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Preface

In Part I we present an axiomatic frame in which many results of the K-theory for
C*-algebras are proved. In Part II we construct an example for this axiomatic theory,
which generalizes the classical theory for C*-algebras. This last theory starts by
associating to each C*-algebra F the C*-algebras of square matrices with entries in F .
Every such C*-algebra of square matrices can be obtained as the projective
representation of a certain group with respect to a Schur function for this group with
values in IC (Definition 5.0.1). The above mentioned generalization consists in replacing
this Schur function by an arbitrary Schur function which satisfies some axiomatic
conditions. Moreover this Schur function can take its values in a commutative unital
C*-algebra E instead of IC. In this case this K-theory does not apply to the category of
C*-algebras, but to the category of E-C*-algebras (Definition 1.1.1), which are
C*-algebras endowed with a supplementary structure (every C*-algebra can be endowed
with such a supplementary structure (Proposition 1.1.3)). Up to some definitions and
notation Part II is independent of Part I.

In general we use the notation and the terminology of [1]. In the sequel we give a list
of notation used in this book.

1) IC (respectively IR) denotes the field of complex (respectively real) numbers, IN
denotes the set of natural numbers (0 6∈ IN), IN∗ := IN∪{0}, ZZ denotes the group of
integers, and for every n∈ IN∗ we put INn := { k ∈ IN | k ≤ n} and ZZn := ZZ /(nZZ).

2) For every set A, Card A denotes the cardinal number of A and idA denotes the
identity map of A. If x is a map defined on A and B is a subset of A then x|B denotes
the restriction of x to B.

3) Let (Ω j) j∈J be a family of topological spaces and let Ω be the disjoint union of this
family. The topological sum of the family (Ω j) j∈J is the topological space obtained
by endowing Ω with the topology

{
U ⊂Ω | j ∈ J⇒U ∩Ω j is an open set of Ω j

}
.

4) If Ω is a topological space and G is a C*-algebra then C (Ω,G) denotes the C*-
algebra of continuous bounded maps of Ω into G (endowed with the supremum
norm). If Ω is a locally compact space then C0(Ω,G) denotes the C*-algebra of
continuous maps of Ω into G vanishing at the infinity.

5) � denotes the algebraic tensor product of vector spaces.

6) ≈ means isomorphic.
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Part I

Axiomatic K-theory





Throughout Part I we endow {0,1} with the structure of a group by identifying it with
ZZ 2 and take i ∈ {0,1}.
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Chapter 1

The Axiomatic Theory





1.1 E-C*-algebras

1.1 E-C*-algebras

DEFINITION 1.1.1 In this book we call E-C*-algebra a C*-algebra F endowed with a

bilinear map (exterior multiplication)

E×F −→ F, (α,x) 7−→ αx

such that for all α,β ∈ E and x,y ∈ F,

(α +β )x = αx+βy , (αβ )x = α(βx) , (αx)∗ = α
∗x∗ , ‖αx‖ ≤ ‖α‖‖x‖ ,

α(x+ y) = αx+αy , α(xy) = (αx)y = x(αy) , 1Ex = x .

An E-C*-subalgebra (E-ideal) of F is a C*-subalgebra (a closed ideal) G of F such that

(α,x) ∈ E×G =⇒ αx ∈ G .

If F,G are E-C*-algebras then a C*-homomorphism ϕ : F −→ G is called E-linear or

an E-C*-homomorphism if for all (α,x) ∈ E × F, ϕ(αx) = αϕx. A bijective

E-C*-homomorphism is called E-C*-isomorphism. We denote by 0 the E-C*-algebra

having a unique element. We denote by ME the category of E-C*-algebras for which the

morphisms are the E-linear C*-homomorphisms. In particular MIC is the category of all

C*-algebras.

If G is an E-ideal of the E-C*-algebra F then the C*-algebra F/G has a natural

structure of an E-C*-algebra and

0−→ G
ϕ−→ F

ψ−→ F/G−→ 0

is an exact sequence in ME , where ϕ denotes the inclusion map and ψ the quotient map.

Conversely, if

0−→ F
ϕ−→ G

ψ−→ H −→ 0

is an exact sequence in ME then F is an E-ideal of G and H ≈ G/F.

DEFINITION 1.1.2 If (Fj) j∈J is a finite family of E-C*-algebras then we denote by

∏
j∈J

Fj the E-C*-algebra obtained by endowing the corresponding C*-algebra ∏
j∈J

Fj with

the bilinear map

E×∏
j∈J

Fj −→∏
j∈J

Fj, (α,(x j) j∈J) 7−→ (αx j) j∈J .
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Chapter 1 The Axiomatic Theory

PROPOSITION 1.1.3 Every C*-algebra can be endowed with the structure of an E-C*-

algebra .

Let F be a C*-algebra. Let Ω be the spectrum of E and ω ∈Ω and put

E×F −→ F, (α,x) 7−→ α(ω)x .

It is easy to see that F endowed with this exterior multiplication is an E-C*-algebra .

EXAMPLE 1.1.4 Let Ω be a finite set and E := C (Ω, IC).

a) Let (Fω)ω∈Ω be a finite family of C*-algebras and F := ∏
ω∈Ω

Fω . If we put for all

(α,x) ∈ E×F,

αx : Ω−→ F , ω 7−→ α(ω)xω

then F endowed with the exterior multiplication

E×F −→ F, (α,x) 7−→ αx

is an E-C*-algebra .

b) Let F be an E-C*-algebra and for every ω ∈Ω put

eω : Ω−→ IC , ω
′ 7−→

{
1 if ω ′ = ω

0 if ω ′ 6= ω
,

Fω := { eω x | x ∈ F } .

Then Fω is a C*-algebra for all ω ∈Ω and F ≈ ∏
ω∈Ω

Fω , with the meaning of a).

EXAMPLE 1.1.5 Let Ω be a discrete locally compact space, Ω∗ a compactification of

Ω, E := C (Ω∗, IC), (Fω)ω∈Ω a family of C*-algebras, and F := ∏
ω∈Ω

Fω(
resp. F :=

{
x ∈ ∏

ω∈Ω

Fω

∣∣∣∣ limω→∞ ‖xω‖= 0
})

. If we put for all (α,x) ∈ E×F

αx : Ω−→ F , ω 7−→ α(ω)xω

then αx ∈ F for all (α,x) ∈ E×F and F endowed with the exterior multiplication

E×F −→ F, (α,x) 7−→ αx

is an E-C*-algebra .
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1.2 The Axioms

1.2 The Axioms

DEFINITION 1.2.1 We denote by K0 and K1 two covariant functors from the category

ME to the category of additive groups. We denote by 0 the group which has a unique

element and call K-null an E-C*-algebra F for which Ki (F) = 0. Let F
ϕ→ G be a

morphism in ME . We say that ϕ is K-null if Ki (ϕ) = 0. We say that ϕ factorizes

through null if there are morphisms F
ϕ ′→H and H

ϕ ′′→G in ME such that ϕ = ϕ ′′ ◦ϕ ′ and

such that H is K-null.

We have Ki (idF)= idKi(F) for every E-C*-algebra F . Every morphism which factorizes
through null is K-null.

AXIOM 1.2.2 (Null-axiom) Ki (0) = 0.

AXIOM 1.2.3 (Split exact axiom) If

0−→ F
ϕ−→ G

ψ
−→
λ←−

H −→ 0

is a split exact sequence in ME then

0−→ Ki (F)
Ki(ϕ)−→ Ki (G)

Ki(ψ)
−→

Ki(λ )←−
Ki (H)−→ 0

is a split exact sequence in the category of additive groups.

It follows that the map

Ki (F)×Ki (H)−→ Ki (G) , (a,b) 7−→ Ki (ϕ)a+Ki (λ )b

is a group isomorphism.

DEFINITION 1.2.4 Let ϕ,ψ : F −→ G be morphisms in ME . We say that ϕ and ψ are

homotopic if there is a path

φs : F −→ G, s ∈ [0,1]
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Chapter 1 The Axiomatic Theory

of morphisms in ME such that φ0 = ϕ, φ1 = ψ , and the map

[0,1]−→ G, s 7−→ φsx

is continuous for every x ∈ F.

We say that a pair F
ϕ−→ G, G

ψ−→ F of morphisms in ME is a homotopy if ψ ◦ϕ is

homotopic to idF and ϕ ◦ψ is homotopic to idG. In this case we say that F and G are

homotopic. F is called null-homotopic if it is homotopic to the E-C*-algebra 0.

AXIOM 1.2.5 (Homotopy axiom) If ϕ,ψ : F −→ G are homotopic morphisms in

ME then Ki (ϕ) = Ki (ψ).

DEFINITION 1.2.6 We associate to every exact sequence

0−→ F
ϕ−→ G

ψ−→ H −→ 0

in ME two group homomorphisms (called index maps)

δi : Ki (H)−→ Ki+1 (F) .

AXIOM 1.2.7 (Six-term axiom) For every exact sequence in ME

0−→ F
ϕ−→ G

ψ−→ H −→ 0

the six-term sequence

K0(F)
K0(ϕ)−−−−→ K0(G)

K0(ψ)−−−−→ K0(H)

δ1

x yδ0

K1(H) ←−−−−
K1(ψ)

K1(G) ←−−−−
K1(ϕ)

K1(F)

is exact.

AXIOM 1.2.8 (Commutativity of the index maps) If the diagram in ME

0 −−−−→ F
ϕ−−−−→ G

ψ−−−−→ H −−−−→ 0

φ1

y φ2

y yφ3

0 −−−−→ F ′ −−−−→
ϕ ′

G′ −−−−→
ψ ′

H ′ −−−−→ 0
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is commutative and has exact rows then the diagram

Ki(H)
δi−−−−→ Ki+1(F)

Ki(φ3)

y yKi+1(φ1)

Ki(H ′) −−−−→
δ ′1

Ki+1(F ′)

is commutative, where δi and δ ′i denote the index maps associated to the upper and the

lower row of the above diagram, respectively.

Remark. The above axioms are fulfilled if Ki (F) = 0 for all E-C*-algebras F .

1.3 Some Elementary Results

PROPOSITION 1.3.1 If

0−→ F
ϕ−→ G

ψ
−→
λ←−

H −→ 0

is a split exact sequence in ME then its index maps are 0.

By the split exact axiom (Axiom 1.2.3),

0−→ Ki (F)
Ki(ϕ)−→ Ki (G)

Ki(ψ)
−→

Ki(λ )←−
Ki (H)−→ 0

is a split exact sequence in the category of additive groups and the assertion follows from
the six-term axiom (Axiom 1.2.7).

DEFINITION 1.3.2 Let (Fj) j∈J be a finite family of E-C*-algebras, F := ∏
j∈J

Fj and for

every j ∈ J let ϕ j : Fj −→ F be the canonical inclusion and ψ j : F −→ Fj the canonical

projection. We define

Φ(Fj) j∈J ,i : ∏
j∈J

Ki (Fj)−→ Ki (F) , (a j) j∈J 7−→∑
j∈J

Ki (ϕ j)a j ,

Ψ(Fj) j∈J ,i : Ki (F)−→∏
j∈J

Fj , a 7−→ (Ki (ψ j)a) j∈J .
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PROPOSITION 1.3.3 If (Fj) j∈J is a finite family of E-C*-algebras then the map

Φ(Fj) j∈J ,i : ∏
j∈J

Ki (Fj)−→ Ki

(
∏
j∈J

Fj

)
is a group isomorphism and

Ψ(Fj) j∈J ,i : Ki

(
∏
j∈J

Fj

)
−→∏

j∈J
Ki (Fj)

is its inverse.

If J = /0 then the assertion follows from the null-axiom (Axiom 1.2.2). The assertion is
trivial for Card J = 1. We prove the general case by induction with respect to Card J. Let
j0 ∈ J and assume the assertion holds for J′ := J \{j0}. We denote by

ϕ : Fj0 −→∏
j∈J

Fj , λ : ∏
j∈J′

Fj −→∏
j∈J

Fj

the canonical inclusion maps and by

ψ : ∏
j∈J

Fj −→∏
j∈J′

Fj

the canonical projection. Then

0−→ Fj0
ϕ−→∏

j∈J
Fj

ψ
−→
λ←− ∏

j∈J′
Fj −→ 0

is a split exact sequence in ME . By the split exact axiom (Axiom 1.2.3) the map

Ψi : Ki
(
Fj0

)
×Ki

(
∏
j∈J′

Fj

)
−→ Ki

(
∏
j∈J

Fj

)
, (a,b) 7−→ Ki (ϕ)a+Ki (λ )b

is a group isomorphism. Since

Ψi ◦
(

idKi(Fj0)
×Φ(Fj) j∈J′ ,i

)
= Φ(Fj) j∈J ,i

it follows from the induction hypothesis that Φ(Fj) j∈J ,i is a group isomorphism.

The last assertion follows from ψ j ◦ϕ j = idFj for every j ∈ J and

∑
j∈J

ϕ j ◦ψ j = id ∏
j∈J

Fj .
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PROPOSITION 1.3.4 Let (Fj
φ j→ F ′j ) j∈J be a finite family of morphisms in ME ,

F := ∏
j∈J

Fj , F ′ := ∏
j∈J

F ′j ,

and for every j ∈ J let

ϕ j : Fj −→ F , ϕ
′
j : F ′j −→ F ′

be the inclusion maps. Then the diagram

∏
j∈J

Ki (Fj)

∑
j∈J

Ki(ϕ j)

−−−−−→ Ki(F)

∏
j∈J

Ki(φ j)
y yKi

(
∏
j∈J

φ j

)

∏
j∈J

Ki

(
F ′j
)
−−−−−→

∑
j∈J

Ki

(
ϕ ′j

) Ki(F ′)

is commutative.

For every j ∈ J the diagram

Fj
ϕ j−−−−→ F

φ j

y y∏
j∈J

φ j

F ′j −−−−→
ϕ ′j

F ′

is commutative so the diagram

Ki(Fj)
Ki(ϕ j)−−−−→ Ki(F)

Ki(φ j)

y yKi

(
∏
j∈J

φ j

)
K1(F ′j ) −−−−→

Ki

(
ϕ ′j

) Ki(F ′)

is also commutative. For (a j) j∈J ∈ ∏
j∈J

Ki (Fj), by the above,

Ki

(
∏
j∈J

φ j

)
◦

(
∑
j∈J

Ki (ϕ j)

)
(a j) j∈J = Ki

(
∏
j∈J

φ j

)
∑
j∈J

Ki (ϕ j)a j =
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= ∑
j∈J

Ki

(
∏
k∈J

φk

)
Ki (ϕ j)a j = ∑

j∈J
Ki
(
ϕ
′
j
)

Ki (φ j)a j =

=

(
∑
j∈J

Ki
(
ϕ
′
j
))

(Ki (φ j)a j) j∈J =

(
∑
j∈J

Ki
(
ϕ
′
j
))

Ki

(
∏
j∈J

φ j

)
(a j) j∈J ,

which proves the assertion.

PROPOSITION 1.3.5

a) If F
ϕ→ G, G

ψ→ F is a homotopy in ME then

Ki(ϕ)◦Ki(ψ) = idKi(G) , Ki(ψ)◦Ki(ϕ) = idKi(F) .

b) If F and G are homotopic E-C*-algebras then Ki(F) and Ki(G) are isomorphic.

c) If the E-C*-algebra F is null-homotopic then it is K-null.

a) follows from the homotopy axiom (Axiom 1.2.5).

b) follows from a).

c) follows from b) and from the null-axiom (Axiom 1.2.2).

PROPOSITION 1.3.6 Let

0−→ F
ϕ−→ G

ψ−→ H −→ 0

be an exact sequence in ME .

a) If F (resp. H) is K-null then

Ki(G)
Ki(ψ)−→ Ki(H) (resp. Ki(F)

Ki(ϕ)−→ Ki(G))

is a group isomorphism.

b) If G is K-null then

Ki(H)
δi−→ Ki+1(F)

is a group isomorphism.
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1.3 Some Elementary Results

c) If ϕ is K-null then the sequences

0−→ Ki(G)
Ki(ψ)−→ Ki(H)

δi−→ Ki+1(F)−→ 0

is exact.

d) If ψ is K-null then the sequences

0−→ Ki(H)
δi−→ Ki+1(F)

Ki+1(ϕ)−→ Ki+1(G)−→ 0

is exact.

e) The index maps of a split exact sequence are equal to 0.

a), b), c), and d) follow from the six-term axiom (Axiom 1.2.7).

e) follows from the six-term axiom (Axiom 1.2.7) and from the split exact axiom
(Axiom 1.2.3).

PROPOSITION 1.3.7 An ME -triple is a triple (F1,F2,F3) such that F1 is an E-C*-

algebra , F2 is an E-ideal of F1, and F3 is an E-ideal of F1 and of F2. We denote for all

j,k ∈ IN3, j < k, by ϕ j,k : Fk −→ Fj the inclusion map, by ψ j,k : Fj −→ Fj/Fk the quotient

map, and by δ j,k,i : Ki(Fj/Fk) −→ Fk the index maps associated to the exact sequence in

ME

0−→ Fk
ϕ j,k−→ Fj

ψ j,k−→ Fj/Fk −→ 0 .

a) There is a unique morphism F2/F3
ϕ1,2/F3−→ F1/F3 in ME such that

ψ1,3 ◦ϕ1,2 = (ϕ1,2/F3)◦ψ2,3 .

b) The diagram

Ki(F3)
Ki(ϕ1,3)−−−−→ Ki(F1)

Ki(ψ1,3)−−−−→ Ki(F1/F3)
δ1,3,i−−−−→ Ki+1(F3)

=

x Ki(ϕ1,2)

x xKi(ϕ1,2/F3)

x=

Ki(F3) −−−−→
Ki(ϕ2,3)

Ki(F2) −−−−→
Ki(ψ2,3)

Ki(F2/F3) −−−−→
δ2,3,i

Ki+1(F3)

is commutative.
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Chapter 1 The Axiomatic Theory

a) is easy to see.

b) follows from a), ϕ1,2 ◦ϕ2,3 = ϕ1,3, and from the axiom of commutativity of the index
maps (Axiom 1.2.8).

