) + 4(x6i+5 − x6i+2) + x6i − x6i+3}, (mod 13),

n =

k∑
i=0

(x5i + 6x5i+1 − 2x5i+2 − 3x5i+3 + 4x5i+4) (mod 17).

This rules applies to all integers. Other rules may be faster for the search of prime
divisors.

Let n be two digit odd number

7 | n if and only if 100− n = 2 (mod 7)

if n is a three digit odd number

7 | n if and only if 1000− n = 6 (mod 7).

The following equivalences are satisfied modulo 7, 10i+1 ≡ −10i−1 ≡ 10i−3, for a
large odd number n with k digits 7 | n if and only if 7 | 10k+1 − n.
Applying the same principle to the following primes and since 13 | 1001, for a three digit
odd number

13 | n if and only if 13|(1001− n).

For a large number n, k × 1001 − n is multiple of 13 where k is an integer such that
(k − 1)× 1001 ≤ n < k × 1001 and so on.

Other rules of factorization are well known.
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1. Every integer n divides exactly one of n consecutive integers k, k + 1, . . . , k + n,
with k arbitrary.

2. An integer in the form n4 + 4m4 is not prime since

n4 + 4m4 = (n2 + 2m2)2 − 4n2m2

= (n2 + 2nm+ 2m2)(n2 − 2nm+ 2m2).

3. The radical of an integer is the product of the prime numbers that divide it. Let a
and b in P and let c = a+ b, the radical of their product is

Rad(abc) = abRad(c) > max(a, b, c).

If a and b are not prime, the inequality Rad(abc) > max(a, b, c) is not necessarily
satisfied.

Proposition 1.1.3 Let n be a product of prime numbers, the number φ(n) of integers

prime to n and smaller than n is the product of the numbers of integers prime to its prime

factors.

Euler’s function φ(n) is the cardinal of the numbers smaller than n and relatively prime
to n, it is also the number of generators of the cyclic group Fn. From the factorization
(1.2) of n, it is defined as

φ(n) = n

In∏
i=1

(
1− 1

pi

)
=

In∏
i=1

pαi−1
i (pi − 1) (1.4)

and the number of the divisors of n

τ(n) =

In∏
i=1

(αi + 1),

they are 1, pi, . . . , p
αi
i , i = 1, . . . , In. An integer n is a square if and only if τ(n) is odd.

Let k such that φ(n+ k) = 2φ(n). If n is even and 2α|n, the equation is equivalent to
2α+1|n+k and k = n, in that case φ(2n) = 2φ(n). If 2|φ(n+k) with n odd and 3|n+k

but not n, k = 2n and φ(3n) = 2φ(n).

Replacing 2 with an arbitrary prime p such that p|n + k and n, the equation entails
n+ k = np and k = (n− 1)p, φ(np) = pφ(n). Otherwise p|φ(n+ k) but not φ(n), then
k = np and φ(n(p+ 1)) = pφ(n).
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Proposition 1.1.4 (Euler) Every integer n is written as

n =

τ(n)∑
k=1

φ(k),

n∑
k=1

τ(k) =

n∑
k=1

[n
k

]
.

Proof. Let Ak = {a ∈ {1, . . . , n− 1} : gcd(n, a) = d−1
k n} for every divisor dk of n,

they are disjoint sets which cover {1, . . . , n} and their cardinals are #Ak = pk − 1 if dk
is prime, #Ak = pαk−1

k (pk − 1) if dk = pαkk with 1 ≤ αk ≤ mk. For a product pαii p
αj
j ,

the cardinal is #Aij = pαi−1
i (pi − 1)p

αj−1
j (pj − 1).

The second assertion is deduced from the equality

#{k ≤ n : p|k} =

[
n

p

]
for every n and p in N∗. �

The sum of the divisors of an integer n ≥ 1 factorized as (1.2) is 1+pi+p
2
i +. . . ,+pαii

for i = 1, . . . , In and the function σ(n) is their product

σ(n) =

In∏
i=1

{1 + pi + p2
i + . . . ,+pαii }

=

In∏
i=1

pαi+1
i − 1

pi − 1
.

Conjectures about the representation of numbers as sum of functions of primes are not
completely proved.
Goldbach’s conjecture. Every even n ≥ 6 is sum of two odd primes and every odd
n ≥ 9 is sum of three primes.
Levy’s conjecture. For every odd n ≥ 5, there exist p, q in P such that n = p+ 2q.
Waring-Goldbach conjecture. For k ≥ 2 and for every sufficiently large n, there exist
n1, . . . , ns(k) in N such that

n = nk1 + · · ·+ nks(k)

where s(k) does not depend on n. It is obvious that s(k) ≥ 2k for every k, we have
s(3) ≤ 9 if n ≤ 100 and s(5) ≤ 38 if n ≤ 250, asymptotic upper bounds have been
established for large values of k.
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Table 1.1: Integers n sums of two cubes

2 9 16 28 35 54 65 72 91
126 133 152 189 217 224 243 250 280
341 344 351 370 407 432 468 513 520
539 559 576 637 686 728 730 737 756
793 854 855 945 1001 1008 1024 1027 1064

By Fermat’s last theorem, the sum of two cubes cannot be cubic. The conjectures about
the number of terms necessary for the representation of an integer as a sum of cubes are
not proved. Table (1.1) shows that the representation of integers as sums or differences of
two cubes is restrictive. Let n be such that

x3 ± y3 = n

if n is prime, by the factorization x3 − y3 = (x − y)(x2 + xy + y2) it is necessary that
x = y + 1, the equation has many solutions such as

(n, x, y) = (19, 3, 2), (27, 4, 3).