THEOREM 1.3.8 (The triple theorem) Let (F1,F2,F3) be an ME -triple.

a) Assume F2 K-null.

a1) δ2,3,i : Ki(F2/F3)−→ Ki+1(F3) is a group isomorphism.

a2) δ2,3,i = δ1,3,i ◦Ki(ϕ1,2/F3).

a3) ϕ1,3 is K-null.

a4) If we put Φi := Ki(ϕ1,2/F3)◦ (δ2,3,i)
−1 then

0−→ Ki(F1)
Ki(ψ1,3)−→ Ki(F1/F3)

δ1,3,i−→
Φi←−

Ki+1(F3)−→ 0

is a split exact sequence and the map

Ki(F1)×Ki+1(F3)−→ Ki(F1/F3), (a,b) 7−→ Ki(ψ1,3)a+Φib

is a group isomorphism.

b) Assume F1/F3 K-null.

b1) δ2,3,i = 0 and the sequence

0−→ Ki (F3)
Ki(ϕ2,3)−→ Ki (F2)

Ki(ψ2,3)−→ Ki (F2/F3)−→ 0

is exact.

b2) Ki(ϕ1,3) : Ki(F3)−→ Ki(F1) is a group isomorphism.

b3) If we put Φi := Ki(ϕ1,3)
−1 ◦Ki(ϕ1,2) then the map

Ψ : Ki(F2)−→ Ki(F3)×Ki(F2/F3) , b 7−→ (Φib,Ki(ψ2,3)b)

is a group isomorphism.
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1.3 Some Elementary Results

b4) If ψ1,2 is K-null and if we put Φ′i := Ki(ϕ2,3)◦Ki(ϕ1,3)
−1 then

0−→ Ki+1(F1/F2)
δ1,2,(i+1)−→ Ki(F2)

Ki(ϕ1,2)−→
Φ′i←−

Ki(F1)−→ 0

is a split exact sequence and the map

Ki(F1)×Ki+1(F1/F2)−→ Ki(F2), (a,b) 7−→Φ
′
ia+δ1,2,(i+1)b

is a group isomorphism.

c) Assume F1 K-null and denote by ψ the canonical map F1/F3→ F1/F2.

c1) δ1,2,i and δ1,3,i are group isomorphisms.

c2) Ki(ϕ2,3)◦δ1,3,(i+1) = δ1,2,(i+1) ◦Ki+1(ψ).

c3) Let ϕ : F1/F2 −→ F1/F3 be a morphism in ME such that

Ki(ψ ◦ϕ) = idKi(F1/F2) .

If we put

Φi := δ1,3,(i+1) ◦Ki+1(ϕ)◦ (δ1,2,(i+1))
−1

then Ki(ϕ2,3)◦Φi = idKi(F2). If in addition ψ2,3 is K-null then

0−→ Ki+1(F2/F3)
δ2,3,(i+1)−→ Ki(F3)

Ki(ϕ2,3)−→
Φi←−

Ki(F2)−→ 0

is a split exact sequence and the map

Ki+1(F2/F3)×Ki(F2)−→ Ki(F3), (a,b) 7−→ δ2,3,(i+1)a+Φib

is a group isomorphism.

a1) follows from Proposition 1.3.6 b).

a2) follows from Proposition 1.3.7 b).

a3) ϕ1,3 factorizes through null and so it is K-null.

a4) By a2),

δ1,3,i ◦Φi = δ1,3,i ◦Ki(ϕ1,2/F3)◦ (δ2,3,i)
−1 = δ2,3,i ◦ (δ2,3,i)

−1 = idKi(F3)
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and this implies the assertion.

b1) By Proposition 1.3.7 b), δ2,3,i factorizes through null and so it is K-null. By the
six-term axiom (Axiom 1.2.7) the sequence

0−→ Ki (F3)
Ki(ϕ2,3)−→ Ki (F2)

Ki(ψ2,3)−→ Ki (F2/F3)−→ 0

is exact.

b2) follows from Proposition 1.3.6 a).

b3) Step 1

Φi ◦Ki(ϕ2,3) = idKi(F3)

Since ϕ1,3 = ϕ1,2 ◦ϕ2,3,

Φi ◦Ki(ϕ2,3) = Ki(ϕ1,3)
−1 ◦Ki(ϕ1,2)◦Ki(ϕ2,3) =

= Ki(ϕ1,3)
−1 ◦Ki(ϕ1,3) = idKi(F3) .

Step 2 Ψ is injective

Let b ∈ Ki(F2) with Ψb = 0. Then Ki(ψ2,3)b = 0 so by b1),

b ∈ Ker Ki(ψ2,3) = ImKi(ϕ2,3)

and there is an a ∈ Ki(F3) with b = Ki(ϕ2,3)a. By Step 1,

a = ΦiKi(ϕ2,3)a = Φib = 0 ,

so b = 0 and Ψ is injective.

Step 3 Ψ is surjective

Let (a,c) ∈ Ki(F3)×Ki(F2/F3). Put b′ := Ki(ϕ2,3)a. By b1),

Ki(ψ2,3)b′ = Ki(ψ2,3)Ki(ϕ2,3)a = 0

18 Science Publishing Group
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and by Step 1, Φib′ =ΦiKi(ϕ2,3)a= a. By b1), there is a b′′ ∈Ki(F2) with c=Ki(ψ2,3)b′′.
By Step 1,

Φi(b′′−Ki(ϕ2,3)Φib′′) = Φib′′−ΦiKi(ϕ2,3)Φib′′ = Φib′′−Φib′′ = 0 .

Thus by b1),
Ψ(b′+b′′−Ki(ϕ2,3)Φib′′) =

= (Φib′,Ki(ψ2,3)b′′−Ki(ψ2,3)Ki(ϕ2,3)Φib′′) = (a,c)

and Ψ is surjective.

b4) Since ϕ1,3 = ϕ1,2 ◦ϕ2,3,

Ki(ϕ1,2)◦Φ
′
i = Ki(ϕ1,2)◦Ki(ϕ2,3)◦Ki(ϕ1,3)

−1 =

= Ki(ϕ1,3)◦Ki(ϕ1,3)
−1 = idKi(F1)

and the assertion follows.

c1) follows from Proposition 1.3.6 b)).

c2) follows from the commutativity of the index maps (Axiom 1.2.8).

c3) By c2),

Ki(ϕ2,3)◦Φi = Ki(ϕ2,3)◦δ1,3,(i+1) ◦Ki+1(ϕ)◦ (δ1,2,(i+1))
−1 =

= δ1,2,(i+1) ◦Ki+1(ψ)◦Ki+1(ϕ)◦ (δ1,2,(i+1))
−1 =

= δ1,2,(i+1) ◦Ki+1(ψ ◦ϕ)◦ (δ1,2,(i+1))
−1 = δ1,2,(i+1) ◦ (δ1,2,(i+1))

−1 = idKi(F2) .

The last assertion follows from the first one.

Remark. a) still holds with the weaker assumption that F2 is only an E-C*-subalgebra
of F1.

1.4 Tensor Products

Throughout this section F denotes an E-C*-algebra.
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DEFINITION 1.4.1 Let G be a C*-algebra. We denote by F ⊗G the spatial tensor

product of F and G endowed with the structure of an E-C*-algebra by using the exterior

multiplication

E× (F⊗G)−→ F⊗G, (α,x⊗ y) 7−→ (αx)⊗ y

([5] Proposition T.5.14 and T.5.17 Remark). If F
ϕ→ F ′ is a morphism in ME and G

ψ→G′

a morphism in MIC then F⊗G
ϕ⊗ψ−→ F ′⊗G′ denotes the morphism in ME defined by

ϕ⊗ψ : F⊗G−→ F ′⊗G′ , x⊗ y 7−→ ϕx⊗ψy .

If (G j) j∈J is a family of C*-algebras then we put⊗
j∈ /0

G j := IC .

We have F ⊗ IC ≈ F and idF ⊗ idG = idF⊗G. If F
ϕ−→ F ′

ϕ ′−→ F ′′ are morphisms in

ME and G
ψ−→ G′

ψ ′−→ G′′ are morphisms in MIC then

(ϕ⊗ψ)◦ (ϕ ′⊗ψ
′) = (ϕ ◦ϕ

′)⊗ (ψ ◦ψ
′) .

If G and H are C*-algebras then

F⊗ (G×H)≈ (F⊗G)× (F⊗H) , F⊗ (G⊗H)≈ (F⊗G)⊗H .

If G is a C*-algebra and F1,F2 are E-C*-algebras then

(F1×F2)⊗G≈ (F1⊗G)× (F2⊗G) .

PROPOSITION 1.4.2 Let G,H be C*-algebras.

a) If ϕ0 ,ϕ1 : G−→ H are homotopic C*-homomorphisms then idF ⊗ϕ0 and idF ⊗ϕ1

are also homotopic.

b) If G
ϕ→ H, H

ψ→ G is a homotopy in MIC then

F⊗G
idF⊗ϕ−→ F⊗H , F⊗H

idF⊗ψ−→ F⊗G

is a homotopy in ME .

c) If G is homotopic to 0 then F⊗G is also homotopic to 0 and so K-null.
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1.4 Tensor Products

a) Let [0,1]−→ ϕs be a pointwise continuous map of C*-homomorphisms G→H. Let
z ∈ F�G. There are finite families (x j) j∈J in F and (y j) j∈J in G such that

z = ∑
j∈J

x j⊗ y j .

For s ∈ [0,1],
(idF ⊗ϕs)z = ∑

j∈J
x j⊗ϕsy j

so the map
[0,1]−→ F⊗H, s 7−→ (idF ⊗ϕs)z

is continuous.

Let now z ∈ F⊗G, s0 ∈ [0,1], and ε > 0. There is a z′ ∈ F�G such that ‖z− z′‖< ε

3 .
By the above, there is a δ > 0 such that∥∥(idF ⊗ϕs)z′− (idF ⊗ϕs0)z

′∥∥< ε

3

for all s ∈ [0,1], |s− s0|< δ . It follows∥∥(idF ⊗ϕs)z− (idF ⊗ϕs0)z
∥∥≤ ∥∥(idF ⊗ϕs)(z− z′)

∥∥+
+
∥∥(idF ⊗ϕs)z′− (idF ⊗ϕs0)z

′∥∥+∥∥(idF ⊗ϕs0)(z− z′)
∥∥< ε ,

which proves the assertion.

b) follows from a).

c) follows from b) and Proposition 1.3.5 c)).

PROPOSITION 1.4.3 Let

0−→ G1
ϕ−→ G2

ψ
−→
λ←−

G3 −→ 0

be a split exact sequence in MIC.

a) The sequence in ME

0−→ F⊗G1
idF⊗ϕ−→ F⊗G2

idF⊗ψ
−→

idF⊗λ
←−

F⊗G3 −→ 0

is split exact.
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b) The sequence

0−→ Ki(F⊗G1)
Ki(idF⊗ϕ)−→ Ki(F⊗G2)

Ki(idF⊗ψ)
−→

Ki(idF⊗λ )
←−

Ki(F⊗G3)−→ 0

is split exact and the map

Ki(F⊗G1)×Ki(F⊗G3)−→ Ki(F⊗G2) ,

(a,b) 7−→ Ki(idF ⊗ϕ)a+Ki(idF ⊗λ )b

is a group isomorphism.

a) By [5] Corollary T.5.19, idF ⊗ϕ is injective. We have

(idF ⊗ψ)◦ (idF ⊗λ ) = idF ⊗ (ψ ◦λ ) = idF ⊗ idG3 = idF⊗G3 ,

(idF ⊗ψ)◦ (idF ◦ϕ) = idF ⊗ (ψ ◦ϕ) = 0 ,

so
Im(idF ⊗ϕ)⊂ Ker (idF ⊗ψ) .

Let z ∈ (F�G2)∩Ker (idF ⊗ψ). There is a linearly independent finite family (x j) j∈J

in F and a family (y j) j∈J in G2 such that

z = ∑
j∈J

x j⊗ y j .

From
0 = (idF ⊗ψ)z = ∑

j∈J
x j⊗ψy j

we get ψy j = 0 for all j ∈ J. Thus for every j ∈ J there is a y′j ∈ G1 with ϕy′j = y j. It
follows

z = ∑
j∈J

x j⊗ϕy′j = (idF ⊗ϕ)∑
j∈J

x j⊗ y′j ∈ Im(idF ⊗ϕ) .

Let z ∈ Ker (idF ⊗ψ). Then

(idF ⊗ (λ ◦ψ))z = (idF ⊗λ )(idF ⊗ψ)z = 0 .

Let (zn)n∈IN be a sequence in F�G2 converging to z. For n ∈ IN, by the above,

(idF ⊗ψ)(zn− (idF ⊗ (λ ◦ψ))zn) =
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= (idF ⊗ψ)zn− (idF ⊗ψ)(idF ⊗λ )(idF ⊗ψ)zn =

= (idF ⊗ψ)zn− (idF ⊗ψ)zn = 0 ,

zn− (idF ⊗ (λ ◦ψ))zn ∈ Im(idF ⊗ψ) .

Since Im(idF ⊗ϕ) is closed,

z = z− (idF ⊗ (λ ◦ψ))z = lim
n→∞

(zn− (idF ⊗ (λ ◦ψ))zn) ∈ Im(idF ⊗ϕ) ,

which proves the Proposition.

b) follows from a) and the split exact axiom (Axiom 1.2.3).

DEFINITION 1.4.4

We denote for every C*-algebra G by G̃ its unitization (see e.g. [4] Exercise 1.3) and by

0−→ G
ιG−→ G̃

πG−→
λG←−

IC−→ 0

its associated split exact sequence. If G and H are C*-algebras and ϕ : G −→ H is a

C*-homomorphism then ϕ̃ : G̃−→ H̃ denotes the unitization of ϕ .

COROLLARY 1.4.5 Let G be a C*-algebra.

a) The sequence in ME

0−→ F⊗G
idF⊗ιG−→ F⊗ G̃

idF⊗πG−→
idF⊗λG←−

F −→ 0

is split exact.

b) The sequence

0−→ Ki(F⊗G)
Ki(idF⊗ιG)−→ Ki

(
F⊗ G̃

) Ki(idF⊗πG)−→
Ki(idF⊗λG)←−

Ki(F)−→ 0

is split exact and the map

Ki(F)×Ki(F⊗G)−→ Ki
(
F⊗ G̃

)
,

(a,b) 7−→ Ki (idF ⊗λG)a+Ki (idF ⊗ ιG)b

is a group isomorphism.
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c) Let F
ϕ→ F ′ be a morphism in ME and G

ψ→ G′ a morphism in MIC. If we identify

the isomorphic groups of b) then

Ki (ϕ⊗ ψ̃) : Ki
(
F⊗ G̃

)
−→ Ki

(
F ′⊗ G̃′

)
,

(a,b) 7−→ (Ki (ϕ)a,Ki (ϕ⊗ψ)b)

is a group isomorphism.

d) Let ϕ : G −→ G′ be a morphism in MIC . If we denote by Ψi and Ψ′i the group

isomorphisms of b) associated to G and G′, respectively, then

Ki (idF ⊗ ϕ̃)◦Ψi = Ψ
′
i ◦
(
idKi(F)×Ki (idF ⊗ϕ)

)
.

a) and b) follow from Proposition 1.4.3 a),b).

c) follows from b) and the commutativity of the following diagram:

F⊗G
idF⊗ιG−−−−→ F⊗ G̃

idF⊗λG←−−−− F⊗ IC

ϕ⊗ψ

y ϕ⊗ψ̃

y yϕ⊗idIC

F ′⊗G′ −−−−→
idF ′⊗ιG′

F ′⊗ G̃′ ←−−−−−
idF ′⊗λG′

F ′⊗ IC

.

d) For (a,b) ∈ Ki (F)×Ki (F⊗G), since ϕ̃ ◦λG = λG′ and ιG′ ◦ϕ = ϕ̃ ◦ ιG,

Ki (idF ⊗ ϕ̃)Ψi(a,b) = Ki (idF ⊗ ϕ̃)(Ki (idF ⊗λG)a+Ki (idF ⊗ ιG)b) =

= Ki (idF ⊗ ϕ̃)Ki (idF ⊗λG)a+Ki (idF ⊗ ϕ̃)Ki (idF ⊗ ιG)b =

= Ki (idF ⊗ (ϕ̃ ◦λG))a+Ki (idF ⊗ (ϕ̃ ◦ ιG))b =

= Ki (idF ⊗λG′)a+Ki (idF ⊗ (ιG′ ◦ϕ))b =

= Ki (idF ⊗λG′)a+Ki (idF ⊗ ιG′)Ki (idF ⊗ϕ)b =

= Ψ
′
i(a,Ki (idF ⊗ϕ)b) = Ψ

′
i(idKi(F)×Ki (idF ⊗ϕ))(a,b) ,

so

Ki (idF ⊗ ϕ̃)◦Ψi = Ψ
′
i ◦
(
idKi(F)×Ki (idF ⊗ϕ)

)
.
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PROPOSITION 1.4.6 If (G j) j∈J is a finite family of C*-algebras then

Ki

(
F⊗

(⊗
j∈J

G̃ j

))
≈∏

I⊂J
Ki

(
F⊗

(⊗
j∈I

G j

))
.

We prove the assertion by induction with respect to Card J. The assertion is trivial for
Card J = 0 (Definition 1.4.1 and Null-axiom (Axiom 1.4.6)). Let j0 ∈ J, J′ := J \ {j0},
and assume the assertion holds for J′. By Corollary 1.4.5 b),

Ki

(
F⊗

(⊗
j∈J

G̃ j

))
≈ Ki

F⊗

⊗
j∈J′

G̃ j

⊗ G̃ j0

≈

≈ Ki

F⊗

⊗
j∈J′

G̃ j

×Ki

F⊗

⊗
j∈J′

G̃ j

⊗G j0

≈

≈ Ki

F⊗

⊗
j∈J′

G̃ j

×Ki

(F⊗G j0)⊗

⊗
j∈J′

G̃ j

≈

≈ ∏
I⊂J′

Ki

(
F⊗

(⊗
j∈I

G j

))
×∏

I⊂J′
Ki

F⊗

 ⊗
j∈I∪{j0}

G j

≈
≈∏

I⊂J
Ki

(
F⊗

(⊗
j∈I

G j

))
.

COROLLARY 1.4.7 If G is a C*-algebra then for all n ∈ IN∗

Ki

(
F⊗

(⊗
j∈INn

G̃

))
≈

n

∏
k=0

Ki

(
F⊗

(⊗
j∈INk

G

))(n
k)

.

PROPOSITION 1.4.8 Let G be a C*-algebra and

0−→ F1
ϕ−→ F2

ψ
−→
λ←−

F3 −→ 0

a split exact sequence in ME .

Science Publishing Group 25



Chapter 1 The Axiomatic Theory

a) The sequence in ME

0−→ F1⊗G
ϕ⊗idG−→ F2⊗G

ψ⊗idG−→
λ⊗idG←−

F3⊗G−→ 0

is split exact.

b) The sequence

0−→ Ki(F1⊗G)
Ki(ϕ⊗idG)−→ Ki(F2⊗G)

Ki(ψ⊗idG)
−→

Ki(λ⊗idG)
←−

Ki(F3⊗G)−→ 0

is split exact and the map

Ki(F1⊗G)×Ki(F3⊗G)−→ Ki(F2⊗G) ,

(a,b) 7−→ Ki(ϕ⊗ idG)a+Ki(λ ⊗ idG)b

is a group isomorphism.

The proof is similar to the proof of Proposition 1.4.3.

PROPOSITION 1.4.9 Let

0−→ G1
ϕ−→ G2

ψ−→ G3 −→ 0

be an exact sequence in MIC. If F or G3 is nuclear then the sequence in ME

0−→ F⊗G1
idF⊗ϕ−→ F⊗G2

idF⊗ψ−→ F⊗G3 −→ 0

is exact and so
F⊗G2

F⊗G1
≈ F⊗ G2

G1
.

[5] Theorem T.6.26.

PROPOSITION 1.4.10 Let G be a C*-algebra and

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0

an exact sequence in ME . If F3 or G is nuclear then

0−→ F1⊗G
φ1⊗idG−→ F2⊗G

φ2⊗idG−→ F3⊗G−→ 0

is exact.
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[5] Theorem T.6.26.