The solutions (x, y) of the equations n = x3 + y3 are not always unique

1729 = 1 + 123 = 93 + 103,

4104 = 23 + 163 = 93 + 153

The length δk of the interval between xk and (x− 1)k has bounds

kxk−1 < δk < 2kxk−1,

the interval of length δk contains nx−1 multiples of (x − 1)k, the sub-interval of length
δk−1 between (nx−1 + 1)(x− 1)k and (x− 1)k contains nx−2 multiples of (x− 2)k and
so on. An upper bound of s(k) is

Nk =

x−1∑
i=2

ni < 2k
x−1∑
m=2

mk−1(m− 1)−k.

Euler’s conjecture. For k ≥ 2 and for every integer n, there exist integers
n1, . . . , ns(k) 6= n such that

nk = nk1 + · · ·+ nks(k)
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where s(k) does not depend on n and s(k) ≥ k for every k ≥ 2, with s(2) = 2. It
extends Fermat’s last theorem, where s(k) > 2, for every k ≥ 2 (Section 3.2). For
example, the equation x3 + y3 = z3 cannot be solved by pairwise prime integers except
by trivial solutions with a null component. The equation with rational cubes is equivalent
to an equation (x1y2z2)3 + (x2y1z2)3 = (x2y2z1)3.

There exist integers n sums of a few powers n4 = n4
1 + n4

2, n4 = n4
1 + n4

2 + n4
3

or n5 = n5
1 + · · · + n5

3 (Lander and Parkin, 1966), they are special cases rather than
counter-examples of the conjecture.

Birch Swinnerton-Dyer conjecture. The square-free integersN congruent to 4, 6, 7, 8

(mod 9) are written as a sum of two cubes of Q.

Let gcd(a, b) = 1, gcd(k, n) = 1, gcd(a, k) = 1 and gcd(b, n) = d, the equation

N =
a3

b3
+
k3

n3

or

A = d3N =
a3

c3
+
k3

m3

with gcd(c,m) = 1, is equivalent to

(cm)3A = (am)3 + (ck)3 = (am+ ck)(a2m2 + amk + c2k2)

where gcd(am + ck, cm) = 1 therefore cm | (a2m2 + ackm + c2k2) but a and m are
not multiples of c > 1, c and k are not multiples of m > 1. It follows that c = m = 1

and a necessary condition for the existence of solutions is b = n.
The equation is then equivalent to

d3N = a3 + k3 = (a+ k)(a2 − ak + k2).

Because gcd(a, k) = 1, the prime factors of d and N cannot divide both a + k and
a2−ak+k2d therefore there exist integers s, t, u, v ≥ 1 relatively prime to a and k, such
that d = st and N = uv, with

a+ k = s3u, a2 − ak + k2 = t3v.

The conjecture leads to characterize the prime integers that divide gcd(N, a + k) and
gcd(N, a2 − ak + k2).
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1.2 Polygonal Numbers

The polygonal numbers are written as

pα+2,n = n+ α
n(n− 1)

2
, n ≥ 1, α ≥ 1,

the ratio pα+2,np
−1
α+2,n tends to 1 as n tends to infinity. They may be even or odd, they

are triangular numbers with α = 1, squares with α = 2, pentagons with α = 3, hexagons,
etc. The triangular numbers satisfy the recurrence formula p3,n = p3,n−1 + n it follows
that every integer k = p3,m + n is written as a sum

k = p3,m + p3,n − p3,n−1

and every k = n− p3,m is the sum

k = p3,m + p3,n + p3,n−1,

n and therefore k being arbitrary, every integer is sum of three triangular numbers.

Table 1.2: Triangular numbers

1 3 6 10 15 21 28 3
45 55 66 78 91 105 120 136
153 171 190 210 231 253 276 300
325 351 378 406 435 465 496 528
561 595 630 666 703 741 780 820
861 903 946 990 1035 1081 1128

The squares satisfy the recurrence

p4,n = n2 = p4,n−1 + 2n− 1,

they are obtained by adding the consecutive odd integers 1, 1 + 3, 4 + 5, 9 + 7, 16 + 9

and so on. There exist consecutive triangular numbers which are not separated by
squares, for example the interval [231, 253] does not contain any square. There are two
triangular numbers in some square intervals such as [64, 81] or [100, 121] and only one in
other square intervals such as [81, 100].
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For the pentagonal numbers

p5,n = p5,n−1 + 3(n− 1) + 1

and p5,n < 2n2, Table (1.3) presents their first values.