DEFINITION 1.4.11 Let

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0

be an exact sequence in ME and G a C*-algebra. If δi denotes the index maps associated

to the above exact sequence in ME and if the sequence in ME

0−→ F1⊗G
φ1⊗idG−→ F1⊗G

φ2⊗idG−→ F3⊗G−→ 0

is exact (e.g. F3 or G is nuclear ([5] T.6.26)) then we denote by δG,i the index maps

associated to this last exact sequence in ME .

In this case the six-term sequence

K0(F1⊗G)
K0(φ1⊗idG)−−−−−−→ K0(F2⊗G)

K0(φ2⊗idG)−−−−−−→ K0(F3⊗G)

δG,1

x yδG,0

K1(F3⊗G) ←−−−−−−
K1(φ2⊗idG)

K1(F2⊗G) ←−−−−−−
K1(φ1⊗idG)

K1(F1⊗G)

is exact (by the six-term axiom (Axiom 1.2.7)).

COROLLARY 1.4.12 Let G be a unital C*-algebra,

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0

an exact sequence in ME , and δi its index maps. We assume that F3 or G is nuclear and

put for every j ∈ {1,2,3}

ϕ j : Fj −→ Fj⊗G , x 7−→ x⊗1G .

Then δG,i ◦Ki (ϕ3) = Ki+1 (ϕ1)◦δi.

The diagram

F1
φ1−−−−→ F2

φ2−−−−→ F3

ϕ1

y ϕ2

y yϕ3

F1⊗G −−−−→
φ1⊗idG

F2⊗G −−−−→
φ2⊗idG

F3⊗G

is commutative and the assertion follows from Proposition 1.4.10 and the commutativity
of the index maps (Axiom 1.2.8).
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1.5 The Class ϒ

Throughout this section F denotes an E-C*-algebra.

DEFINITION 1.5.1 Let ϒ be the class of those C*-algebras G for which there are

p(G),q(G) ∈ IN∗ and group isomorphisms

Φi,G,F : Ki (F)p(G)×Ki+1 (F)q(G) −→ Ki (F⊗G)

such that for every morphism F
φ→ F ′ in ME the diagram

Ki (F)p(G)×Ki+1 (F)q(G) Φi,G,F−−−−→ Ki (F⊗G)

Ki(φ)
p(G)×Ki+1(φ)

q(G)

y yKi(φ⊗idG)

Ki (F ′)
p(G)×Ki+1 (F ′)

q(G) −−−−→
Φi,G,F ′

Ki (F ′⊗G)

is commutative. We denote by ~G the class of group isomorphisms

Φi,G,F : Ki (F)p(G)×Ki+1 (F)q(G) −→ Ki (F⊗G)

having the above property. A C*-algebra G is called ϒ-null if G ∈ ϒ and p(G) = q(G) =

0.

If G is ϒ-null or if F is K-null and G ∈ ϒ then F⊗G is K-null. In general we shall use
Φi,G,F without writing {Φi,G,F} ∈ ~G.

PROPOSITION 1.5.2 Let p.q ∈ IN∗ and let Λ be the class of group isomorphisms

Λi,F : Ki (F)p×Ki+1 (F)q −→ Ki (F)p×Ki+1 (F)q

such that for all morphisms F
φ→ F ′ in ME the diagram

Ki (F)p×Ki+1 (F)q Λi,F−−−−→ Ki (F)p×Ki+1 (F)q

Ki(φ)
p×Ki+1(φ)

q
y yKi(φ)

p×Ki+1(φ)
q

Ki (F ′)
p×Ki+1 (F ′)

q −−−−→
Λi,F ′

Ki (φ)
p×Ki+1 (φ)

q

is commutative. Let G ∈ ϒ with p(G) = p, q(G) = q, and let {Φi,G,F} ∈ ~G.
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a) If Λi,F ∈ Λ and if we put

Φ
′
i,G,F := Φi,G,F ◦Λi,F : Ki (φ)

p×Ki+1 (φ)
q −→ Ki (F⊗G)

then {Φ′i,G,F} ∈ ~G.

b) If {Φ′i,G,F} ∈ ~G and if we put

Λi,F := Φ
−1
i,G,F ◦Φ

′
i,G,F : Ki (φ)

p×Ki+1 (φ)
q −→ Ki (φ)

p×Ki+1 (φ)
q

then {Λi,F} ∈ Λ.

c) If {Λi,F},{Λ′i,F} ∈ Λ then {Λi,F ◦Λ′i,F} ∈ Λ, {Λ−1
i,F } ∈ Λ.

DEFINITION 1.5.3 We denote for every nuclear G ∈ ϒ by Gϒ the class of exact

sequences in ME

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0

such that if δi denote its index maps then the diagram

Ki (F3)
p(G)×Ki+1 (F3)

q(G) Φi,G,F3−−−−→ Ki (F3⊗G)

δ
p(G)
i ×δ

q(G)
i+1

y yδG,i

Ki+1 (F1)
p(G)×Ki (F1)

q(G) −−−−−−→
Φ(i+1),G,F1

Ki+1 (F1⊗G)

is commutative.

If G is ϒ-null then every exact sequence in ME belongs to Gϒ.

PROPOSITION 1.5.4

a) 0 is ϒ-null.

b) IC ∈ ϒ, p(IC) = 1, q(IC) = 0, Φi,IC,F = Ki (φ IC,F), where

φ IC,F : F −→ F× IC , x 7−→ x⊗1IC .

Every exact sequence in ME belongs to ICϒ.
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c) Let G
ϕ−→ G′, G′

ψ−→ G be a homotopy in MIC . If G ∈ ϒ then

G′ ∈ ϒ , p(G′) = p(G) , q(G′) = q(G) ,

Φi,G′,F = Ki (idF ⊗ϕ)◦Φi,G,F .

If in addition G and G′ are nuclear then Gϒ = G′
ϒ

.

d) If G is null-homotopic then G is ϒ-null.

a) By the null-axiom (Axiom 1.2.2), 0 is ϒ-null.

b) The first assertion is easy to see. The second one follows from the commutativity of
the index maps (Axiom 1.2.8).

c) By Proposition 1.4.2 b),

F⊗G
idF⊗ϕ−→ F⊗G′ , F⊗G′

idF⊗ψ−→ F⊗G

is a homotopy in ME . By Proposition 1.3.7 a),

Ki (idF ⊗ϕ) : Ki (F⊗G)−→ Ki
(
F⊗G′

)
,

Ki (idF ⊗ψ) : Ki
(
F⊗G′

)
−→ Ki (F⊗G)

are group isomorphisms and Ki (idF ⊗ψ) = Ki (idF ⊗ϕ)−1. Thus

Ki (idF ⊗ϕ)◦Φi,G,F : Ki (F)p(G)×Ki+1 (F)q(G) −→ Ki
(
F⊗G′

)
is a group isomorphism. If F

φ→ F ′ is a morphism in ME then the diagram

Ki (F)p(G)×Ki+1 (F)q(G) Φi,G,F−−−−→ Ki (F⊗G)
Ki(idF⊗ϕ)−−−−−−→ Ki (F⊗G′)yKi(φ)

p(G)×Ki+1(φ)
q(G)

yKi(φ⊗idG) Ki(φ⊗idG′)
y

Ki (F ′)
p(G)×Ki+1 (F ′)

q(G) −−−−→
Φi,G,F ′

Ki (F ′⊗G) −−−−−−→
Ki(idF ′⊗ϕ)

Ki (F ′⊗G′)

is commutative and the first assertion follows.

Assume now that G and G′ are nuclear, let

(0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0) ∈ Gϒ ,
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and let δi be its associated index maps. By the commutativity of the index maps (Axiom
1.2.8 a)) the diagram

Ki (F3)
p(G)×Ki+1 (F3)

q(G) δ
p(G)
i ×δ

q(G)
i+1−−−−−−−→ Ki+1 (F1)

p(G)×Ki (F1)
q(G)

Φi,G,F3

y yΦ(i+1),G,F1

Ki (F3⊗G) −−−−→
δG,i

Ki+1 (F1⊗G)

Ki(idF3⊗ϕ)
y yKi+1(idF1⊗ϕ)

Ki (F3⊗G′) −−−−→
δG′,i

Ki+1 (F1⊗G′)

is commutative. Since the maps of the columns are group isomorphisms, it follows by the
above, that the diagram

Ki (F3)
p(G′)×Ki+1 (F3)

q(G′) δ
p(G′)
i ×δ

q(G′)
i+1−−−−−−−→ Ki+1 (F1)

p(G′)×Ki (F1)
q(G′)

Φi,G′,F3

y yΦ(i+1),G′,F1

Ki (F3⊗G′) −−−−→
δG′,i

Ki+1 (F1⊗G′)

is also commutative.

d) follows from a) and c).

PROPOSITION 1.5.5 Let G be a nuclear C*-algebra belonging to ϒ.

a) Every split exact sequence in ME belongs to Gϒ.

b) Every exact sequence in ME

0−→ F1 −→ F2 −→ F3 −→ 0

for which F1 or F3 is homotopic to 0 belongs to Gϒ .

a) Let

0−→ F1
ϕ−→ F2

ψ
−→
λ←−

F3 −→ 0
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be a split exact sequence in ME and let δi be its index maps. By Proposition 1.4.8 a),

0−→ F1⊗G
ϕ⊗idG−→ F2⊗G

ψ⊗idG−→
λ⊗idG←−

F3⊗G−→ 0

is split exact and so by Proposition 1.3.1, δi = δG,i = 0.

b) By Proposition 1.4.2 c), F1⊗G or F3⊗G is null-homotopic and so K-null. Thus
by the six-term axiom (Axiom 1.2.7), δi = δG,i = 0, where δi denote the index maps
associated to

0−→ F1 −→ F2 −→ F3 −→ 0 .

PROPOSITION 1.5.6 Let

0−→ G1
ϕ−→ G2

ψ−→ G3 −→ 0

be an exact sequence in MIC such that G3 is nuclear.

a) Assume G1 is ϒ-null.

a1) Ki (idF ⊗ψ) : Ki (F⊗G2)−→ Ki (F⊗G3) is a group isomorphism.

a2) If G2 ∈ ϒ or G3 ∈ ϒ then

G2,G3 ∈ ϒ , p(G2) = p(G3) , q(G2) = q(G3) ,

Φi,G3,F = Ki (idF ⊗ψ)◦Φi,G2,F .

If in addition G2 is nuclear then (G2)ϒ = (G3)ϒ.

b) Assume G2 is ϒ-null and let δ F
i denote the index maps of the exact sequence in ME

0−→ F⊗G1
idF⊗ϕ−→ F⊗G2

idF⊗ψ−→ F⊗G3 −→ 0 .

b1) δ F
i : Ki (F⊗G3)−→ Ki+1 (F⊗G1) is a group isomorphism.

b2) If G1 ∈ ϒ or G3 ∈ ϒ then

G1,G3 ∈ ϒ , p(G1) = q(G3) , q(G1) = p(G3) ,

Φi,G3,F = Φ(i+1),G1,F ◦δ
F
i .

c) Assume G3 is ϒ-null.
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c1) Ki (idF ⊗ϕ) : Ki (F⊗G1)−→ Ki (F⊗G2) is a group isomorphism.

c2) If G1 ∈ ϒ or G2 ∈ ϒ then

G1,G2 ∈ ϒ , p(G1) = p(G2) , q(G1) = q(G2) ,

Φi,G2,F = Ki (idF ⊗ϕ)◦Φi,G1,F .

If in addition G1 and G2 are nuclear then (G1)ϒ = (G2)ϒ.

By Proposition 1.4.9 a), the sequence in ME

0−→ F⊗G1
idF⊗ϕ−→ F⊗G2

idF⊗ψ−→ F⊗G3 −→ 0

is exact. If G j is ϒ-null then F ⊗G j is K-null so a1),b1),c1) follow from Proposition
1.3.6 a),b).

a2) By a1), it is easy to see that

G2,G3 ∈ ϒ , p(G2) = p(G3) , q(G2) = q(G3) ,

Φi,G3,F = Ki (idF ⊗ψ)◦Φi,G2,F .

Assume now G2 nuclear. Let

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0

belong to (G2)ϒ or (G3)ϒ and let δi be its associated index maps. Consider the diagram

Ki (F3)
p(G2)×Ki+1 (F3)

q(G2)
δ

p(G2)
i ×δ

q(G2)
i+1−−−−−−−−→ Ki+1 (F1)

p(G2)×Ki (F1)
q(G2)

Φi,G2 ,F3

y yΦ(i+1),G2 ,F1

Ki (F3⊗G2)
δG2 ,i−−−−→ Ki+1 (F1⊗G2)

Ki(idF3⊗ψ)
y yKi+1(idF1⊗ψ)

Ki (F3⊗G3) −−−−→
δG3 ,i

Ki+1 (F1⊗G3)

Φi,G3 ,F3

x xΦ(i+1),G3 ,F1

Ki (F3)
p(G3)×Ki+1 (F3)

q(G3) −−−−−−−−→
δ

p(G3)
i ×δ

q(G3)
i+1

Ki+1 (F1)
p(G3)×Ki (F1)

q(G3) .
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Its upper part or lower part is commutative and the maps of the columns are group
isomorphisms. It follows, by the above, that the diagram is commutative. Thus
(G2)ϒ = (G3)ϒ.

b2) Let F
φ→ F ′ be a morphism in ME . Then the diagram

0 −−−−→ Ki (F⊗G1)
Ki(idF⊗ϕ)−−−−−−→ Ki (F⊗G2)

Ki(idF⊗ψ)−−−−−−→

Ki(φ⊗idG1)
y yKi(φ⊗idG2)

0 −−−−→ Ki (F ′⊗G1) −−−−−−→
Ki(idF ′⊗ϕ)

Ki (F ′⊗G2) −−−−−−→
Ki(idF ′⊗ψ)

Ki(idF⊗ϕ)−−−−−−→ Ki (F⊗G2)
Ki(idF⊗ψ)−−−−−−→ Ki (F⊗G3) −−−−→ 0

Ki(φ⊗idG2)
y yKi(φ⊗idG3)

−−−−−−→
Ki(idF ′⊗ϕ)

Ki (F ′⊗G2) −−−−−−→
Ki(idF ′⊗ψ)

Ki (F ′⊗G3) −−−−→ 0

is commutative and has exact rows. By the commutativity of the index maps (Axiom
1.2.8), the diagram

Ki (F⊗G3)
δ F

i−−−−→ Ki+1 (F⊗G1)

Ki(φ⊗idG3)
y yKi+1(φ⊗idG1)

Ki (F ′⊗G3) −−−−→
δ F ′

i

Ki+1 (F ′⊗G1)

is commutative. By b1),

G1,G3 ∈ ϒ , p(G1) = q(G3) , q(G1) = p(G3) ,

Φi,G3,F = Φ(i+1),G1,F ◦δ
F
i .

c2) The proof is similar to the proof of a2).

PROPOSITION 1.5.7 Let

0−→ G1
ϕ−→ G2

ψ
−→
λ←−

G3 −→ 0

be a split exact sequence in MIC .
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a) If G1,G3 ∈ ϒ then

G2 ∈ ϒ , p(G2) = p(G1)+ p(G3) , q(G2) = q(G1)+q(G3) ,

Φi,G2,F = (Ki (idF ⊗ϕ)×Ki (idF ⊗λ ))◦ (Φi,G1,F ×Φi,G3,F) .

b) If in addition G1,G2,and G3 are nuclear then (G1)ϒ∩ (G3)ϒ ⊂ (G2)ϒ.

a) By Proposition 1.4.3 b), the sequence

0−→ Ki (F⊗G1)
Ki(idF⊗ϕ)−→ Ki (F⊗G2)

Ki(idF⊗ψ)
−→

Ki(idF⊗λ )
←−

Ki (F⊗G3)−→ 0

is split exact. Thus the maps

(
Ki (F)p(G1)×Ki+1 (F)q(G1)

)
×
(

Ki (F)p(G3)×Ki+1 (F)q(G3)
)

Φi,G1 ,F×Φi,G3 ,F−→ Ki (F⊗G1)×Ki (F⊗G3)
Ki(idF⊗ϕ)×Ki(idF⊗λ )−→ Ki (F⊗G2)

are group isomorphisms.

Let F
φ−→ F ′ be a morphism in ME . Since the diagram with split exact rows

0−→ F⊗G1
idF⊗ϕ−→ F⊗G2

idF⊗ψ
−→

idF⊗λ
←−

F⊗G3 −→ 0 ,

0−→ F ′⊗G1
idF ′⊗ϕ

−→ F ′⊗G2

idF ′ ⊗ψ

−→
idF ′ ⊗λ

←−
F ′⊗G3 −→ 0 ,

(Proposition 1.4.3 a)) and with columns φ ⊗ idG1 , φ ⊗ idG2 , and φ ⊗ idG3 is commutative,
the assertion follows from Proposition 1.4.3 b).

b) Let

(0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0) ∈ (G1)ϒ∩ (G3)ϒ
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and let δi be its associated index maps. Consider the diagram (by a))

Ki (F3)
p(G2)×Ki+1 (F3)

q(G2)
δ

p(G2)
i ×δ

q(G2)
i+1−−−−−−−−→ Ki+1 (F1)

p(G2)×Ki (F1)
q(G2)

Φi,G1 ,F3×Φi,G3 ,F3

y Φ(i+1),G1 ,F1
×Φ(i+1),G3 ,F1

y
Ki (F3⊗G1)×Ki (F3⊗G3) −−−−−−→

δG1 ,i×δG3 ,i

Ki+1 (F1⊗G1)×Ki+1 (F1⊗G3)

A

y Ki+1(idF1⊗ϕ)×Ki+1(idF1⊗λ)
y

Ki (F3⊗G2) −−−−→
δG2 ,i

Ki+1 (F1⊗G2)

Φi,G2 ,F3

x xΦ(i+1),G2 ,F1

Ki (F3)
p(G2)×Ki+1 (F3)

q(G2)
δ

p(G2)
i ×δ

q(G2)
i+1−−−−−−−−→ Ki+1 (F1)

p(G2)×Ki (F1)
q(G2) ,

where

A := Ki
(
idF3 ⊗ϕ

)
×Ki

(
idF3 ⊗λ

)
.

Its upper part is commutative and the maps of the columns are group isomorphisms. It
follows that the lower part of the diagram is also commutative.

COROLLARY 1.5.8 If G∈ ϒ then G̃∈ ϒ, p(G̃) = p(G)+1, q(G̃) = q(G). If in addition

G and G̃ are nuclear then Gϒ ⊂ G̃ϒ.

PROPOSITION 1.5.9 Let (G j) j∈J be a finite family in ϒ.

a)

G := ∏
j∈J

G j ∈ ϒ , p(G) = ∑
j∈J

p(G j) , q(G) = ∑
j∈J

q(G j) ,

Φi,G,F =

(
∏
j∈J

Φi,G j ,F

)
◦Φ(F⊗G j) j∈J ,i .

In particular if G j is ϒ-null for every j ∈ J then G is ϒ-null.

b) If in addition G and all G j, j ∈ J, are nuclear then⋂
j∈J

(G j)ϒ ⊂ Gϒ .
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c) ICJ ∈ ϒ, p(ICJ) = Card J, q(ICJ) = 0, and every exact sequence in ME belongs to(
ICJ)

ϒ
.

a) We put

p̄ := ∑
j⊗J

p(G j) , q̄ := ∑
j⊗J

q(G j) .

Since

F⊗∏
j∈J

G j ≈∏
j∈J

(F⊗G j) ,

by Proposition 1.3.3, the maps

∏
j∈J

Φi,G j ,F : Ki (F)p̄×Ki+1 (F)q̄ = ∏
j∈J

(
Ki (F)p(G j)×Ki+1 (F)q(G j)

)
−→

−→∏
j∈J

Ki (F⊗G j)
Φ(F⊗G j) j∈J ,i−→ Ki (F⊗G)

are group isomorphisms. Let F
φ→ F ′ be a morphism in ME . The diagram

Ki (F)p̄×Ki+1 (F)q̄
∏
j∈J

Φi,G j ,F

−−−−−→ ∏
j∈J

Ki (F⊗G j)

Ki(φ)
p̄×Ki+1(φ)

q̄
y y∏

j∈J
Ki

(
φ⊗idG j

)
Ki (F ′)

p̄×Ki+1 (F ′)
q̄ −−−−−−→

∏
j∈J

Φi,G j ,F ′
∏
j∈J

Ki (F ′⊗G j)

is obviously commutative and by Proposition 1.3.4 the diagram

∏
j∈J

Ki (F⊗G j)
Φ(F⊗G j) j∈J ,i−−−−−−−→ Ki (F⊗G)

∏
j∈J

Ki

(
φ⊗idG j

)y yKi(φ⊗idG)

∏
j∈J

Ki (F ′⊗G j) −−−−−−−→
Φ(F ′⊗G j) j∈J ,i

Ki (F ′⊗G)

is also commutative and this proves the assertion.

b) follows from Proposition 1.5.7 by complete induction.

c) follows from a), b), and Proposition 1.5.4 b).
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PROPOSITION 1.5.10 Let J be a finite set and for every j ∈ J let

0−→ Fj,1
ϕ j−→ Fj,2

ψ j−→ Fj,3 −→ 0

be an exact sequence in ME and δ j,i its associated index maps. For every k ∈ {1,2,3} put

Fk := ∏
j∈J

Fj,k

and for every j ∈ J denote by

ϕ j,k : Fj,k −→ Fk , ψ j,k : Fk −→ Fj,k

the canonical inclusion and projection, respectively. Then

0−→ F1

∏
j∈J

ϕ j

−→ F2

∏
j∈J

ψ j

−→ F3 −→ 0

is an exact sequence in ME and if we denote by δi its index maps then the diagram

∏
j∈J

Ki
(
Fj,3
) Ψ3,i−−−−→ Ki (F3)

∏
j∈J

δ j,i
y yδi

∏
j∈J

Ki+1
(
Fj,1
)
−−−−→
Ψ1,(i+1)

Ki+1 (F1)

is commutative, where for every k ∈ {1,3},

Ψk,i : ∏
j∈J

Ki
(
Fj,k
)
−→ Ki (Fk) , (a j) j∈J 7−→∑

j∈J
Ki
(
ϕ j,k
)

a j .

For every j ∈ J the diagram

0 −−−−→ Fj,1
ϕ j−−−−→ Fj,2

ψ j−−−−→ Fj,3 −−−−→ 0

ϕ j,1

y ϕ j,2

y yϕ j,3

0 −−−−→ F1 −−−−→
∏
j∈J

ϕ j
F2 −−−−→

∏
j∈J

ψ j
F3 −−−−→ 0 ,

is commutative. By the commutativity of the index maps (Axiom 1.2.8), the diagram

Ki
(
Fj,3
) Ki(ϕ j,3)−−−−→ Ki (F3)

δ j,i

y yδi

Ki+1
(
Fj,1
)
−−−−−−→
Ki+1(ϕ j,1)

Ki+1 (F1)
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is commutative. Let (a j) j∈J ∈ ∏
j∈J

Ki
(
Fj,3
)
. Then

δiΨ3,i(a j) j∈J = δi ∑
j∈J

Ki
(
ϕ j,3
)

a j =

= ∑
j∈J

Ki+1
(
ϕ j,1
)

δ j,ia j = Ψ1,(i+1)

(
∏
j∈J

δ j,i

)
(a j) j∈J .

Thus the diagram

∏
j∈J

Ki
(
Fj,3
) Ψ3,i−−−−→ Ki (F3)

∏
j∈J

δ j,i
y yδi

∏
j∈J

Ki+1
(
Fj,1
)
−−−−→
Ψ1,(i+1)

Ki+1 (F1)

is commutative.

PROPOSITION 1.5.11 Let (G j) j∈J be a finite family in ϒ.

a)

G :=
⊗
j∈J

G j ∈ ϒ ,

p(G) =
1
2

(
∏
j∈J

(p(G j)+q(G j))+∏
j∈J

(p(G j)−q(G j))

)
,

q(G) =
1
2

(
∏
j∈J

(p(G j)+q(G j))−∏
j∈J

(p(G j)−q(G j))

)
.

b) If G j0 is K-null for a j0 ∈ J then F⊗

(⊗
j∈J

G j

)
is also K-null.

c) If p(G j0) = q(G j0) for a j0 ∈ J then p(G) = q(G).

d) Let j0 ∈ J, J′ := J \{j0}, and G′ :=
⊗
j∈J′

G j.

d1) If p(G j0) = 1, q(G j0) = 0 then p(G′) = p(G), q(G′) = q(G).

d2) If p(G j0) = 0, q(G j0) = 1 then p(G′) = q(G), q(G′) = p(G).
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e) If we put

H :=
⊗
j∈J

G̃ j and GI :=
⊗
j∈I

G j

for every I ⊂ J then

H ∈ ϒ, p(H) = ∑
I⊂J

p(GI), q(H) = ∑
I⊂J

q(GI); .

f) If in addition G and all (G j) j∈J are nuclear then⋂
j∈J

(G j)ϒ ⊂ Gϒ .

a) Assume first J = {1,2}. The maps

Ki (F)p(G1)p(G2)+q(G1)q(G2)×Ki+1 (F)p(G1)q(G2)+p(G2)q(G1) =

=
(

Ki (F)p(G1)×Ki+1 (F)q(G1)
)p(G2)

×
(

Ki+1 (F)p(G1)×Ki (F)q(G1)
)q(G2)

−→

(Φi,G1,F )
p(G2)×(Φ(i+1),G1 ,F

)q(G2)

−→

−→ Ki (F⊗G1)
p(G2)×Ki+1 (F⊗G1)

q(G2) −→
Φi,G2 ,F⊗G1−→

−→ Ki ((F⊗G1)⊗G2)≈ Ki (F⊗ (G1⊗G2))

are group isomorphisms and

p(G1⊗G2) := p(G1)p(G2)+q(G1)q(G2) =

=
1
2
[(p(G1)+q(G1))(p(G2)+q(G2))+(p(G1)−q(G1))(p(G2)−q(G2))] ,

q(G1⊗G2) := p(G1)q(G2)+ p(G2)q(G1) =

=
1
2
[(p(G1)+q(G1))(p(G2)+q(G2))− (p(G1)−q(G1))(p(G2)−q(G2))] .

If F
φ→ F ′ is a morphism in ME then the diagrams

Ki (F⊗G1)
p(G2)×Ki+1 (F⊗G1)

q(G2)
Φi,G2 ,(F⊗G1)−−−−−−−→ Ki ((F⊗G1)⊗G2)yKi(φ⊗idG1)

p(G2)×Ki+1(ϕ⊗idG1)
q(G2)

yKi((φ⊗idG1 )⊗idG2)

Ki (F ′⊗G1)
p(G2)×Ki+1 (F ′⊗G1)

q(G2) −−−−−−−→
Φi,G2 ,(F

′⊗G1)

Ki ((F ′⊗G1)⊗G2)
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Ki ((F⊗G1)⊗G2)
≈−−−−→ Ki (F⊗ (G1⊗G2))yKi((φ⊗idG1 )⊗idG2)

yKi

(
φ⊗id(G1⊗G2)

)
Ki ((F ′⊗G1)⊗G2) −−−−→

≈
Ki (F ′⊗ (G1⊗G2))

are commutative, which proves the assertion in this case.

The general case is obtained now by induction with respect to Card J. Let Card J > 1,
k ∈ J, J′ := J \{k}, G′ :=⊗ j∈J′G j and assume the assertion holds for J′. By the above,

p(G) =
1
2
[(p(G′)+q(G′))(p(Gk)+q(Gk))+(p(G′)−q(G′))(p(Gk)−q(Gk))] =

=
1
2

(
∏
j∈J′

(p(G j)+q(G j))(p(Gk)+q(Gk))+

+ ∏
j∈J′

(p(G j)−q(G j))(p(Gk)−q(Gk))

)
=

=
1
2

(
∏
j∈J

(p(G j)+q(G j))+∏
j∈J

(p(G j)−q(G j))

)
,

q(G) =
1
2
[(p(G′)+q(G′))(p(Gk)+q(Gk))− (p(G′)−q(G′))(p(Gk)−q(Gk))] =

=
1
2

(
∏
j∈J′

(p(G j)+q(G j))(p(Gk)+q(Gk))−

−∏
j∈J′

(p(G j)−q(G j))(p(Gk)−q(Gk))

)
=

=
1
2

(
∏
j∈J

(p(G j)+q(G j))−∏
j∈J

(p(G j)−q(G j))

)
.

b), c), and d) follow directly from a).

e) By Corollary 1.5.8, G̃ j ∈ ϒ for every j ∈ J. By a) and Proposition 1.4.6, H ∈ ϒ,

Ki (F⊗H)≈∏
I⊂J

Ki (F⊗GI)≈∏
I⊂J

(
Ki (F)p(GI)×Ki+1 (F)q(GI)

)
=

= Ki (F)
∑

I⊂J
p(GI)
×Ki+1 (F)

∑
I⊂J

q(GI)
.

Science Publishing Group 41



Chapter 1 The Axiomatic Theory

f) Assume first J := {1,2}, let

(0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0) ∈ (G1)ϒ∩ (G2)ϒ ,

and let δi be its index maps. Then (by a)) the diagram

Ki (F3)
p(G)×Ki+1 (F3)

q(G) δ
p(G)
i ×δ

q(G)
i+1−−−−−−−→ A

Φ
p(G2)
i,G1 ,F3

×Φ
q(G2)
(i+1),G1 ,F3

y Φ
p(G2)
(i+1),G1 ,F1

×Φ
q(G2)
i,G1,F1

y
Ki (F3⊗G1)

p(G2)×Ki+1 (F3⊗G1)
q(G2)

δ
p(G1)
G1 ,i

×δ
q(G2)
G1 ,i−−−−−−−−→ B

Φi,G2,(F3⊗G1)

y Φ(i+1),G2 ,(F1⊗G1)

y
Ki ((F3⊗G1)⊗G2)≈ Ki (F3⊗ (G1⊗G2)) −−−−−→

δG1 ,(G2 ,i)

C

is commutative, where
A := Ki+1 (F1)

p(G)×Ki (F1)
q(G) ,

B := Ki+1 (F1⊗G1)
p(G2)×Ki (F1⊗G1)

q(G2) ,

C := Ki+1 (((F1⊗G1)⊗G2))≈ Ki+1 ((F1⊗ (G1⊗G2))) .

Thus
(0−→ F1

φ1−→ F2
φ2−→ F3 −→ 0) ∈ Gϒ .

The general case follows by induction with respect to Card J.

COROLLARY 1.5.12 Let G ∈ ϒ, n ∈ IN, and H := ⊗ j∈INn G. Then H ∈ ϒ, Gϒ ⊂ Hϒ,

and

p(H) =
1
2
((p(G)+q(G))n +(p(G)−q(G))n) ,

q(H) =
1
2
((p(G)+q(G))n− (p(G)−q(G))n) .

The assertion follows from Proposition 1.5.11 a).

PROPOSITION 1.5.13 Let (G1,G2,G3) be an MIC -triple such that G1/G3 and G2/G3

are nuclear, G2 is ϒ-null, and G1,G3 ∈ ϒ. We use the notation of the triple theorem

(Theorem 1.3.8 a)) associated to the ME -triple

(F⊗G1,F⊗G2,F⊗G3)
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(Proposition 1.4.9), put ϕ := ϕ1,2/(F⊗G3) (as in Proposition 1.3.7 a)), and denote by

ΨF,i : Ki (F⊗G1)×Ki+1 (F⊗G3)−→ Ki (F⊗ (G1/G3)) ,

(a,b) 7−→ Ki (ψ1,3)a+Φib

the corresponding group isomorphism (Theorem 1.3.8 a4), Proposition 1.4.9). Then

G1/G3 ∈ ϒ, p(G1/G3) = p(G1)+q(G3), q(G1/G3) = q(G1)+ p(G3),

Φi,(G1/G3),F = ΨF,i ◦ (Φi,G1,F ×Φ(i+1),G3,F) .

Since G1,G3 ∈ ϒ, the map

ΨF,i ◦ (Φi,G1,F ×Φ(i+1),G3,F) :
(

Ki (F)p(G1)×Ki+1 (F)q(G1)
)
×

×
(

Ki+1 (F)p(G3)×Ki (F)q(G3)
)
−→ Ki (F⊗ (G1/G3))

is a group isomorphism. We put

p̄(G1/G3) := p(G1)+Q(G3) , q̄(G1/G3) := q(G1)+ p(G3) ,

Φ̄i,G1/G3,F := ΨF,i ◦ (Φi,G1,F ×Φ(i+1),G3,F) .

Let F
φ→F ′ be a morphism in ME . We mark with a prime the above notation associated

to F ′. By the commutativity of the index maps (Axiom 1.2.8),

Ki+1
(
φ ⊗ idG3

)
◦δ2,3,i = δ

′
2,3,i ◦Ki

(
φ ⊗ id(G2/G3)

)
.

Moreover

Ki
(
φ ⊗ id(G1/G3)

)
◦Ki (ϕ) = Ki

(
ϕ
′)◦Ki

(
φ ⊗ id(G2/G3)

)
,

Ki
(
φ ⊗ id(G1/G3)

)
◦Ki (ψ1,3) = Ki

(
ψ
′
1,3
)
◦Ki (φ ⊗ idG1) .

It follows

Ki
(
φ ⊗ id(G1/G3)

)
◦Φi = Ki

(
φ ⊗ id(G1/G3)

)
◦Ki (ϕ)◦ (δ2,3,i)

−1 =

= Ki
(
ϕ
′)◦Ki

(
φ ⊗ id(G2/G3)

)
◦ (δ2,3,i)

−1 =

= Ki
(
ϕ
′)◦ (δ ′2,3,i)−1 ◦Ki+1

(
φ ⊗ idG3

)
= Φ

′
i ◦Ki+1

(
φ ⊗ idG3

)
.
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We want to prove that the diagram

Ki (F⊗G1)×Ki+1 (F⊗G3)
ΨF,i−−−−→ Ki (F⊗ (G1/G3))

Ki(φ⊗idG1)×Ki+1(φ⊗idG3)
y yKi

(
φ⊗id(G1/G3)

)
Ki (F ′⊗G1)×Ki+1 (F ′⊗G3) −−−−→

ΨF ′,i
Ki (F ′⊗ (G1/G3))

is commutative. For (a,b) ∈ Ki (F⊗G1)×Ki+1 (F⊗G3), by the above,

Ki
(
φ ⊗ id(G1/G3)

)
ΨF,i(a,b) = Ki

(
φ ⊗ id(G1/G3)

)
(Ki (ψ1,3)a+Φib) =

= Ki
(
φ ⊗ id(G1/G3)

)
Ki (ψ1,3)a+Ki

(
φ ⊗ id(G1/G3)

)
Φib =

= Ki
(
ψ
′
1,3
)

Ki (φ ⊗ idG1)a+Φ
′
iKi+1

(
φ ⊗ idG3

)
b =

= ΨF ′,i(Ki (φ ⊗ idG1)a,Ki+1
(
φ ⊗ idG3

)
b) =

= ΨF ′,i(Ki (φ ⊗ idG1)×Ki+1
(
φ ⊗ idG3

)
)(a,b) .

Thus the above diagram is commutative. It follows, since G1,G3 ∈ ϒ, that the diagram

Ki (F)p(G1/G3)×Ki+1 (F)q(G1/G3)
Φ̄i,(G1/G3),F−−−−−−→ Ki (F⊗ (G1/G3))

Ki(φ)
p(G1/G3)×Ki+1(φ)

q(G1/G3)
y yKi

(
φ⊗id(G1/G3)

)
Ki (F ′)

p(G1/G3)×Ki+1 (F ′)
q(G1/G3) −−−−−−−→

Φ̄i,(G1/G3),F
′

Ki (F ′⊗ (G1/G3))

is commutative. Hence

G1/G3 ∈ ϒ, p(G1/G3) = p(G1)+q(G3), q(G1/G3) = q(G1)+ p(G3),

Φi,(G1/G3),F = ΨF,i ◦ (Φi,G1,F ×Φ(i+1),G3,F) .

PROPOSITION 1.5.14 Let (G1,G2,G3) be an MIC -triple such that G1/G2 and G1/G3

are nuclear, G1/G3 is ϒ-null, and G1,G1/G2 ∈ ϒ. We use the notation of the triple

theorem (Theorem 1.3.8 b)) associated to the ME -triple

(F⊗G1,F⊗G2,F⊗G3)

(Proposition 1.4.9), assume ψ12 K-null for all E-C*-algebras F, and denote by

ΨF,i : Ki (F⊗G1)×Ki+1 (F⊗ (G1/G2))−→ Ki (F⊗G2) ,
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(a,b) 7−→Φ
′
ia+δ1,2,(i+1)b

the corresponding group isomorphism (Theorem 1.3.8 b4), Proposition 1.4.9). Then

G2 ∈ ϒ, p(G2) = p(G1)+q(G1/G2), q(G2) = q(G1)+ p(G1/G2),

Φi,G2,F = ΨF,i ◦ (Φi,G1,F ×Φ(i+1),(G1/G2),F) .

Since G1,G1/G2 ∈ ϒ, the map

ΨF,i ◦ (Φi,G1,F ×Φ(i+1),(G1/G2),F) :
(

Ki (F)p(G1)×Ki+1 (F)q(G1)
)
×

×
(

Ki+1 (F)p(G1/G2)×Ki (F)q(G1/G2)
)
−→ Ki (F⊗G2)

is a group isomorphism. We put

p̃(G2) := p(G1)+q(G1/G2), q̃(G2) := q(G1)+ p(G1/G2),

Φ̃i,G2,F := ΨF,i ◦ (Φi,G1,F ×Φ(i+1),(G1/G2),F) .

Let F
φ→ F̄ be a morphism in ME . We mark with a bar the above notation associated

to F̄ . By the commutativity of the index maps (Axiom 1.2.8),

Ki (φ ⊗ idG2)◦δ1,2,(i+1) = δ̄1,2,(i+1) ◦Ki+1
(
φ ⊗ id(G1/G2)

)
.

Moreover
Ki (φ ⊗ idG1)◦Ki (ϕ1,3) = Ki (ϕ̄1,3)◦Ki

(
φ ⊗ idG3

)
,

Ki (φ ⊗ idG2)◦Ki (ϕ2,3) = Ki (ϕ̄2,3)◦Ki
(
φ ⊗ idG3

)
.