Table 1.3: Pentagonal numbers

1 5 12 22 35 51 70 92
117 145 176 210 247 287 330 376
425 477 532 590 651 715 782 852
925 1001 1080 1162 1247 1335 1426 1520
1617 1717 1820 1926 2035 2147 2262 2380
2501 2625 2752 2882 3015 3151 3290

If n = 2a, p5,n has the same parity as a, if n = 2a + 1, the parity of p5,n is the
opposite of the parity of a.

The hexagonal numbers are

p6,n = p6,n−1 + 4(n− 1) + 1

all hexagonal numbers are triangular with

Table 1.4: Hexagonal number

1 6 15 28 45 66 91 120
153 190 231 276 325 378 435 496
561 630 703 780 861 946 1035 1128
1225 1326 1431 1540 1653 1770 2016 2145
2278 2415 2556 2701 2850 3003 3160 3321
3486 3655 3828 4005 4186 4371 4560

p3,2n+1 = p6,n+1

and 2p6,n + 1 = (2n− 1)2.
The heptagonal numbers are p7,n = p7,n−1 + 5(n− 1) + 1 A triangular number can be a
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Table 1.5: Heptagonal numbers

1 7 18 34 55 81 112 148

189 235 286 342 403 469 540 616

697 783 874 970 1071 1177 1288 1404

1525 1651 1782 1918 2059 2205 2356 2512

2673 2839 3010 3186 3367 3553 3744 3940

4141 4347 4558 4774 4995 5221 5452

square such as 1, p3,8 = 36, p3,288 = 41616 and every square a = mk such that n = k2

and n+ 1 = 2m2 or n = 2k2 and n+ 1 = m2, with gcd(m, k) = 1, it follows

k2 − 2m2 = −1 or m2 − 2k2 = 1.

A triangular number can be heptagonal such as 1 and 55. A square cannot be heptagonal
except 1, 225 and all p7,n with integers n such that gcd(n, 5n− 3) = 1 and

5n = 10k2 = m2 + 3 or 5n = 5k2 = 2m2 + 3.

In a regular polygon with n edges with angles 2πn−1, the vertex ak in C satisfy
‖ak+1 − ak‖ = ‖ak − ak−1‖ hence

ak+1 − ak
ak − ak−1

=
2π

n
, k = 2, . . . , n− 1

and this property is specific for every n. For the pentagonal integers

p3,n+1 − p3,n

p3,n − p3,n−1
=

n

n− 1
,

p4,n+1 − p4,n

p4,n − p4,n−1
=

2n+ 1

2n− 1
,

p5,n+1 − p5,n

p5,n − p5,n−1
=

3(2n+ 1)− 1

3(2n− 1)− 1
,

for every α, this ratio depends on n and it is always strictly larger than 1.

For all n > 1 and α > 3, the nth order (α + 1)-polygonal numbers is the sum of the
triangular number of the previous order and of the α-polygonal number of the same order

pα+2,n + p3,n−1 = pα+3,n.
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From Plutarch (100 A.D.), for every n ≥ 1

8p3,n = (2n+ 1)2 − 1.

For the squares 4n2 = (2n)2 and for every α ≥ 3

2αpα+2,n = (αn+ 1)2 − (α2 + 1).

If α is even, let α = 2a, this equality is written as a difference of two squares

2αpα+2,n = (αn+ 1− a)2 − (a− 1)2.

Theorem 1.2.1 (Fermat) Every integer is the sum of k ≤ 3 triangular numbers, the sum

of k ≤ 4 squares, the sum of k ≤ (α+ 2) α-polygons for every α ≥ 3.

The decomposition of an integer n as a sum of polygons is not always unique. This
theorem can be proved or verified numerically for small α but its algebraic proof has
been the origin of controverses. The sum may be reduced to two triangular numbers, e.g.
36 = 15 + 31.

The decomposition of an integer n as a sum of four squares does not necessarily include
the largest integer qn, integer part of n

1
2 .

Example. Let n = 419 = 3 (mod 4) with qn = 20, then n− q2
n = 4, a sum of 4 squares,

and
n− (qn − 1)2 = 58 = 72 + 33

hence n = 3. Moreover n is sum of three triangular numbers and no more than four
pentagons and five hexagons

n = p3,28 + p3,4 + p3,2,

n = p5,15 + p5,9 + p5,5 + p5,2,

n = p6,16 + p6,4 + 2p6,2 + p6,1.

Example. Let n = 2027651281 = 1 (mod 4), it is not prime as proved by Fermat and
qn = 45029, then n = (qn − 1)2 + r with r = 130497, r = 3612 + 176 which proves

n = (qn − 1)2 + 3592 + 402 + 42 = 4.
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Its decomposition as a sum of pentagonal numbers does not exceeds 5 pentagons since

n = 2027589751 + 60501 + 925 + 92 + 12.

It is also the sum of no more than 5 hexagonal numbers,

n = 2027539360 + 107416 + 4371 + 91 + 43.

Fermat’s Theorem does not apply to the triangular numbers, for instance 1055 is a sum
of five triangular numbers 1055 = 1035 + 15 + 3 + 1 + 1.