It follows
Ki (φ ⊗ idG2)◦Φ

′
i = Ki (φ ⊗ idG2)◦Ki (ϕ2,3)◦Ki (ϕ1,3)

−1 =

= Ki (ϕ̄2,3)◦Ki
(
φ ⊗ idG3

)
◦Ki (ϕ1,3)

−1 =

= Ki (ϕ̄2,3)◦Ki (ϕ̄1,3)
−1 ◦Ki (φ ⊗ idG1) = Φ̄

′
i ◦Ki (φ ⊗ idG1) .

We want to prove that the diagram

Ki (F⊗G1)×Ki+1 (F⊗ (G1/G2))
ΨF,i−−−−→ Ki (F⊗G2)

Ki(φ⊗idG1)×Ki+1

(
φ⊗id(G1/G2)

)y yKi(φ⊗idG2)

Ki (F̄⊗G1)×Ki+1 (F̄⊗ (G1/G2)) −−−−→
ΨF̄ ,i

Ki (F̄⊗G2)
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is commutative. For (a,b) ∈ Ki (F⊗G1)×Ki+1 (F⊗ (G1/G2)), by the above,

Ki (φ ⊗ idG2)ΨF,i(a,b) = Ki (φ ⊗ idG2)(Φ
′
ia+δ1,2,(i+1)b) =

= Ki (φ ⊗ idG2)Φ
′
ia+Ki (φ ⊗ idG2)δ1,2,(i+1)b =

= Φ̄
′
iKi (φ ⊗ idG1)a+ δ̄1,2,(i+1)Ki+1

(
φ ⊗ id(G1/G2)

)
b =

= ΨF̄ ,i(Ki (φ ⊗ idG1)a,Ki+1
(
φ ⊗ id(G1/G2)

)
b) =

= ΨF̄ ,i
(
Ki (φ ⊗ idG1)×Ki+1

(
φ ⊗ id(G1/G2)

))
(a,b) .

Thus the above diagram is commutative. Since G1,G1/G2 ∈ϒ, It follows that the diagram

Ki (F)p̃(G2)×Ki+1 (F)q̃(G2)
Φ̃i,G2,F−−−−→ Ki (F⊗G2)

Ki(φ)
p(G2)×Ki+1(φ)

q(G2)
y yKi(φ⊗idG2)

Ki (F̄)
p̃(G2)×Ki+1 (F̄)

q̃(G2) −−−−→
Φ̃i,G2 ,F̄

Ki (F̄⊗G2)

is commutative. Hence

G2 ∈ ϒ, p(G2) = p(G1)+q(G1/G2), q(G2) = q(G1)+ p(G1/G2),

Φi,G2,F = ΨF,i ◦ (Φi,G1,F ×Φ(i+1),(G1/G2),F) .

PROPOSITION 1.5.15 Let

0−→ G
ϕ−→ H

ψ−→ IC−→ 0

be an exact sequence in MIC with G nuclear and H ϒ-null and let δ F
i denote the index

maps associated to the exact sequence in ME

0−→ F⊗G
idF⊗ϕ−→ F⊗H

idF⊗ψ−→ F −→ 0 .

Then

G ∈ ϒ, p(G) = 0, q(G) = 1, Φi,G,F=δ F
i+1

,

(0−→ F⊗G
idF⊗ϕ−→ F⊗H

idF⊗ψ−→ F −→ 0) ∈ Gϒ .
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By Proposition 1.5.6 b) and Proposition 1.5.4 b),

G ∈ ϒ, p(G) = 0, q(G) = 1, Φi,G,F=δ F
i+1

.

Since the diagram

Ki+1(F)
δ F

i+1−−−−→ Ki(F⊗G)

Φi,G,F=δ F
i+1

y yΦ(i+1),G,(F⊗G)=δ F
G,i

Ki(F⊗G) −−−−→
δ F

G,i

Ki+1((F⊗G)⊗G)

is obviously commutative,

(0−→ F⊗G
idF⊗ϕ−→ F⊗H

idF⊗ψ−→ F −→ 0) ∈ Gϒ .

1.6 The Class ϒ1

Throughout this section F denotes an E-C*-algebra.

DEFINITION 1.6.1 We denote by ϒ1 the class of unital C*-algebras G belonging to ϒ

such that

p(G) = 1 , q(G) = 0 , Φi,G,F = Ki (φG,F) ,

where

φG,F : F −→ F⊗G , x 7−→ x⊗1G .

PROPOSITION 1.6.2 IC ∈ ϒ1.

In fact

φIC,F : F −→ F⊗ IC , x 7−→ x⊗1IC

is an isomorphism.

PROPOSITION 1.6.3 Let G ∈ ϒ1 and let F
φ→ F ′ be a morphism in ME . If we identify

Ki (F) with Ki (F⊗G) for all E-C*-algebras F using the group isomorphisms Φi,G,F then

Ki (φ ⊗ idG) is identified with Ki (φ).
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The assertion follows from the commutativity of the diagram

Ki(F)
Ki(φ)−−−−→ Ki(F ′)

Φi,G,F

y yΦi,G,F ′

Ki(F⊗G) −−−−−→
Ki(φ⊗idG)

Ki(F ′⊗G)

PROPOSITION 1.6.4 Let G,H be C*-algebras and ϕ : G−→ H and ψ : H −→ G be a

homotopy such that ϕ and ψ are unital. If G ∈ ϒ1 then H ∈ ϒ1.

By Proposition 1.5.4 c),

H ∈ ϒ , p(H) = 1 , q(H) = 0 ,

Φi,H,F = Ki (idF ⊗ϕ)◦Φi,G,F = Ki (idF ⊗ϕ)◦Ki (φG,F) = Ki (φH,F) .

PROPOSITION 1.6.5 If (G j) j∈J is a finite family in ϒ1, J 6= /0, then
⊗
j∈J

G j ∈ ϒ1.

⊗
j∈J

G j is unital and by Proposition 1.5.12 a),
⊗
j∈J

G j ∈ ϒ. Assume J = {1,2} and let

F
φ→ F ′ be a morphism in ME . Then the diagram

Ki (F)
Ki(φG1 ,F)−−−−−→ Ki (F⊗G1)

Ki

(
φG2,(F⊗G1)

)
−−−−−−−−−→ Ki (F⊗G1⊗G2)

Ki(φ)

y yKi(φ⊗idG1)
yKi

(
φ⊗id(G1⊗G2)

)
Ki (F ′) −−−−−−→

Ki

(
φG1 ,F

′
) Ki (F ′⊗G1) −−−−−−−−−→

Ki

(
φG2 ,(F

′⊗G1)

) Ki (F ′⊗G1⊗G2)

is commutative. Since

φ(G1⊗G2),F = φG2,(F⊗G1) ◦φG1,F , φ(G1⊗G2),F ′ = φG2,(F ′⊗G1) ◦φG1,F ′ ,

the diagram

Ki (F)
Ki

(
φ(G1⊗G2),F

)
−−−−−−−−−→ Ki (F⊗G1⊗G2)

Ki(φ)

y yKi

(
φ⊗id(G1⊗G2)

)
Ki (F ′) −−−−−−−−−→

Ki

(
φ(G1⊗G2),F

′
) Ki (F ′⊗G1⊗G2)
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is commutative, which proves the assertion in this case. The general case follows now by
induction with respect to Card J.

PROPOSITION 1.6.6 If G ∈ ϒ1 is nuclear then every exact sequence in ME belongs to

Gϒ.

Let
0−→ F1

φ1−→ F2
φ2−→ F3 −→ 0

be an exact sequence in ME . Then the diagram

0 −−−−→ F1
φ1−−−−→ F2

φ2−−−−→ F3 −−−−→ 0

φG,F1

y φG,F2

y yφG,F3

0 −−−−→ F1⊗G −−−−→
φ1⊗idG

F2⊗G −−−−→
φ2⊗idG

F3⊗G −−−−→ 0

is commutative and has exact rows. By the commutativity of the index maps (Axiom
1.2.8) the diagram

Ki(F3)
δi−−−−→ Ki+1(F1)

Φi,G,F3=Ki(φG,F3 )

y yΦ(i+1),G,F1
=Ki+1(φG,F1 )

Ki(F3⊗G) −−−−→
δG,i

Ki+1(F1⊗G)

is commutative, where δi denotes the index maps of the exact sequence

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0 .

PROPOSITION 1.6.7 Let G be a C*-algebra.

a) φG̃,F = (idF ⊗λG)◦φIC,F .

b) G is ϒ-null iff G̃ ∈ ϒ1.

c) If G is ϒ-null and ϕ : G −→ G′, ψ : G −→ G′ are C*-homomorphisms then

Ki (idF ⊗ ϕ̃) = Ki (idF ⊗ ψ̃). In particular if G = G′ then

Ki (idF ⊗ ϕ̃) = idKi(F⊗G̃) ≈ idKi(F) .
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a) is easy to see.

b) By Corollary 1.4.5 b), the sequence

0−→ Ki(F⊗G)
Ki(idF⊗ιG)−→ Ki

(
F⊗ G̃

) Ki(idF⊗πG)−→
Ki(idF⊗λG)←−

Ki(F)−→ 0

is split exact. By a) and Proposition 1.6.2,

Ki

(
φG̃,F

)
= Ki (idF ⊗λG)◦Φi,IC,F .

If G̃ ∈ ϒ1 then
Φi,G̃,F = Ki

(
φG̃,F

)
= Ki (idF ⊗λG)◦Φi,IC,F ,

so by Proposition 1.6.2, Ki (idF ⊗λG) is an isomorphism, Ki (idF ⊗ ιG) = 0, Ki (F⊗G) =

0, and G is ϒ-null. If G is ϒ-null then Ki (idF ⊗λG) is an isomorphism so

Ki

(
φG̃,F

)
: Ki (F)−→ Ki (F⊗G)

is an isomorphism and G̃ ∈ ϒ1.

c) Since ϕ̃ ◦λG = ψ̃ ◦λG,

Ki (idF ⊗ ϕ̃)◦Ki (idF ⊗λG) = Ki (idF ⊗ ψ̃)◦Ki (idF ⊗λG) .

By b), G̃ ∈ ϒ1 and so Ki (idF ⊗λG) is an isomorphism. Thus Ki (idF ⊗ ϕ̃) = Ki (idF ⊗ ψ̃).

COROLLARY 1.6.8 If (G j) j∈J is a finite family of ϒ-null C*-algebras and G := ∏
j∈J

G j

then G̃ ∈ ϒ1.

By Proposition 1.5.9 a), G is ϒ-null and by Proposition 1.6.7 b), G̃ ∈ ϒ1.

PROPOSITION 1.6.9 Let

0−→ G1
ϕ−→ G2

ψ−→ G3 −→ 0

be an exact sequence in MIC such that G1 is ϒ-null, G3 is nuclear, and G2, G3 are unital.

Then G2 ∈ ϒ1 iff G3 ∈ ϒ1.
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Since G2 and G3 are unital and ψ is surjective, ψ(1G2) = 1G3 . It follows

φG3,F = (idF ⊗ψ)◦φG2,F , Ki
(
φG3,F

)
= Ki (idF ⊗ψ)◦Ki (φG2,F) .

By Proposition 1.5.6 a), Ki (idF ⊗ψ) is a group isomorphism,

G2,G3 ∈ ϒ , p(G2) = p(G3) = 1 , q(G2) = q(G3) = 0 ,

Φi,G3,F = Ki (idF ⊗ψ)◦Φi,G2,F .

If G2 ∈ ϒ1 then by the above,

Φi,G3,F = Ki (idF ⊗ψ)◦Ki (φG2,F) = Ki
(
φG3,F

)
,

so G3 ∈ ϒ1. If G3 ∈ ϒ1 then by the above,

Ki (idF ⊗ψ)◦Ki (φG2,F) = Ki
(
φG3,F

)
= Φi,G3,F = Ki (idF ⊗ψ)◦Φi,G2,F ,

so Φi,G2,F = Ki (φG2,F) and G2 ∈ ϒ1.
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2.1 Tietze’s Theorem

DEFINITION 2.1.1 Let Ω be a topological space and F an E-C*-algebra. We endow

canonically the C*-algebra C (Ω,F) with the structure of an E-C*-algebra by putting

αx : Ω−→ F , ω 7−→ αx(ω)

for all (α,x) ∈ E×F. If Ω is a locally compact space then we endow C0 (Ω,F) with the

structure of on E−C∗−algebra in a similar way. If Ω′ is an open set of a locally compact

space Ω then we identify C0 (Ω
′,F) with the E-ideal { x ∈ C0 (Ω,F) | x|(Ω\Ω′) = 0} of

C0 (Ω,F).

DEFINITION 2.1.2 Let Ω be a locally compact space with C0 (Ω, IC) ∈ ϒ. We put

Ω ∈ ϒ , p(Ω) := p(C0 (Ω, IC)) , q(Ω) := q(C0 (Ω, IC)) ,

Φi,Ω,F := Φi,C0(Ω,IC),F , Ωϒ := C0 (Ω, IC)
ϒ
, Ω ∈ ϒ1 :⇐⇒ C0 (Ω, IC) ∈ ϒ1 .

We say that Ω is ϒ-null if C0 (Ω, IC) is ϒ-null. We say that Ω is null-homotopic if

C0 (Ω, IC) is null-homotopic.

PROPOSITION 2.1.3 If Ω is a locally compact space and if Ω∗ denotes its Alexandroff

compactification then Ω is ϒ-null iff Ω∗ ∈ ϒ1.

The Proposition is a particular case of Proposition 1.6.7.

LEMMA 2.1.4 Let Ω be a locally compact space.

a) C0 (Ω, IC) is nuclear.

b) C0 (Ω,F)≈ F⊗C0 (Ω, IC).

c) If Ω is a finite compact space then Ω ∈ ϒ, p(Ω) = Card Ω, q(Ω) = 0, and every

exact sequence in ME belongs to Ωϒ.
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a) [5] Theorem T.6.20.

b) [5] Proposition T.5.11,

c) follows from Proposition 1.5.9 c).

COROLLARY 2.1.5 (Tietze’s Theorem) Let Ω be a locally compact space, Γ a closed

set of Ω, ϕ : C0 (Ω\Γ,F)−→ C0 (Ω,F) the inclusion map, and

ψ : C0 (Ω,F)−→ C0 (Γ,F) , x 7−→ x|Γ .

Then

0−→ C0 (Ω\Γ,F)
ϕ−→ C0 (Ω,F)

ψ−→ C0 (Γ,F)−→ 0

is an exact sequence in ME .

By Lemma 2.1.4 a),b), the assertion follows from Proposition 1.4.9.

COROLLARY 2.1.6 If

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0

is an exact sequence in ME and Ω a locally compact space then

0−→ C0 (Ω,F1)
φ1⊗idG−→ C0 (Ω,F2)

φ2⊗idG−→ C0 (Ω,F3)−→ 0

is an exact sequence in ME .

By Lemma 2.1.4 a),b), the assertion follows from Proposition 1.4.10.

PROPOSITION 2.1.7 Let

0−→ F1
φ1−→ F2

φ2−→ F3 −→ 0

be an exact sequence in ME , Ω a locally compact space, Γ a closed set of Ω,

ϕ : C0 (Ω\Γ, IC)−→ C0 (Ω, IC) the inclusion map, and

ψ : C0 (Ω, IC)−→ C0 (Γ, IC) , x 7−→ x|Γ .

56 Science Publishing Group



2.1 Tietze’s Theorem

a) G := { x ∈ C0 (Ω,F2) | x|Γ ∈ C0 (Γ,F1)} is a closed E-ideal of C0 (Ω,F2); we

denote by ϕ ′ : G−→ C0 (Ω,F2) the inclusion map.

b) The sequence in ME

0−→ G
ϕ ′−→ C0 (Ω,F2)

φ2⊗ψ−→ C0 (Γ,F3)−→ 0

is exact.

a) is easy to see.

b) We put

G1 := C0 (Ω\Γ, IC) , G2 := C0 (Ω, IC) , G3 := C0 (Γ, IC) .

Let us consider the following commutative diagram.

0 0 0y y y
0 −−−−→ F1⊗G1

φ1⊗idG1−−−−→ F2⊗G1
φ2⊗idG1−−−−→ F3⊗G1 −−−−→ 0

idF1⊗ϕ

y idF2⊗ϕ

y idF3⊗ϕ

y
0 −−−−→ F1⊗G2

φ1⊗idG2−−−−→ F2⊗G2
φ2⊗idG2−−−−→ F3⊗G2 −−−−→ 0

idF1⊗ψ

y idF2⊗ψ

y idF3⊗ψ

y
0 −−−−→ F1⊗G3

φ1⊗idG3−−−−→ F2⊗G3
φ2⊗idG3−−−−→ F3⊗G3 −−−−→ 0y y y

0 0 0

By Lemma 2.1.4 a), Proposition 1.4.9, and Proposition 1.4.10, its columns and rows are
exact. It follows that φ2⊗ψ is surjective. Let x ∈ Ker (φ2⊗ψ). Then

(idF3 ⊗ψ)(φ2⊗ idG2)x = (φ2⊗ψ)x = 0 ,

so there is a y ∈ F2⊗G1 with

(φ2⊗ϕ)y = (idF3 ⊗ϕ)(φ2⊗ idG1)y = (φ2⊗ idG2)x .
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Then

(φ2⊗ idG2)(x− (idF2 ⊗ϕ)y) = (φ2⊗ idG2)x− (φ2⊗ϕ)y = 0 ,

so there is a z ∈ F1⊗G2 with

(φ1⊗ idG2)z = x− (idF2 ⊗ϕ)y .

Thus

x = (idF2 ⊗ϕ)y+(φ1⊗ idG2)z ∈ G , Ker (φ2⊗ψ)⊂ G .

Let now x∈G. By Proposition 1.4.9, there is a y∈C0 (Ω,F1) =F1⊗G2 with x|Γ= y|Γ.
There is a z ∈ C0 (Ω\Γ,F2) = F2⊗G1 with

(idF2 ⊗ϕ)z = x− (φ1⊗ idG2)y .

We get

(φ2⊗ψ)x = (φ2⊗ψ)(φ1⊗ idG2)y+(φ2⊗ψ)(idF2 ⊗ϕ)z =

= ((φ2 ◦φ1)⊗ψ)y+(φ2⊗ (ψ ◦ϕ))z = 0 ,

G⊂ Ker (φ2⊗ψ).

Remark. If we put F1 := 0 and F2 = F3 in the above Proposition then we obtain Tietze’s
Theorem (Corollary 2.1.5).

PROPOSITION 2.1.8 (Topological six-term sequence) Let Ω be a locally compact

space, Γ a closed set of Ω, ϕ : C0 (Ω\Γ,F)−→ C0 (Ω,F) the inclusion map,

ψ : C0 (Ω,F)−→ C0 (Γ,F) , x 7−→ x|Γ ,

and δi the index maps associated to the exact sequence in ME (Tietze’s Theorem
(Corollary 2.1.5))

0−→ C0 (Ω\Γ,F)
ϕ−→ C0 (Ω,F)

ψ−→ C0 (Γ,F)−→ 0 .

a) Assume Ω\Γ is ϒ-null.

a1) Ki(ψ) : Ki(C0 (Ω,F))−→ Ki(C0 (Γ,F)) is a group isomorphism.
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a2) If Ω ∈ ϒ or Γ ∈ ϒ then

Ω,Γ ∈ ϒ , p(Ω) = p(Γ) , q(Ω) = q(Γ) ,

Φi,Γ,F = Ki (idF ⊗ψ)◦Φi,Ω,F , Ωϒ = Γϒ .

b) Assume Ω is ϒ-null.

b1) δi : Ki(C0 (Γ,F))−→ Ki+1(C0 (Ω\Γ,F)) is a group isomorphism.

b2) If Ω\Γ ∈ ϒ or Γ ∈ ϒ then

Ω\Γ,Γ ∈ ϒ , p(Ω\Γ) = q(Γ) , q(Ω\Γ) = p(Γ) ,

Φi,Γ,F = Φ(i+1),(Ω\Γ),F ◦δi .

c) Assume Γ is ϒ-null.

c1) Ki(ϕ) : Ki(C0 (Ω\Γ,F))−→ Ki(C0 (Ω,F)) is a group isomorphism.

c2) If Ω\Γ ∈ ϒ or Ω ∈ ϒ then

Ω\Γ,Ω ∈ ϒ , p(Ω\Γ) = p(Ω) , q(Ω\Γ) = q(Ω) ,

Φi,Ω,F = Ki (idF ⊗ϕ)◦Φi,(Ω\Γ),F , (Ω\Γ)ϒ = Ωϒ .

The assertions follow from Lemma 2.1.4 a),b) and Proposition 1.5.6.

COROLLARY 2.1.9 Let Ω be a locally compact space, ω ∈ Ω such that Ω \ {ω} is

ϒ-null, Γ a closed set of Ω,

Ω
′ := (Ω\{ω})\Γ , Γ

′ := Γ\{ω} ,

ϕ : C0 (Ω
′,F)−→ C0 (Ω\{ω},F) the inclusion map,

ψ : C0 (Ω\{ω},F)−→ C0
(
Γ
′,F
)
, x 7−→ x|Γ′ ,

and δi the index maps of the exact sequence in ME (Tietze’s Theorem (Corollary 2.1.5))

0−→ C0
(
Ω
′,F
) ϕ−→ C0 (Ω\{ω},F)

ψ−→ C0
(
Γ
′,F
)
−→ 0 .

a) δi : Ki (C0 (Γ
′,F))−→ Ki+1 (C0 (Ω

′,F)) is a group isomorphism.
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b) If Ω′ ∈ ϒ or Γ′ ∈ ϒ then

Ω
′,Γ′ ∈ ϒ , p(Ω′) = q(Γ′) , q(Ω′) = p(Γ′) ,

Φi,Γ′,F = Φ(i+1),Ω′,F ◦δi .

c) If Γ is finite then

Ω
′ ∈ ϒ , p(Ω′) = 0 , q(Ω′) =Card Γ

′ .

a) and b) follow from the Topological six-term sequence (Proposition 2.1.8 b)).

c) follows from b) and Lemma 2.1.4 c).

COROLLARY 2.1.10 Let Ω,Ω′ be locally compact spaces, ω ∈ Ω, and ω ′ ∈ Ω′ such

that Ω′ \{ω ′} is null-homotopic.

a) Ki (C0 ((Ω×Ω′)\{(ω,ω ′)},F))≈ Ki (C0 ((Ω\{ω})×Ω′,F)) .

b) If also Ω\{ω} is null-homotopic then C0 ((Ω×Ω′)\{(ω,ω ′)},F) is K-null.

a) The sequence in ME (with obvious notation)

0−→ C0
(
(Ω\{ω})×Ω

′,F
) ϕ−→ C0

(
(Ω×Ω

′)\{(ω,ω ′)},F
)

C0
(
(Ω×Ω

′)\{(ω,ω ′)},F
) ψ−→ C0

(
{ω}× (Ω′ \{ω ′}),F

)
−→ 0

is exact and the assertion follows from the Topological six-term sequence (Proposition
2.1.8 c1)).

b) By Proposition 1.4.2 c) and Lemma 2.1.4 b), (Ω\{ω})×Ω′ is null-homotopic and
so K-null (Proposition 1.5.4 a)). By a),

Ki
(
C0
(
(Ω×Ω

′)\{(ω,ω ′)},F
))

is K-null.
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PROPOSITION 2.1.11 (Topological triple) Let Ω1 be a locally compact space, Ω2 an

open set of Ω1, Ω3 an open set of Ω2, and ϕ : C0 (Ω2 \Ω3,F) −→ C0 (Ω1 \Ω3,F) the

inclusion map. For all j,k ∈ {1,2,3}, j < k, put

ψ j,k : C0 (Ω j,F)−→ C0 (Ω j \Ωk,F) , x 7−→ x|(Ω j \Ωk)

and denote by ϕ j,k : C0 (Ωk,F) −→ C0 (Ω j,F) the inclusion map and by δ j,k,i the index

maps associated to the exact sequence in ME

0−→ C0 (Ωk,F)
ϕ j,k−→ C0 (Ω j,F)

ψ j,k−→ C0 (Ω j \Ωk,F)−→ 0 .

a) Assume C0 (Ω2,F) K-null.

a1) δ2,3,i : Ki(C0 (Ω2 \Ω3,F))−→ Ki+1(C0 (Ω3,F)) is a group isomorphism.

a2) δ2,3,i = δ1,3,i ◦Ki(ϕ).

a3) ϕ1,3 is K-null.

a4) If we put Φi := Ki(ϕ)◦ (δ2,3,i)
−1 then

0−→ Ki(C0 (Ω1,F))
Ki(ψ1,3)−→ Ki(C0 (Ω1 \Ω3,F))

δ1,3,i−→
Φi←−

δ1,3,i−→
Φi←−

Ki+1(C0 (Ω3,F))−→ 0

is a split exact sequence and the map

Ki(C0 (Ω1,F))×Ki+1(C0 (Ω3,F))−→ Ki(C0 (Ω1 \Ω3,F)) ,

(a,b) 7−→ Ki(ψ1,3)a+Φib

is a group isomorphism.

a5) If Ω2 is ϒ-null and Ω1,Ω3 ∈ ϒ then

Ω1 \Ω3 ∈ ϒ , p(Ω1 \Ω3) = p(Ω1)+q(Ω3) , q(Ω1 \Ω3) = q(Ω1)+ p(Ω3) ,

and (with the notation of Proposition 1.5.13)

Φi,(Ω1\Ω3),F = ΨF,i ◦ (Φi,Ω1,F ×Φ(i+1),Ω3,F) .

b) Assume C0 (Ω1 \Ω3,F) K-null.
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b1) δ2,3,i = 0.

b2) Ki(ϕ1,3) : Ki(C0 (Ω3,F))−→ Ki(C0 (Ω1,F)) is a group isomorphism.

b3) If we put Φi := Ki(ϕ1,3)
−1 ◦Ki(ϕ1,2) then the map

Ψ : Ki(C0 (Ω2,F))−→ Ki(C0 (Ω3,F))×Ki(C0 (Ω2 \Ω3,F)) ,

b 7−→ (Φib,Ki(ψ2,3)b)

is a group isomorphism.

b4) If ψ1,2 is K-null and if we put Φ′i := Ki(ϕ2,3)◦Ki(ϕ1,3)
−1 (by c2)) then

0−→ Ki+1(C0 (Ω1 \Ω2,F))
δ1,2,(i+1)−→ Ki(C0 (Ω2,F))

Ki(ϕ1,2)−→
Φ′i←−

Ki(ϕ1,2)−→
Φ′i←−

Ki(C0 (Ω1,F))−→ 0

is a split exact sequence and the map

Ki(C0 (Ω1,F))×Ki+1(C0 (Ω1 \Ω2,F))−→ Ki(C0 (Ω2,F)),

(a,b) 7−→Φ
′
ia+δ1,2,(i+1)b

is a group isomorphism.

b5) If Ω1 \Ω3 is ϒ-null, Ω1,Ω1 \Ω2 ∈ ϒ, and ψ1,2 is K-null then

Ω2 ∈ ϒ , p(Ω2) = p(Ω1)+q(Ω1 \Ω2) , q(Ω2) = q(Ω1)+ p(Ω1 \Ω2) .

c) Assume C0 (Ω1,F) K-null and put

ψ : C0 (Ω1 \Ω3,F)−→ C0 (Ω1 \Ω2,F) , x 7−→ x|(Ω1 \Ω2) .

c1) δ1,2,i and δ1,3,i are group isomorphisms.

c2) Ki(ϕ2,3)◦δ1,3,(i+1) = δ1,2,(i+1) ◦Ki+1(ψ).

c3) Let ϕ ′ : C0 (Ω1 \Ω2,F)−→ C0 (Ω1 \Ω3,F) be a morphism in ME such that

Ki(ψ ◦ϕ
′) = idKi(C0(Ω1\Ω2,F)) .

If we put

Φi := δ1,3,(i+1) ◦Ki+1(ϕ
′)◦ (δ1,2,(i+1))

−1
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then Ki(ϕ2,3)◦Φi = idKi(C0(Ω2,F)). If in addition ψ2,3 is K-null then

0−→ Ki+1(C0 (Ω2 \Ω3,F))
δ2,3,(i+1)−→ Ki(C0 (Ω3,F))

Ki(ϕ2,3)−→
Φi←−

Ki(ϕ2,3)−→
Φi←−

Ki(C0 (Ω2,F))−→ 0

is a split exact sequence and the map

Ki+1((C0 (Ω2 \Ω3,F))×Ki(C0 (Ω2,F))−→ Ki(C0 (Ω3,F)) ,

(a,b) 7−→ δ2,3,(i+1)a+Φib

is a group isomorphism.

Up to a5) and b5) the Proposition follows from Tietze’s Theorem (Corollary 2.1.5)
and from the triple theorem (Theorem 1.3.8) (and Lemma 2.1.4 a),b)). a5) follows from
Proposition 1.5.13 and b5) follows from Proposition 1.5.14.

COROLLARY 2.1.12 Let F
φ→ F ′ be a morphism in ME . We use the notation and

hypotheses of Proposition 2.1.11 and the hypothesis that C0 (Ω2,F) and C0 (Ω2,F ′) are

K-null, and mark with an accent those notation associated to F ′. We put for all j ∈
{1,2,3} and for all j,k ∈ {1,2,3}, j < k,

φ j : C0 (Ω j,F)−→ C0
(
Ω j,F ′

)
, x 7−→ φ ◦ x ,

φ j,k : C0 (Ω j \Ωk,F)−→ C0
(
Ω j \Ωk,F ′

)
, x 7−→ φ ◦ x .

a) Φ′i ◦Ki+1(φ3) = Ki(φ1,3)◦Φi.

b) If we identify Ki(C0 (Ω1 \Ω3,F)) with Ki(C0 (Ω1,F)) × Ki+1(C0 (Ω3,F)) and

Ki(C0 (Ω1 \Ω3,F ′)) with Ki(C0 (Ω1,F ′)) × Ki+1(C0 (Ω3,F ′)) using the

isomorphisms of Proposition 2.1.11 a4) then

Ki(φ1,3) : Ki(C0 (Ω1 \Ω3,F))−→ Ki(C0
(
Ω1 \Ω3,F ′

)
),

(a,b)−→ (Ki(φ1)a,Ki+1(φ3)b)

is a group isomorphism.
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a) The diagram

0−→ C0 (Ω3,F)
ϕ2,3−−−−→ C0 (Ω2,F)

ψ2,3−−−−→ C0 (Ω2 \Ω3,F)−→ 0yφ3

yφ2

yφ2,3

0−→ C0 (Ω3,F ′)) −−−−→
ϕ ′2,3

C0 (Ω2,F ′) −−−−→
ψ ′2,3

C0 (Ω2 \Ω3,F ′)−→ 0

is obviously commutative and has exact rows. By the commutativity of the index maps
(Axiom 1.2.8),

Ki+1(φ3)◦δ2,3,i = (δ2,3,i)
′ ◦Ki(φ2,3) ,(

(δ2,3,i)
′)−1 ◦Ki+1(φ3) = Ki(φ2,3)◦ (δ2,3,i)

−1 .

By the above, since φ1,3 ◦ϕ = ϕ ′ ◦φ2,3,

Ki(φ1,3)◦Φi = Ki(φ1,3)◦Ki(ϕ)◦ (δ2,3,i)
−1 = Ki(ϕ

′)◦Ki(φ2,3)◦ (δ2,3,i)
−1 =

= Ki(ϕ
′)◦
(
(δ2,3,i)

′)−1 ◦Ki+1(φ3) = Φ
′
i ◦Ki+1(φ3) .

b) follows from a) and Proposition 2.1.11 a4).

2.2 Alexandroff Compactification

THEOREM 2.2.1 (Alexandroff K-theorem) Let Ω be a locally compact space and Ω∗

its Alexandroff compactification. We denote by

ϕ : C0 (Ω,F)−→ C (Ω∗,F)

the inclusion map and put

λ : F −→ C (Ω∗,F) , y 7−→ y1C (Ω∗,IC)

a) The map

Ki(C0 (Ω,F))×Ki(F)−→ Ki(C (Ω∗,F)), (a,b) 7−→ Ki(ϕ)a+Ki(λ )b

is a group isomorphism.
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b) If Ω ∈ ϒ then

Ω
∗ ∈ ϒ , p(Ω∗) = p(Ω)+1 , q(Ω∗) = q(Ω) Ωϒ ⊂Ω

∗
ϒ .

c) Ω is ϒ-null iff Ω∗ ∈ ϒ1.

C (Ω∗, IC) is the unitization of C0 (Ω, IC).

a) Since

C0 (Ω,F)≈ F⊗C0 (Ω, IC) , C0 (Ω
∗,F)≈ F⊗C0 (Ω

∗, IC)

(Lemma 2.1.4 b)), the assertion follows from Corollary 1.4.5 b).

b) follows from Corollary 1.5.8.

c) follows from Proposition 1.6.7 b).

COROLLARY 2.2.2 Let Ω1 and Ω2 be locally compact spaces, Ω∗1, Ω∗2 their

Alexandroff compactification, respectively, ϑ : Ω1 −→ Ω2 a proper continuous map,

ϑ ∗ : Ω∗1 −→Ω∗2 its continuous extension, and

φ : C0 (Ω2,F)−→ C0 (Ω1,F) , x 7−→ x◦ϑ ,

φ
∗ : C (Ω∗2,F)−→ C (Ω∗1,F) , x 7−→ x◦ϑ

∗ .

a) If we identify Ki

(
C
(

Ω∗j ,F
))

with Ki(C0 (Ω j,F))×Ki(F) for every j ∈ {1,2}
using the group isomorphisms of the Alexandroff K-theorem (Theorem 2.2.1 a))
then

Ki(φ
∗) : Ki(C (Ω∗2,F))−→ Ki(C (Ω∗1,F)) , (a,b) 7−→ (Ki(φ)a,b) .

b) Let ϑ ′ : Ω1 −→ Ω2 be a proper continuous map and let φ ′,φ ′∗ be the above maps

associated to ϑ ′. If Ω2 is ϒ-null then Ki (idF ⊗φ ∗) = Ki (idF ⊗φ ′∗). In particular

if Ω1 = Ω2 then

Ki (idF ⊗φ
∗) = idKi(C (Ω∗1,F))

.
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a) follows from Corollary 1.4.5 c).

b) follows from Proposition 1.6.7 c).

COROLLARY 2.2.3 Let F
φ→ F ′ be a morphism in ME . We use the notation of the

Alexandroff K-theorem (Theorem 2.2.1) and put

φΩ : C0 (Ω,F)−→ C0
(
Ω,F ′

)
, x 7−→ φ ◦ x ,

φΩ∗ : C (Ω∗,F)−→ C
(
Ω
∗,F ′

)
, x 7−→ φ ◦ x .

If we identify Ki(C (Ω∗,F)) with Ki(C0 (Ω,F)) × Ki(F) and Ki(C (Ω∗,F ′)) with

Ki(C0 (Ω,F ′)) × Ki(F ′) using the group isomorphism of the Alexandroff K-theorem

(Theorem 2.2.1 a)) then

Ki(φΩ∗) : Ki(C (Ω∗,F))−→ Ki
(
C
(
Ω
∗,F ′

))
, (a,b) 7−→ (Ki(φΩ)a,Ki(φ)b) .

The assertion follows from Corollary 1.4.5 c).

COROLLARY 2.2.4 We use the notation of the Alexandroff K-theorem (Theorem 2.2.1
a)) and denote by ω∞ the Alexandroff point of Ω. Let Ω′ be a locally compact space,

ϕ
′ : C0

(
Ω×Ω

′,F
)
−→ C0

(
Ω
∗×Ω

′,F
)

the inclusion map, and

λ
′ : C0

(
Ω
′,F
)
−→ C0

(
Ω
∗×Ω

′,F
)
, x 7−→ x̃ ,

where

x̃ : Ω
∗×Ω

′ −→ F , (ω,ω ′) 7−→ x(ω ′) .

Then the map

Ki
(
C0
(
Ω×Ω

′,F
))
×Ki(F)−→ Ki

(
C0
(
Ω
∗×Ω

′,F
))

,

(a,b) 7−→ Ki(ϕ
′)a+Ki(λ

′)b

is a group isomorphism.
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If we put

ψ
′ : C0

(
Ω
∗×Ω

′,F
)
−→ C0

(
Ω
′,F
)
, x 7−→ x(ω∞, ·)

then

0−→ C0
(
Ω×Ω

′,F
) ϕ ′−→ C0

(
Ω
∗×Ω

′,F
) ψ ′
−→
λ ′←−

C0
(
Ω
′,F
)
−→ 0

is a split exact sequence in ME and the assertion follows from the split exact axiom
(Axiom 1.2.3).

2.3 Topological Sums of Locally Compact Spaces

PROPOSITION 2.3.1 (Product Theorem) Let (Ω j) j∈J be a finite family of locally

compact spaces, Ω its topological sum, and for every j ∈ J let

ϕ j : C0 (Ω j,F)−→ C0 (Ω,F) be the inclusion map and

ψ j : C0 (Ω,F)−→ C0 (Ω j,F) , x 7−→ x|Ω j .

a)

Φi : ∏
j∈J

Ki(C0 (Ω j,F))−→ Ki(C0 (Ω,F)) , (a j) j∈J 7−→∑
j∈J

Ki(ϕ j)a j

is a group isomorphism and

Ψi : Ki(C0 (Ω,F))−→∏
j∈J

Ki(C0 (Ω j,F)) , a 7−→ (Ki(ψ j)a) j∈J

is its inverse.

b) If all Ω j, j ∈ J, belong to ϒ then

Ω ∈ ϒ , p(Ω) = ∑
j∈J

p(Ω j), q(Ω) = ∑
j∈J

q(Ω j) ,

Φi,Ω,F = ∏
j∈J

Φi,Ω j ,F ,
⋂
j∈J

(Ω j)ϒ ⊂Ωϒ .

c) If Ω j is ϒ-null for every j ∈ J then Ω is also ϒ-null and Ω∗ ∈ ϒ1, where Ω∗ denotes

the Alexandroff compactification of Ω.
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a) follows from Proposition 1.3.3.

b) follows from Proposition 1.5.9.

c) By b), Ω is ϒ-null and by Alexandroff’s K-theorem (Theorem 2.2.1 a)), Ω∗ ∈ ϒ1.