Lagrange improved Fermat’s Theorem by reducing to a constant number the number
of polygons of the sums, independently of their degree α+ 2 > 3.

Theorem 1.2.2 (Lagrange) If α > 1 is odd, every integer n > 28α3 is the sum of 4

polygons pα+2. If α is even, every odd integer n > 7α3 is the sum of 4 polygons pα+2

and every odd integer n > 7α3 − 1 is the sum of 1 and 4 polygons pα+2.

Let α = 0 (mod 4), every even integer n > 28α3 is the sum of 4 polygons pα+2, under

conditions concerning the parity of α2 and n.

Legendre (1810) proved several results about the decomposition of an integer n as a
sum of three triangular numbers. Let us assume that there exist integers n, x, y, z such
that 2n = a+ b with

a = x2 + y2 + z2,

b = x+ y + z,

a and b having the same parity, it follows that a cannot be equal to 2α(8k + 7) and
a

1
2 ≤ b ≤ (3a)

1
2 . One of x, y and z has the same parity as a, for instance x. Denoting

2p = y + z and 2q = y − z, a = (b− 2p)2 + (p+ q)2 + (p− q)2 and

u =
3a− b2

2
= (3p− b)2 + 3q2

that is possible if u has simple divisors of the form 6n+ 1, and 3 if 3 | b, 4 if a = 8n+ 3

or if 4k | a and 2k | b. Then the equation can be solved. This is not a general case, other
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restrictions are necessary for the decomposition of an integer n as a sum of four triangular
numbers so that 2n = a+ b with

a = u2 + x2 + y2 + z2,

b = u+ x+ y + z,

a and b having the same parity.

Theorem 1.2.3 (Fermat) Every n > 2 of P has a unique decomposition as a difference

of two squares

n =
(n+ 1

2

)2

−
(n− 1

2

)2

.

The representation of an integer as a sum of two squares is not unique

50 = 1 + 72 = 52 + 52,

65 = 1 + 82 = 42 + 72,

130 = 32 + 112 = 72 + 92,

265 = 32 + 162 = 112 + 122,

338 = 72 + 172 = 132 + 132.

Lagrange has established that the product of two sums of two squares is a sum of two
squares

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2 (1.5)

and the following decompositions.

Necessary conditions for a prime number n to be a sum of two squares are n = 1

(mod 4) or n = 2. A sufficient condition for a prime number n to be a sum of 3 or 4
squares is n = 3 (mod 4), then it is the sum of the squares of three odd numbers or the
sum of the squares of an even numbers and three odd numbers. This is not a necessary
condition for n = 1 (mod 4) may be the sum of the squares of two even numbers and an
odd number.

The decomposition of a prime number as a sum or a difference of squares depends on
its value modulo 4 or 8. For every odd integer a > 0, a2 = 1 (mod 4) and a2 + a is
even, this entails
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1. n = 0 (mod 4) if it is the square of an even integer,

2. n = 1 (mod 8) if n = (2a + 1)2 with a > 0, or n = (2a + 1)2 + 2b2, a, b > 0

and b even,

3. n = 1 (mod 4) if it is the sum of the squares of two odd integers n = (2a+ 1)2 +

(2b+ 1)2, a, b > 0,

4. n = 3 (mod 8) if it is the sum of the squares of three odd integers n = (2a+1)2 +

(2b+ 1)2 + (2c+ 1)2, a, b, c > 0,

5. n = 5 (mod 8) if it is the sum of the squares n = {2(2a + 1)}2 + (4b + 1)2,
a, b > 0,

6. n = 7 (mod 8) if it is a sum of four squares n = {2(2a+1)}2 +(2b+1)2 +(2c+

1)2 + (2d+ 1)2 with a, b, c, d > 0.

More results on the decomposition of integers are due to Fermat or have been proved
using his first theorem by Euler, Lagrange and Legendre (Section 2.2).

Theorem 1.2.4 (Lagrange) For every prime number p > 2, there exist integers x and y

such that 1 +x2 + y2 = 0 (mod p), with 1 ≤ m < p in N satisfying one of the equalities

1. x2 + y2 = 1 (mod 4) if m is even,

2. x2 + 2y2 = 3 (mod 8) if m is odd,

3. x2 − 2y2 = 7 (mod 8) if m is odd.

Example. x2 + 3y2 = 1 (mod 6) for all x and y having different parities and such that
3 - x.

Proposition 1.2.5 Let n be odd in P, necessary conditions for the equality n = x2 + 2y2

are n = 1 (mod 8) or 3 (mod 8). Necessary conditions for n = x2 − 2y2 are n = 1

(mod 8) or 7 (mod 8).

According to Proposition 1.2.5, x2 + 2y2 cannot be written as 5 or 7 (mod 8) and
x2 − 2y2 is always different from 3 or 5 (mod 8).
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Proposition 1.2.6 Let n be odd in P and let A be odd in N, n satisfies

n = x2 ±Ay2

only if n = 1 (mod 4) or n = 1±A (mod 8) or n = A (mod 4).

The proof relies on the parity of x and y. The next theorem proved by Legendre extends
to quadratic equations.

Theorem 1.2.7 (Legendre) Let x and y in N such that gcd(x, y) = 1, every prime factor

of an integer x2 + y2 is the sum of two squared integers. Every prime factor of x2 − y2 is

the difference of two squared integers.

By the same argument, every prime number dividing a sum of 4 squares is the sum of
4 squares.

Theorem 1.2.8 Let x and y in N such that gcd(x, y) = 1, every prime factor of an integer

x2 ± 2y2 is written as a2 ± 2b2.

Proof. Let N | x2 + 2y2, for all a and b of N such that x′ = x− aN and y′ = y − bN
satisfy |x′| < N

2 , |y′| < N
2 and N | x′2 + 2y′2 so there exists N ′ | x′2 + 2y′2 in N such

that

NN ′ = x′2 + 2y′2 <
3N2

4
.

If N ′ = 1, N = x′2 + 2y′2 and the proposition is proved, otherwise there exist N ′′, α
and β in N such that |x′−αN ′′| and |y′−βN ′′| < N ′

2 , N ′ | (x′−αN ′)2 + 2(y−βN ′)2

and

N ′N ′′ = (x′ − αN ′)2 + 2(y′ − βN ′)2 <
3N ′2

4
,

NN ′2N ′′ = (x′2 + 2y′2){(x′ − αN ′)2 + 2(y′ − βN ′)2}

= (x′2 + 2y′2 − αx′N ′ − 2βy′N ′)2 + 2(αy′N ′ − βx′N ′)2

= (NN ′ − αx′N ′ − 2βy′N ′)2 + 2(αy′N ′ − βx′N ′)2,

dividing by N ′2 implies

NN ′′ = (N − αx′ − 2βy′)2 + 2(αy′ − βx′)2 = x′′2 + 2y′′2
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with x′′ = N − αx′ − 2βy′ and y′′ = αx′ − βy′. If N ′′ = 1, there exists a finite
sequence (N (k), α(k−2), β(k))k=1,...,K satisfying the same property and the last integer
N (k) is one.

The proof is similar for the prime factors of x2 − 2y2. �

Theorem 1.2.9 Let x, y and a in N such that gcd(x, y) = 1, every prime factor of x2 ±
ay2 is written as s2 ± at2, every prime factor of x4 − a2y4 is written as s4 − a2t4.

The proof is the same as in Theorem 1.2.8 where a = 2. The prime factors of a
quadratic number x2 + bxy + cy2 = (x ± ay)2, with b = ±2a in Z and c = a2 in N+,
are deduced.

The solutions of an equation

x2 + a = 0 (mod n)

with an integer n are deduced from Theorem 1.2.9. All prime divisors of n have the form
y2 + a, with integers y. The product of two divisors of n solutions of the equation is

(s2 + a)(t2 + a) = (st+ a)2 + a(s− t)2,

it is solution of an equation x2 + ay2 = 0 (mod n).

In the same way, the product of two prime factors p1 = s2
1 + at21 and p2 = s2

2 + at22 of
x2 + ay2 has the same form (s1s2 + at1t2)2 + a(s1t2 + at1s2)2.

1.3 Quadratic Fields

Let d in Z be without square factor (sqare-free), K = Q(
√
d) is a quadratic field with

[K : Q] = 2, where [K : Q] is the dimension of K as a vector space on Q. Gauss’s
integer ring is

Z[i] = {a+ ib; a, b ∈ Z},

every element of Z[i] is root of a normed equation of second degree with coefficients
in Z. The equation x2 + 1 = 0 has the solutions x = ±i in Z[i], the equation x3 +

Science Publishing Group 21



Number Theory and Algebraic Equations

1 = (x + 1)(x2 − x + 1) = 0 has the solutions x = −1 and x = 1
2 (1 ±

√
3i) in

Q[
√

3i]. The equation x4 + 1 = 0 has the solutions x2 = ±i in Z[i], the roots of
x5+1 = (x+1)(x4−x3+x2−x+1) = 0 are x = −1 or such that x4−x3+x2−x+1 = 0.

The units of Z[i] are ±1,±i and p in Z is prime in Z[i] if it is divisible only by a unit
or by itself. If p is prime in Z and p is sum of two squares, it is not prime in Z[i] since
a2 + b2 = (a+ bi)(a− bi).

Theorem 1.3.1 For every p in Z[i], p is prime if and only if p = a + ib with a and b in

Z∗ and N(p) = a2 + b2 is prime or p is prime in Z and p is not a sum of two squares.

The first condition is a consequence of the equivalence of z1z2 | p and the same
property for the complex norms |z1|.|z2| | |p|.
Example. n = 2 factorizes as n = (1 + i)(1− i) = i(1− i)2, where gcd(i, 1− i) = 1, 2
is not prime in Z[i].
Example. For every p = 1 (mod 4), 2

p−1
2 = 1 (mod p) and 22k − 1 = x2 + i2 = 0

(mod p) hence p | x+ i or p | x− i with x = 2k. Let p = 3 (mod 4), then 2
p−1
2 = −1

(mod p) and p | 22k+1 + 1 therefore p is prime in Z[i] if it is prime in Z.