COROLLARY 2.3.2 Let Ω be a locally compact space, Γ a closed set of Ω, and (Ω j) j∈J

a finite family of pairwise disjoint open sets of Ω such that
⋃
j∈J

Ω j = Ω\Γ. We denote for

every j ∈ J by ϕ j : C0 (Ω j,F)−→ C0 (Ω,F) the inclusion map and assume that the maps

Ki(ϕ j) : Ki(C0 (Ω j,F))−→ Ki(C0 (Ω,F))

are group isomorphisms. If ϕ : C0 (Ω\Γ,F)−→C0 (Ω,F) denotes the inclusion map and

if we identify the above groups then Ki(C0 (Ω\Γ,F))≈ Ki(C0 (Ω,F))J and

Ki(ϕ) : Ki(C0 (Ω\Γ,F))−→ Ki(C0 (Ω,F)) , (a j) j∈J 7−→∑
j∈J

a j .

COROLLARY 2.3.3 Let Ω be a locally compact space such that C0 (Ω,F) is K-null and

Γ a closed set of Ω.

a) Ki(C0 (Ω\Γ,F))≈ Ki+1(C (Γ,F)) .

b) Assume Γ finite and Ω ϒ-null, put

ψ : C0 (Ω,F)−→ C (Γ,F) , x 7−→ x|Γ ,

and denote by ϕ : C0 (Ω\Γ,F)−→C0 (Ω,F) the inclusion map and by δi the index

maps associated to the exact sequence in ME

0−→ C0 (Ω\Γ,F)
ϕ−→ C0 (Ω,F)

ψ−→ C (Γ,F)−→ 0 .

Then

Ki(C0 (Ω\Γ,F))≈ Ki+1(F)Γ ,

Ω\Γ ∈ ϒ , p(Ω\Γ) = 0 , q(Ω\Γ) =Card Γ , Φi,(Ω\Γ),F = δi+1 .

a) Since C0 (Ω,F) is K-null, the assertion follows from the six-term axiom (Axiom
1.2.7).

b) follows from a), Lemma 2.1.4 c), and the Product Theorem (Proposition 2.3.1).
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COROLLARY 2.3.4 Let (Ω j) j∈J be a finite family of locally compact spaces, Ω its

topological sum, and Ω∗ the Alexandroff compactification of Ω.

a) Ki(C (Ω,F))≈ ∏
j∈J

Ki(C0(Ω j,F)) , Ki(C (Ω∗,F))≈ Ki(F)× ∏
j∈J

Ki(C0(Ω j,F)) .

b) If all Ω j, j ∈ J, belong to ϒ then

Ω
∗ ∈ ϒ , p(Ω∗) = 1+ ∑

j∈J
p(Ω j) , q(Ω∗) = ∑

j∈J
q(Ω j) .

The assertion follows immediately from the Product Theorem (Proposition 2.3.1 a))
and the Alexandroff K-theorem (Theorem 2.2.1 a)).

COROLLARY 2.3.5 Let (Ω j) j∈J be a finite family of locally compact spaces such that

C0 (Ω j,F) is K-null for every j ∈ J and let Γ j be a closed set of Ω j for every j ∈ J.

We denote by Ω the Alexandroff compactification of the topological sum of the family

(Ω j \Γ j) j∈J .

a) Ki(C (Ω,F))≈ Ki(F)× ∏
j∈J

Ki+1(C0 (Γ j,F)).

b) If for every j ∈ J, Ω j is ϒ-null and Γ j is finite then

Ω ∈ ϒ , p(Ω) = 1 , q(Ω) = ∑
j∈J

Card Γ j .

a) By Corollary 2.3.3 a), Ki(C0 (Ω j \Γ j,F)) ≈ Ki+1(C0 (Γ j,F)) for every j ∈ J so by
Corollary 2.3.4 a),

Ki(C (Ω,F))≈ Ki(F)×∏
j∈J

Ki+1(C0 (Γ j,F)) .

b) By Corollary 2.3.3 b), for every j ∈ J,

Ω j \Γ j ∈ ϒ , p(Ω j \Γ j) = 0 , q(Ω j \Γ j) =Card Γ j .

Thus by Corollary 2.3.4 b),

Ω ∈ ϒ , p(Ω) = 1 , q(Ω) = ∑
j∈J

Card Γ j .
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PROPOSITION 2.3.6 Let Ω be a compact space belonging to ϒ1, Γ a closed set of Ω,

ω0 ∈ Γ, and Γ′ := Γ \ {ω0}. We use the notation of the Topological triple (Proposition
2.1.11) and put there

Ω1 := Ω , Ω2 := Ω\{ω0} , Ω3 := Ω\Γ .

a) Ω\{ω0} is ϒ-null.

b) Ki (C0 (Ω\Γ,F))≈ Ki+1 (C0 (Γ
′,F)).

c)

0−→ Ki(C (Ω,F))
Ki(ψ1,3)−→ Ki(C (Γ,F))

δ1,3,i−→
Φi←−

δ1,3,i−→
Φi←−

Ki+1(C0 (Ω\Γ,F))−→ 0

is a split exact sequence, and the maps

Ki(C (Ω,F))×Ki+1(C0 (Ω\Γ,F))−→ Ki(C (Γ,F)),

(a,b) 7−→ Ki(ψ1,3)a+Φib ,

δ2,3,i : Ki
(
C0
(
Γ
′,F
))
−→ Ki+1(C0 (Ω\Γ,F))

are group isomorphisms.

d) If Ω\Γ ∈ ϒ or Γ′ ∈ ϒ then with the notation of Corollary 2.1.9

δi : Ki
(
C0
(
Γ
′,F
))
−→ Ki+1 (C0 (Ω\{ω0},F))

is a group isomorphism and

Ω\Γ,Γ′ ∈ ϒ , p(Ω\Γ) = q(Γ′) , q(Ω\Γ) = p(Γ′) ,

Φi,(Ω\Γ),F = δi+1 ◦Φ(i+1),Γ′,F .

e) Assume Γ finite.

e1) (δ2,3,i)
−1 : Ki+1(C0 (Ω\Γ,F))−→ Ki(F)Γ′ is a group isomorphism.

e2) Ω\Γ ∈ ϒ , p(Ω\Γ) = 0 , q(Ω\Γ) =Card Γ′ .
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a) follows from Alexandroff’s K-theorem (Theorem 2.2.1 c)).

b) follows from Corollary 2.3.3 a).

c) By a), Ω \ {ω} is K-null and the assertion follows from the Topological triple
(Proposition 2.1.11 a)).

d) follows from Corollary 2.1.9.

e1) follows from c) and the Product Theorem (Proposition 2.3.1 a4)).

e2) follows from a) and Corollary 2.1.9 c).

PROPOSITION 2.3.7 Let Ω be a locally compact space, Γ a closed set of Ω,

ϕ : C0 (Ω\Γ,F)−→ C0 (Ω,F) the inclusion map,

ψ : C0 (Ω,F)−→ C0 (Γ,F) , x 7−→ x|Γ ,

and δi the index maps associated to the exact sequence in ME

0−→ C0 (Ω\Γ,F)
ϕ−→ C0 (Ω,F)

ψ−→ C0 (Γ,F)−→ 0 .

Let (Ω j) j∈J be a finite family of pairwise disjoint open sets of Ω the union of which is

Ω\Γ and for every j ∈ J put

ψ j : C0
(
Ω̄ j,F

)
−→ C0

(
Ω̄ j \Ω j,F

)
, x 7−→ x|(Ω̄ j \Ω j) ,

ψ
′
j : C0 (Ω\Γ,F)−→ C0 (Ω j,F) , x 7−→ x|Ω j ,

ψ
′′
j : C0 (Γ,F)−→ C0

(
Ω̄ j \Ω j,F

)
, x 7−→ x|(Ω̄ j \Ω j)

and denote by

ϕ j : C0 (Ω j,F)−→ C0
(
Ω̄ j,F

)
,

ϕ
′
j : C0 (Ω j,F)−→ C0 (Ω\Γ,F) ,

ϕ
′′
j : C0 (Ω j,F)−→ C0 (Ω,F)

the inclusion maps and by δ j,i the index maps associated to the exact sequence in ME

0−→ C0 (Ω j,F)
ϕ j−→ C0

(
Ω̄ j,F

) ψ j−→ C0
(
Ω̄ j \Ω j,F

)
−→ 0 .
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a) For every j ∈ J,

δ j,i ◦Ki(ψ
′′
j ) = Ki+1(ψ

′
j)◦δi

and

δi = ∑
j∈J

Ki+1(ϕ
′
j)◦δ j,i ◦Ki(ψ

′′
j ) .

b) Ki(ϕ) = ∑
j∈J

Ki(ϕ
′′
j )◦Ki(ψ

′
j).

c) Let j0 ∈ J such that C0
(
Ω\Ω j0 ,F

)
is K-null.

c1) Ki(ϕ
′′
j0) is a group isomorphism.

c2) Assume ψ K-null. If we put

Φi := Ki(ϕ
′
j0)◦Ki(ϕ

′′
j0)
−1 : Ki(C0 (Ω,F))−→ Ki(C0 (Ω\Γ,F))

then

0−→ Ki+1(C0 (Γ,F))
δi+1−→ Ki(C0 (Ω\Γ,F))

Ki(ϕ)−→
Φi←−

Ki(ϕ)−→
Φi←−

Ki(C0 (Ω,F))−→ 0

is a split exact sequence and the map

Ki+1(C0 (Γ,F))×Ki(C0 (Ω,F))−→ Ki(C0 (Ω\Γ,F)),

(a,b) 7−→ δi+1a+Φib

is a group isomorphism.

a) By the commutativity of the index maps (Axiom 1.2.8),

δ j,i ◦Ki(ψ
′′
j ) = Ki+1(ψ

′
j)◦δi .

Since ∑
j∈J

ϕ ′j ◦ψ ′j is the identity map of C0 (Ω\Γ,F),

∑
j∈J

Ki+1(ϕ
′
j)◦δ j,i ◦Ki(ψ

′′
j ) = ∑

j∈J
Ki+1(ϕ

′
j)◦Ki+1(ψ

′
j)◦δi =

= Ki+1

(
∑
j∈J

ϕ
′
j ◦ψ

′
j

)
◦δi = δi .
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b) We have ϕ ′′j = ϕ ◦ ϕ ′j for every j ∈ J. Since ∑
j∈J

ϕ ′j ◦ψ ′j is the identity map of

C0 (Ω\Γ,F),

Ki(ϕ) = Ki(ϕ)◦Ki

(
∑
j∈J

ϕ
′
j ◦ψ

′
j

)
=

= ∑
j∈J

Ki(ϕ)◦Ki(ϕ
′
j)◦Ki(ψ

′
j) = ∑

j∈J
Ki(ϕ

′′
j )◦Ki(ψ

′
j) .

c1) If we put

ψ̄ : C0 (Ω,F)−→ C0
(
Ω\Ω j0 ,F

)
, x 7−→ x|(Ω\Ω j0)

then

0−→ C0
(
Ω j0 ,F

) ϕ ′′j0−→ C0 (Ω,F)
ψ̄−→ C0

(
Ω\Ω j0 ,F

)
−→ 0

is an exact sequence in ME . Since C0
(
Ω\Ω j0 ,F

)
is K-null, it follows that Ki(ϕ

′′
j0) is a

group isomorphism by the Topological six-term sequence (Proposition 2.1.8 c1)).

c2) Since ϕ ◦ϕ ′j0 = ϕ ′′j0 ,

Ki(ϕ)◦Φi = Ki(ϕ)◦Ki(ϕ
′
j0)◦Ki(ϕ

′′
j0)
−1 = Ki(ϕ

′′
j0)◦Ki(ϕ

′′
j0)
−1 = idKi(C0(Ω,F)) .

Since ψ is K-null,

0−→ Ki+1(C0 (Γ,F))
δi+1−→ Ki(C0 (Ω\Γ,F))

Ki(ϕ)−→
Φi←−

Ki(C0 (Ω,F))−→ 0

is a split exact sequence and this implies the last assertion.

PROPOSITION 2.3.8 If (Ω j) j∈J , J 6= /0, is a finite family of compact spaces belonging

to ϒ1 then ∏
j∈J

Ω j ∈ ϒ1.

The assertion follows immediately from Proposition 1.6.5.

2.4 Homotopy

PROPOSITION 2.4.1 Let Ω be a locally compact space, Ω∗ its Alexandroff

compactification, (ϑs)s∈]0,1] a family of proper continuous maps Ω→ Ω, and for every

s ∈]0,1] let ϑ ∗s : Ω∗ −→Ω∗ be the continuous extension of ϑs. We assume:
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1) Ω∗×]0,1]−→Ω∗, (ω,s) 7−→ ϑ ∗s (ω) is continuous,

2) ϑ1(ω) = ω for every ω ∈Ω,

3) for every compact set Γ of Ω there is an ε ∈]0,1] with Γ∩ϑs(Ω) = /0 for all s∈]0,ε[.

Then Ω is null-homotopic and Ω∗ ∈ ϒ1.

We put for every s ∈ [0,1],

φs : C0 (Ω, IC)−→ C0 (Ω, IC) , x 7−→

{
x◦ϑs if s ∈]0,1]

0 if s = 0
.

Then (φs)s∈[0,1] is a pointwise continuous path in C0 (Ω, IC) with φ0 = 0 and φ1 the identity
map of C0 (Ω,F). Thus Ω is null-homotopic. By Proposition 1.5.4 d), Ω is ϒ-null and by
Alexandroff’s K-theorem, (Theorem 2.2.1 c)), Ω∗ ∈ ϒ1.

COROLLARY 2.4.2 Let J be a set and Ω := [0,1]J . Then Ω\{0} is null-homotopic and

Ω ∈ ϒ1.

The assertion follows from Proposition 2.4.1 by using the map

ϑ : Ω× [0,1]−→Ω , (ω,s) 7−→ sω .

PROPOSITION 2.4.3 Let Ω be a locally compact space, Γ0,Γ1 compact subspaces of

Ω, ϑ0 : Γ0 −→ Γ1 a homeomorphism, and ϑ : Γ0× [0,1] −→ Ω a continuous map such

that ϑ(ω,0) = ω and ϑ(ω,1) = ϑ0(ω) for every ω ∈ Γ0. We put

ψ j : C0 (Ω,F)−→ C (Γ j,F) , x 7−→ x|Γ j

for every j ∈ {0,1} and

ϕ : C (Γ1,F)−→ C (Γ0,F) , x 7−→ x◦ϑ0 .

a) Ki(ϕ) is a group isomorphism and Ki(ψ0) = Ki(ϕ)◦Ki(ψ1).
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b) For every j ∈ {0,1} let ϕ j : C0 (Ω\Γ j,F)−→ C0 (Ω,F) be the inclusion map and

C (Γ j,F)
λ j→ C0 (Ω,F) be a morphism in ME such that ψ j ◦ λ j = idC (Γ j ,F) and

λ1 = λ0 ◦ϕ .

b1) For every j ∈ {0,1},

0−→ Ki (C0 (Ω\Γ j,F))
Ki(ϕ j)−→ Ki (C0 (Ω,F))

Ki(ψ j)
−→

Ki(λ j)
←−

Ki(ψ j)
−→

Ki(λ j)
←−

Ki (C0 (Γ j,F))−→ 0

is a split exact sequence.

b2) ImKi (ϕ0) = ImKi (ϕ1).

b3) If we put for every j ∈ {0,1}

Ψ j,i : Ki (C0 (Ω\Γ j,F))−→ ImKi (ϕ j) , a 7−→ Ki (ϕ j)a

then Ψ j,i and

(Ψ1,i)
−1 ◦Ψ0,i : Ki (C0 (Ω\Γ0,F))−→ Ki (C0 (Ω\Γ1,F))

are well-defined group isomorphisms.

b4) If Ω\Γ0 ∈ ϒ or Ω\Γ1 ∈ ϒ then

Ω\Γ0,Ω\Γ1 ∈ ϒ , p(Ω\Γ0) = p(Ω\Γ1) , q(Ω\Γ0) = q(Ω\Γ1) ,

Φi,(Ω\Γ1),F = (ΨF
1,i)
−1 ◦Ψ

F
0,i ◦Φi,(Ω\Γ),F .

c) If Ω is compact and if for every j ∈ {0,1} there is a continuous map ϑ ′j : Ω−→ Γ j

such that ϑ ′j(ω) = ω for every ω ∈ Γ j and ϑ0 ◦ϑ ′0 = ϑ ′1 then the hypotheses of b)

are fulfilled.

a) For every s ∈ [0,1] put

νs : C0 (Ω,F)−→ C (Γ0,F) , x 7−→ x(ϑ(· ,s)) .

Then Ki(ν0) = Ki(ν1) by the homotopy axiom (Axiom 1.2.5). Ki(ϕ) is obviously a group
isomorphism. For every x ∈ C0 (Ω,F) and ω ∈ Γ0,

(ν0x)(ω) = x(ϑ(ω,0)) = x(ω) = (ψ0x)(ω) ,
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(ν1x)(ω) = x(ϑ(ω,1)) = x(ϑ0(ω)) = (ψ1x)(ϑ0(ω)) = (ϕψ1x)(ω) ,

so ν0 = ψ0, ν1 = ϕ ◦ψ1,

Ki(ψ0) = Ki(ν0) = Ki(ν1) = Ki(ϕ)◦Ki(ψ1) .

b1 follows from the split exact axiom (Axiom 1.2.3).

b2) Let j ∈ {0,1}. We want to prove

ImKi (ϕ j) =
{

c−Ki (λ j)Ki (ψ j)c
∣∣ c ∈ Ki (C (Ω,F))

}
.

Let a ∈ Ki (C0 (Ω\Γ j,F)) and put c := Ki (ϕ j)a. Then

c−Ki (λ j)Ki (ψ j)c = Ki (ϕ j)a−Ki (λ j)Ki (ψ j)Ki (ϕ j)a = Ki (ϕ j)a ,

which proves the ”⊂ ”-inclusion. Let c ∈ Ki (C (Ω,F)). Then

Ki (ψ j)(c−Ki (λ j)Ki (ψ j)c) =

= Ki (ψ j)c−Ki (ψ j)Ki (λ j)Ki (ψ j)c = Ki (ψ j)c−Ki (ψ j)c = 0 ,

c−Ki (λ j)Ki (ψ j)c ∈ Ker Ki (ψ j) = ImKi (ϕ j) ,

which proves the ”⊃”-inclusion (by b1)).

Since λ1 ◦ψ1 = λ0 ◦ϕ ◦ψ1, we get by a),

Ki (λ1)◦Ki (ψ1) = Ki (λ0)◦Ki (ϕ)◦Ki (ψ1) = Ki (λ0)◦Ki (ψ0) .