Euclid’s division is defined in Z[i] with a condition for the norms, for all a and b 6= 0

in Z[i] there exist q and r in Z[i] such that

a = qb+ r, N(r) < N(b).

Euclid’s property (1.1) still holds if p is prime in Z[i]

p | ab implies p | a or p | b.

In the euclidean division of y = a+ ib by y1 = a1 + ib1 in Z[i], there exist z = s+ it

and y2 = a2 + ib2 in Z[i] such that

y = zy1 + y2, 0 ≤ N(y2) < N(y1).

A common divisor of y and y1 in Z[i] is determined by a sequence of the euclidean
divisions starting from y = zy1 +y2 and, for k = 1, . . . , n−1, the division of yk by yk+1

such that 0 ≤ N(yk+1) < N(yk), until yn+1 = 0. The elements of Z[i] are not ordered
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and the sequence (yk)k=1,n+1 is not necessarily unique, it defines yn as a common divisor
of y and y1 but this is not necessarily the greatest. An algebraic integer x of a field K
on Z is a root of a polynomial with integer coefficients, it solution in K of an algebraic
equation

P (x) = a0x
n + a1x

n−1 + ·+ an = 0

with a1, . . . , an in Z. The algebraic numbers are therefore countable in R. A polynomial
of degree n, P (x) = xn + a1x

n−1 + · + an = 0 on Z is primitive if
gcd(a0, a1, . . . , an) = 1. Let d in N∗, it is square-free if a−2d is not an integer for every
a in N∗. Let d a square-free integer, a quadratic field Q(

√
d) is generated by a root of a

quadratic algebraic equation. Let d in N∗ such that a−3d is not an integer for integer
every a, the cubic root α = d

1
3 and α2 are generators of the field Q[α] = Q(α, α2).

Theorem 1.3.2 Let x = a + b
√
d with d a square-free in N∗, a and b in Q, then x is an

algebraic integer of Q(
√
d) if it is root of the quadratic polynomial

(X − a)2 − db2 = 0,

with the necessary and sufficient conditions that its trace

Tr(x) = 2a

and its squared norm

N(x) = a2 − db2

belong to Z.

For α = a+ b
√
d in Q(

√
d), the multiplicative endorphism mα : x 7→ α.x is linear, it

is expressed in the basis (1,
√
d) as the vector

mα(s+ t
√
d) = M(α)

(s
t

)
,

with the matrice

M(α) =
(a bd

b a

)
.

The trace and the determinant of M(α) are Tr(x) and, repectively, N(x) and

mα(α) =
( N(α)

bTr(α)

)
.
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The addition and the multiplication of matrices M(α) and M(β) generate a matrix
field M2(Q) with the properties mα + mβ = mα+β and mα ◦mβ = mαβ . In M2(Q),
each element has an inverse mα−1 associated to the matrix M−1

α , for the multiplication.
The properties of mα imply Tr(α + β) = Tr(α) + Tr(β), Tr(α.β) = αTr(β) and
N(α.β) = N(α).N(β) for all α and β in Q[

√
d]

In a field Z[
√
d], with d square-free, the norm N of a product is equal to the product of

the norms which entails a generalization of Theorem 1.3.1.

Theorem 1.3.3 For every p in Z[
√
d], p is prime if and only if p = a+

√
db with a and b

in Z∗ and N(p) is prime or p is prime in Z and p is not a sum a2 − db2.

The last condition is a consequence the factorization of a2 − db2 in Z[
√
d]. The first

condition comes from the property of the norm. Euclid’s division and property (1.1) are
still true if p is prime in Z[

√
d], furthermore every element of Z[i] has a factorization (1.2)

according to its prime divisors in Z[i].

Theorem 1.3.4 Let d be square-free in N∗, if d = 1 (mod 4)

Q(
√
d) =

{
a+

b(1 +
√
d)

2
; a, b ∈ Z

}
= Z

[1 +
√
d

2

]
,

if d = 2 or 3 (mod 4)

Q(
√
d) = {a+ b

√
d; a, b ∈ Z} = Z[

√
d].

Proof. The conditions of Theorem 1.3.3 are fulfilled for the fields Q(
√
d) in both cases.

To prove the equality, let x = a+ b
√
d be an integer of Q(

√
d), u = 2a and

N(a) =
u2

4
− db2

belong to Z. If d = 1 (mod 4) and u is odd, 2b must belong to Z, otherwise a and b must
belong to Z and a2 − db2 = 0 which is excluded for d is not a square.

If d = 2, the condition N(a) belongs to Z implies

u2

4
− 2b2 − 4kb2 ∈ Z
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where k belongs to Z, then if u must be even for 1
4 − 2b2− 4kb2 does not belong to Z. In

the same way, if d = 2 or 3 (mod 4), the condition

u2

4
− 3b2 − 4kb2 ∈ Z

with k in Z implies that u is even. �

If d = 1 (mod 4), y = a±b
√
d

2 in Q(
√
d) is a root of the equation

y2 − ay +N(y) = 0

if d = 2 or 3 (mod 4), y = a± b
√
d in Q(

√
d) is a root of the equation

y2 − 2ay +N(y) = 0.

The group of the units U of a quadratic field Q[
√
d] is the set of the elements having an

inverse with norm ±1. Every u in U hs an inverse u′ in U such that uu′ = ±1 and for all
x in Q[

√
d] and u in U , ux = ±x(u′)−1 where ±(u′)−1 belongs to U .

Lemma 1.3.5 Let d be square-free in N∗, if Q[
√
d] has units, the set of its units larger

than 1 has a smallest unit ω > 1.

Proof. For every unit w = a+ b
√
d > 1, with a and b in N, has the inverse w−1 = ±

(a− b
√
d) such that w − w−1 = 2a > 1 or 2b

√
d > 1, hence

w2 − w − 1 =
(
w − 1 +

√
5

2

)(
w − 1−

√
5

2

)
> 0

therefore w > 1+
√

5
2 , the largest root of w2 − w − 1 = 0. �

Theorem 1.3.6 Let d be square-free in N∗, if Q[
√
d] has a unit group U with a smallest

element ω larger than one, then U = {wn, n ∈ Z} where ω is the smallest element of U

larger than one.

Proof. If a unit u larger than one were different from wn, for every n in N, there exists
n such that wn < u < wn+1 therefore 1 < uw−n < w which is impossible for uw−n is
a unit. �

Example. In Z[
√

2], the equation X2 − 2X − 1 = 0 has the roots ω = 1 +
√

2 and
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−ω−1, where ω−1 = −1 +
√

2, then ±ωn and ±ω−n belong to U . Their norms are
N(±ω2k+1) = −1 and N(±ω2k) = 1.
The group of the units of K = Q(

√
d) in Z is therefore the set

U = {x ∈ Q(
√
d) : N(x) = ±1}.

Let w be the smallest element of U larger than 1, the units of

U+ = {±w2n, n ∈ N}

have the norm 1 and the units of

U− = {±w2n+1, n ∈ N}

have the norm −1.

1.4 Quadratic Equations

Pell’s equation
x2 − dy2 = 1 (1.6)

is the equation for the units u = x+ y
√
d of Q(

√
d) having the norm one.

Let w is the smallest unity larger than 1 of Z(
√
d), it is written as

w = a+ b
√
d,

N(w) = a2 − db2 = ±1

and the solutions of (1.6) are (x, y) such that x = ±1 (mod d) and

x+ y
√
d = w2n, n ≥ 1.

Fermat stated that for every integer d, there exist infinitely many squares such that
adding 1 to their product with d is a square, with the example 3.16 + 1 = 49. Pythagore’s
equality provides a method to prove the existence of rational units of K = Q(

√
d). Let y

be an arbitrary integer, the equality 4dy2 + (y2 − d)2 = (y2 + d)2 is equivalent to

2y2

x2
d+ 1 =

(y2 + d)2

x2
,
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with x = ±(y2 − d). An integer d = y2 ± 1 provides integer units of K = Z(
√
d) with

norm 1. If y = r−1s is rational, the above equality is written as

(s2 + dr2)2 − (2sr)2 d = (s2 − dr2)2.

Example. Let A = 2, 5, 10, 17, 26, 37, 65, there exists a square such that y2 −A = 1 and

(y2 +A)2 − (2y2)2A = 1.

Let A = 3, 15, 35, 63, 80, 99, there exists a square such that A − 1 = a2d with a = 1

or a > 1 and with the free-square integers d = 2, 3, 5, 7, 11, 15, the equation becomes

(y2 +A)2 − (2ay2)2d = 1.

There are infinitely many integers A or d such that the equation N(a + b
√
d) = 1 has

solutions and all squares y2 such that y2 ± 1 is free-square are convenient.
The question is whether this procedure goes through all free-square integers, Wallis
(1657) proposed the following algorithm to answer it. Let d a free-square integer,
d = c2 − b where c2 is the least square larger than d, for every integer a

da2 = (ac)2 − ba2.

Writting this equation until there exists k such that (ac)2 + 1 = ba2 + k2 yields a
solution (a, k) of k2 − da2 = 1. For example, the equation 5a2 = (3a)2 − 4a2 becomes
80 = 5a2 = 92 − 1 with a = 4 and it provides u = 9 + 2

√
5 with norm 1.

Theorem 1.4.1 If Pell’s equation (1.6) has a solution in Q[
√
d] for a square-free integer

d, it has infinitely many solutions.

Let (a, b) be the minimal solution of the equation, then

x+ y
√
d = (a+ b

√
d)n

is solution for every n ≥ 2 because the norm is associative. Euler proposed the solution

x =
1

2

{
(a+

√
db)2 + (a−

√
db)2

}
,

y =

√
d

2d

{
(a+

√
db)2 − (a−

√
db)2

}
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Table 1.6: Integer solutions of Pell’s equation

d (y, x)

2 (2, 3), (12, 17), (70, 99)

3 (1, 2), (4, 7), (15, 26), (56, 97)

5 (4, 9), (70, 171)

6 (2, 5), (20, 49)

7 (3, 8), (48, 17)

8 (1, 3), (6, 17)

10 (6, 19)

11 (10, 3)

12 (7, 2)

for an equation x2−dy2 = (a2−db2)2. More generally, Section 4.2 develops the method
of continuous fractions to solve the equations N(a+ b

√
d) = ±k on Z.

Let d < 0 in Z, we consider the complex quadratic fields generated by i
√
−d. Let

d′ = −d, if d′ = 1 (mod 4) then d = 3 (mod 4) and if d′ = 2 or 3 (mod 4) then d = 2

or 1 (mod 4) and Theorem 1.3.4 applies to d′.

Theorem 1.4.2 If d = 3 (mod 4)

Q(i
√
d) =

{
a+

b(1 + i
√
d)

2
; a, b ∈ Z

}
= Z

[1 + i
√
d

2

]
,

if d = 1 or 2 (mod 4)

Q(
√
d) = {a+ bi

√
d; a, b ∈ Z} = Z[i

√
d].

Algebraic equations of higher degrees have been studied in Z[i], Euler proved that
(8, 9) is the unique solution in Z × Z of x3 − y2 = −1 and Lebesgue proved that the
equation

xp − y2 = 1, p ≥ 2

cannot be solved in Z∗ × Z∗. In the latter cases x must be odd and the equation

xp = y2 + 1 = (y + i)(y − i)
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implies d = gcd(y + i, y − i) divides x, d | 2i and d | 2y hence d = ±1,±i therefore
y+ i = d(a± ib)p and y− i = d(a′∓ ib′)p where a± ib and a′∓ ib′ are relatively primes

2y = d{(a± ib)p + (a′ ∓ ib′)p},

2i = d{(a± ib)p − (a′ ∓ ib′)p}.

Expanding the right side of these expressions implies b = ±1 and b′ = ±1, this leads
to contradictions. Quadratic diophantine equations are solved by factorization in Z[i

√
d].

The equation x2 + 2 = z3 has the unique solution (x, z) = (5, 3) where z is an integer
dividing x2 + 2 in Z[i

√
d]. The equation

x2 + 3y2 = z3

has infinitely many solutions such as (x, y, z) = (10, 9, 7). They are defined by integers
p and q such that p± i

√
3q divide z and

x = p(p2 − 9q2), y = ±3q(p2 − q2).

For every integer a, the equation

x2 + ay2 = z3

has infinitely many solutions

x = p(p2 − 3aq2), y = ±q(3p2 − aq2), z = p2 + aq2

such that p± i
√
aq divide z, with arbitrary p and q. Catalan’s conjecture. The equation

xp − yq = 1, with xy > 0, u > 1 and v > 1, has the unique solution xp = (±3)2,
yq = 23.

Catalan’s conjecture restricted to even exponents q is proved by Lebesgue’s result who
studied the case xp − y2 = 1. The proof for p = 2 and q > 3 odd is similar, writting

yq = x2 − 1 = (x− 1)(x+ 1),

d = gcd(x+ 1, x− 1) divides 2 so d = ±1,±2. Let x+ 1 = duq and x− 1 = dvq with
u > v in Z, u and v having the same sign and such that uv = y, this entails

2 = d(uq − vq) = d(u− v)(uq−1 + uq−2v + · · ·+ vq−1)
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which is impossible. For odd exponents p and q, it remains to prove the conjecture that
yq = xp− 1 = (x− 1)(xp−1 +xp−2 + · · ·+ 1) cannot be solved with x 6= 1 and y 6= −1

in Z∗.

The irrational numbers are limits of rational fractions, they are expressed as infinite
continued fractions such as (4.7). The rational and irrational numbers are algebraic, the
non algebraic numbers are transcendental, they are predominant in R where they are
limits of sequences of rational or irrational numbers issued from Taylor expansions of
functions and they converges faster than the sequences defining the irrational numbers.
There existence is proved by Liouville’s theorem, Section 4.4. Hermite proved that π is
transcendental, Hilbert, Weierstrasse and Lindemann proved it for e, the same arguments
apply to prove that ex, sinx and cosx are transcendental for every x algebraic. Let
a > 0 and b > 0 be algebraic numbers such such b is not a square,

√
b is algebraic, log a

and the exponential a
√
b are transcendental.

1.5 Exercises

Exercise 1.1. Let a and b be relatively prime integers. Prove

1. the equalities au+ bv = 1 and au′ + bv′ = 1 imply u = u′ + kb and v′ = v − ka
in Z, with k in N,

2. there exist unique integers u and v such that |u| < b
2 and |v| < a

2 .

Exercise 1.2. Determine x such that x = y (mod p) and x = z (mod q) where p and q
are relatively prime.
Exercise 1.3. Prove n5 + 5 = k2 has no integer solution.
Exercise 1.4. Find a, b, c pairwise relatively primes such that

a2 − ab+ b2 = c2.

Exercise 1.5. Solve the equation xn + yn = 1.
Exercise 1.6. Find the units of Q[

√
5] and Q[i

√
5].
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