Thus, by the above, ImKi (ϕ0) = ImKi (ϕ1).

b3) By b1), Ki (ϕ0) and Ki (ϕ1) are injective, the assertion follows from b2).

b4) Let F
φ→ F ′ be o morphism in ME and for every j ∈ {0,1} put

µ j : C0 (Ω\Γ j,F)−→ C0
(
Ω\Γ j,F ′

)
, x 7−→ φ ◦ x ,

µ : C0 (Ω,F)−→ C0
(
Ω,F ′

)
, x 7−→ φ ◦ x .
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We mark by a prime the notation associated to F when applied to F ′. For every j ∈ {0,1}
the diagram

C0 (Ω\Γ j,F)
µ j−−−−→ C0 (Ω\Γ j,F ′)

ϕ j

y yϕ ′j

C0 (Ω,F) −−−−→
µ

C0 (Ω,F ′)

is commutative. Thus the diagrams

Ki (C0 (Ω\Γ j,F))
Ki(µ j)−−−−→ Ki (C0 (Ω\Γ j,F ′))

Ki(ϕ j)
y yKi(ϕ ′j)

Ki (C0 (Ω,F)) −−−−→
Ki(µ)

Ki (C0 (Ω,F ′))

Ki (C0 (Ω\Γ j,F))
Ki(µ j)−−−−→ Ki (C0 (Ω\Γ j,F ′))

Ψ j,i

y yΨ′j,i

ImKi (ϕ j) −−−−→
Λi

ImKi

(
ϕ ′j

)
are also commutative, where Λi is the map defined by Ki (µ).

Assume Ω\Γ0 ∈ ϒ and consider the diagram (by b2))

Ki (F)p(Ω\Γ0)×Ki+1 (F)q(Ω\Γ0) ∆−−−−→ A

Φi,(Ω\Γ0),F

y yΦi,(Ω\Γ0),F
′

Ki (C0 (Ω\Γ0,F))
Ki(µ0)−−−−→ Ki (C0 (Ω\Γ0,F ′))

Ψ0,i

y yΨ′0,i

ImKi (ϕ0) −−−−→
Λi

ImKi (ϕ
′
0)

Ψ1,i

x xΨ′1,i

Ki (C0 (Ω\Γ1,F)) −−−−→
Ki(µ1)

Ki (C0 (Ω\Γ1,F ′))

where

∆ := Ki (φ)
p(Ω\Γ0)×Ki+1 (φ)

q(Ω\Γ0) ,

A := Ki
(
F ′
)p(Ω\Γ0)×Ki+1

(
F ′
)q(Ω\Γ0) .
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By the above, this diagram is commutative and the assertion follows from b3).

c) For every j ∈ {0,1} put

λ j : C (Γ j,F)−→ C (Ω,F) , x 7−→ x◦ϑ
′
j .

Then ψ j ◦λ j = idC (Γ j ,F) and for every x ∈ C (Γ1,F),

λ1x = x◦ϑ
′
1 = x◦ϑ0 ◦ϑ

′
0 = (ϕx)◦ϑ

′
0 = λ0(ϕx) , λ1 = λ0 ◦ϕ .

COROLLARY 2.4.4 Let Ω be a compact space and ω,ω ′ ∈ Ω such that there is a

continuous path in Ω from ω to ω ′.

a) Ki (C0 (Ω\{ω},F))≈ Ki (C0 (Ω\{ω ′},F)).

b) If Ω\{ω} ∈ ϒ then

Ω\{ω ′} ∈ ϒ , p(Ω\{ω ′}) = p(Ω\{ω}) , q(Ω\{ω ′}) = q(Ω\{ω}) .

a) follows from Proposition 2.4.3 b3) and c).

b) follows from Proposition 2.4.3 b4) and c).

COROLLARY 2.4.5 Let Ω,Ω′ be compact spaces such that Ω′ \{ω ′} is null-homotopic

for all ω ′ ∈Ω′, ω ∈Ω, and ω ′′ ∈Ω×Ω′. Then

Ki (C0 (Ω\{ω},F))≈ Ki
(
C0
(
(Ω\{ω})×Ω

′,F
))
≈

≈ Ki
(
C0
(
Ω×Ω

′ \{ω ′′},F
))

.

Let ω ′′ =: (ω0,ω
′
0) ∈Ω×Ω′. By Corollary 2.1.10 a),

Ki
(
C0
(
(Ω\{ω0})×Ω

′,F
))
≈ Ki

(
C0
(
Ω×Ω

′ \{ω ′′},F
))

and by Proposition 2.4.3 c),

Ki
(
C0
(
(Ω\{ω})×Ω

′,F
))
≈ Ki

(
C0
(
(Ω\{ω0})×Ω

′,F
))

.

78 Science Publishing Group



2.4 Homotopy

By Proposition 1.4.2 b3),c),

C0
(
(Ω\{ω})× (Ω′ \{ω ′0}),F

)
≈ C0

(
Ω
′ \{ω ′0}, IC

)
⊗C0 (Ω\{ω},F)

is null-homotopic. Since the sequence in ME

0−→ C0
(
(Ω\{ω})× (Ω′ \{ω ′0}),F

)
−→ C0

(
(Ω\{ω})×Ω

′,F
)

C0
(
(Ω\{ω})×Ω

′,F
)
−→ C0

(
(Ω\{ω})×{ω ′0},F

)
−→ 0

is exact it follows from the topological six-term sequence (Proposition 2.1.8 a1)),

Ki
(
C0
(
(Ω\{ω})×Ω

′,F
))
≈

≈ Ki
(
C0
(
(Ω\{ω})×{ω ′0},F

))
≈ Ki (C0 (Ω\{ω},F)) .

COROLLARY 2.4.6 Let Ω be a locally compact space and ω1,ω2 ∈ Ω and for every

j ∈ {1,2} put

ψ j : C0 (Ω,F)−→ F , x 7−→ x(ω j) .

If there is a continuous path in Ω from ω1 to ω2 then Ki (ψ1) = Ki (ψ2).

The assertion follows from Proposition 2.4.3 a).

COROLLARY 2.4.7 Let Ω be a locally compact space, Γ a finite subset of Ω, ω0 ∈ Ω,

and

ψ : C0 (Ω,F)−→ C (Γ,F) , x 7−→ x|Γ ,

ψω0 : C0 (Ω,F)−→ F , x 7−→ x(ω0) .

If for every ω ∈ Γ there is a continuous path in Ω connecting ω0 with ω then

Ki(ψ) : Ki(C0 (Ω,F))−→ Ki(C (Γ,F))≈ Ki(F)Card Γ ,

a 7−→ (Ki(ψω0)a)ω∈Γ .

We put
ψω : C0 (Ω,F)−→ F , x 7−→ x(ω)

for every ω ∈ Γ. By Corollary 2.4.6 , Ki(ψω) = Ki(ψω0) for every ω ∈ Γ and the assertion
follows from the Product Theorem (Proposition 2.3.1 a)).
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PROPOSITION 2.4.8 Let Ω be a path connected compact space, Γ a finite subset of Ω,

ω0 ∈ Γ, Γ′ := Γ\{ω0},
ϕ : C0 (Ω\Γ,F)−→ C (Ω,F) ,

ϕ
′ : C0 (Ω\Γ,F)−→ C0 (Ω\{ω0},F) ,

ϕ
′′ : C

(
Γ
′,F
)
−→ C (Γ,F)

the inclusion maps,

ψ : C (Ω,F)−→ C (Γ,F) , x 7−→ x|Γ ,

ψ
′ : C0 (Ω\{ω0},F)−→ C

(
Γ
′,F
)
, x 7−→ x|Γ′ ,

ψω : C (Ω,F)−→ F , x 7−→ x(ω)

for every ω ∈ Γ, and δi,δ
′
i the index maps associated to the exact sequences in ME

0−→ C0 (Ω\Γ,F)
ϕ−→ C (Ω,F)

ψ−→ C (Γ,F)−→ 0 ,

0−→ C0 (Ω\Γ,F)
ϕ ′−→ C0 (Ω\{ω0},F)

ψ ′−→ C
(
Γ
′,F
)
−→ 0 .

a) Ki(C (Ω,F))≈ Ki(F)×Ki(C0 (Ω\{ω0},F)).

b) ψ ′ is K-null.

c) If we use the group isomorphism of a) then

Ki(ψ) : Ki(C (Ω,F))−→ Ki (C (Γ,F))≈ Ki(F)Γ , (a,b) 7−→ (a)ω∈Γ .

d) If we identify Ki(C (Γ,F)) with Ki(F)Γ and Ki(C (Γ′,F)) with Ki(F)Γ′ then

δi : Ki(C (Γ, ·))−→ Ki+1(C0 (Ω\Γ, ·)) , (aω)ω∈Γ 7−→ (δ ′i (aω −aω0))ω∈Γ′ .

e) Assume C0 (Ω\{ω0},F) K-null.

e1) Ki(ψω0) : Ki(C0 (Ω,F))−→ Ki(F) is a group isomorphism.

e2) δ ′i : Ki(C (Γ′,F))−→ Ki+1(C0 (Ω\Γ,F)) is a group isomorphism.

e3) If we identify Ki(C (Γ′,F)) with Ki(F)Γ′ and Ki(C (Γ,F)) with Ki(F)Γ then

for all (aω)ω∈Γ′

Ki(ϕ
′′)(aω)ω∈Γ′ = (aω)ω∈Γ ,

where aω0 = 0.
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e4) If we identify Ki+1(C0 (Ω\Γ,F)) with Ki(C (Γ′,F)) using (δ ′i )
−1 of e2) then

for all (aω)ω∈Γ ∈ Ki(C (Γ,F)),

δi(aω)ω∈Γ = (aω −aω0)ω∈Γ′ .

a) follows from the Alexandroff K-theorem (Theorem 2.2.1 a)).

b) Let ω ∈ Γ′ and let ϑ : [0,1]−→Ω be a continuous path in Ω connecting ω with ω0.
Then for every x ∈ C0 (Ω\{ω0},F) the map

[0,1]−→ C0 (Ω\{ω0},F) , x 7−→ x(ϑs(ω))

is continuous. By the homotopy axiom (Axiom 1.2.5) , Ki(ψω) = 0 so by the Product
Theorem (Proposition 2.3.1 a)), Ki(ψ

′) = 0.

c) follows from a), b), and Corollary 2.4.7.

d) By the commutativity of the index maps (Axiom 1.2.8), δ ′i = δi ◦Ki(ϕ
′′) so by the

Product Theorem (Proposition 2.3.1 a)),

δi(0,(aω)ω∈Γ′) = δ
′
i (aω)ω∈Γ′

for all (aω)ω∈Γ′ ∈ Ki(F)Γ′ . For a ∈ Ki(F), by c) and by the above,

0 = δiKi (ψ)a = δi(a)ω∈Γ = δi(a,(a)ω∈Γ′) =

= δi(a,0)+δi(0,(a)ω∈Γ′) = δi(a,0)+δ
′
i (a)ω∈Γ′ ,

δi(a,0) =−δ ′i (a)ω∈Γ′ . It follows for all (aω)ω∈Γ,

δi(aω)ω∈Γ = δi(aω0 ,0)+δi(0,(aω)ω∈Γ′) =

=−δ
′
i (aω0)ω∈Γ′ +δ

′
i (aω)ω∈Γ′ = δ

′
i (aω −aω0)ω∈Γ .

e1) and e2) follow from the Topological six-term sequence (Proposition 2.1.8) a1) and
b1), respectively.

e3) follows from the Product Theorem (Proposition 2.3.1 a)).

e4) follows from d).
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EXAMPLE 2.4.9 Let n ∈ IN. We use the notation of Proposition 2.4.8 and put

Ω :=
{

re
2πi j

n

∣∣∣ r ∈ [0,1], j ∈ INn

}
, Γ :=

{
e

2πi j
n

∣∣∣ j ∈ INn

}
, ω0 := 1 .

a) Ω\{ω0} is null-homotopic and so K-null.

b) Ki(ψω0) : Ki(C0 (Ω,F))−→ Ki(F) is a group isomorphism.

c) δ ′i : Ki(C (Γ′,F))≈ Ki(F)Γ′ −→ Ki+1(C0 (Ω\Γ,F)) is a group isomorphism.

d) If we identify Ki(C (Γ′,F)) with Ki(F)Γ′ and Ki(C (Γ,F)) with Ki(F)Γ (using e.g.
Lemma 2.1.4 c)) then for all (aω)ω∈Γ′

Ki(ϕ
′′)(aω)ω∈Γ′ = (aω)ω∈Γ ,

where aω0 = 0.

e) If we identify Ki+1(C0 (Ω\Γ,F)) with Ki(F)Γ′ using (δ ′i )
−1 of c) then for all

(aω)ω∈Γ,

δi(aω)ω∈Γ = (aω −aω0)ω∈Γ′ .

f) Ω ∈ ϒ , p(Ω) = 1 , q(Ω) = 0 , Φi,Ω,F = Ki
(
ψω0

)
, Ωϒ = ICϒ.

a) By Proposition 2.4.1, Ω\{ω0} is null-homotopic.

b) follows from a) and the Topological six-term sequence (Proposition 2.1.8 a)).

c), d), and e) follow from Proposition 2.4.8 b), c), and d), respectively.

f) follows from a) and Proposition 2.4.1.

PROPOSITION 2.4.10 Let Ω be a locally compact spaces, ω ∈Ω, Ω′ a compact space,

and

ϑ : Ω
′× [0,1]−→Ω

a continuous map such that ϑ(ω ′,0) = ω for all ω ′ ∈Ω′. Then the map

C0 (Ω\{ω},F)−→ C
(
Ω
′,F
)
, x 7−→ x◦ϑ( · ,1)

is K-null
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For every s ∈ [0,1] put

ψs : C0 (Ω\{ω},F)−→ C
(
Ω
′,F
)
, x 7−→ x◦ϑ( · ,s) .

Then for every x ∈ C0 (Ω\{ω},F) the map

[0,1]−→ C
(
Ω
′,F
)
, s 7−→ ψsx

is continuous and ψ0x = 0, so the assertion follows from the homotopy (Axiom 1.2.5).

PROPOSITION 2.4.11 Let Ω be a locally compact space, ∆ a closed set of Ω, Γ a

compact set of ∆, ω0 ∈ Γ such that C0 (∆\{ω0},F) is K-null, and ϑ : Γ× [0,1]−→ Ω a

continuous map such that ϑ(ω,1) = ω and ϑ(ω,0) = ω0 for all ω ∈ Γ. Then

Ki(C0 (Ω\Γ,F))≈ Ki(C0 (Ω\{ω0},F))×Ki+1(C0 (Γ\{ω0},F)) .

In particular if Γ is finite

Ki(C0 (Ω\Γ,F))≈ Ki(C0 (Ω\{ω0},F))×Ki+1(F)Card Γ−1 .

We use the notation of the Topological triple (Proposition 2.1.11) and put

Ω1 := Ω\{ω0}, Ω2 := Ω\Γ, Ω3 := Ω\∆ .

By Proposition 2.4.10, ψ1,2 is K-null and the first assertion follows from the Topological
triple (Proposition 2.1.11 b4)). The last assertion follows from the first one and from the
Product Theorem (Proposition 2.3.1 a)).
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Chapter 3

Some Selected Locally Compact
Spaces

Throughout this chapter we endow {0,1} with a group structure by identifying it with
ZZ2 , F denotes an E-C*-algebra, i ∈ {0,1}, and n ∈ IN.





3.1 Balls

3.1 Balls

DEFINITION 3.1.1 We put

IBn := { α ∈ IRn | ‖α‖ ≤ 1} .

THEOREM 3.1.2 Let Γ be a closed set of IBn, ω0 ∈ Γ, and Γ′ := Γ\{ω0}.

a) IBn \{ω0} is null-homotopic and so ϒ-null, IBn ∈ ϒ1, and every exact sequence in

ME belongs to (IBn)ϒ. We use in the sequel the notation of Proposition 2.3.6 and

put there Ω := IBn.

b) Ki(C0 (IBn \Γ,F))≈ Ki+1 (C0 (Γ
′,F)).

c)

0−→ Ki(C (IBn,F))
Ki(ψ1,3)−→ Ki(C (Γ,F))

δ1,3,i−→
Φi←−

δ1,3,i−→
Φi←−

Ki+1(C0 (IBn \Γ,F))−→ 0

is a split exact sequence, and the maps

Ki(C (IBn,F))×Ki+1(C0 (IBn \Γ,F))−→ Ki(C (Γ,F)),

(a,b) 7−→ Ki(ψ1,3)a+Φib ,

δ2,3,i : Ki
(
C0
(
Γ
′,F
))
−→ Ki+1(C0 (IBn \Γ,F))

are group isomorphisms.

d) If IBn \Γ ∈ ϒ or Γ′ ∈ ϒ then with the notation of Corollary 2.1.9

δi : Ki
(
C0
(
Γ
′,F
))
−→ Ki+1 (C0 (IBn \{ω0},F))

is a group isomorphism and

IBn \Γ,Γ′ ∈ ϒ , p(IBn \Γ) = q(Γ′) , q(IBn \Γ) = p(Γ′) ,

Φi,(IBn\Γ),F = δi+1 ◦Φ(i+1),Γ′,F .

e) Assume Γ finite.
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e1)

(δ2,3,i)
−1 : Ki+1(C0 (IBn \Γ,F))−→ Ki(F)Γ′

is a group isomorphism.

e2)

Ki(ψ1,3) : Ki(C (IBn,F))≈ Ki(F)−→ Ki(C (Γ,F))≈ Ki(F)Γ ,

a 7−→ (a)ω∈Γ ,

and, if we identify Ki+1(C0 (IBn \Γ,F)) with Ki(F)Γ′ using the above group

isomorphism (δ2,3,i)
−1, then

δ1,3,i : Ki(C (Γ,F))−→ Ki(F)Card Γ′ , (aω)ω∈Γ 7−→ (aω −aω0)ω∈Γ′ .

e3)

IBn \Γ ∈ ϒ , p(IBn \Γ) = 0 , q(IBn \Γ) =Card Γ
′ ,

Φi,(IBn\Γ),F = δ2,3,(i+1) ◦Φ(i+1),Γ′,F ,

a) Since IBn is homeomorphic to [0,1]n, it follows from Corollary 2.4.2 that
C0 (Ω\{ω0}, IC) is null-homotopic and IBn ∈ ϒ1. By Proposition 1.5.4 d), IBn \ {ω0} is
ϒ-null and by Proposition 1.6.6, every exact sequence in ME belongs to (IBn)ϒ.

b), c), d), e1), and e3) follow from a) and Proposition 2.3.6.

e2) follows from a) and Proposition 2.4.8 e3),e4).

Remark. By b), Ki(C0 (IBn \Γ,F)) depends only on Ki+1(C0 (Γ
′,F)) and not on n or

on the embedding of Γ in IBn.

COROLLARY 3.1.3 Let (Γ j) j∈J be a finite family of pairwise disjoint closed sets of IBn,

J 6= /0, and for every j ∈ J let ω j ∈ Γ j such that C0
(
Γ j \{ωj},F

)
is K-null. Then

Ki

(
C0

(
IBn \

⋃
j∈J

Γ j,F

))
≈

≈ Ki(C0
(
IBn \

{
ω j
∣∣ j ∈ J

}
,F
)
)≈ Ki+1(F)Card J−1
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Put Γ :=
⋃
j∈J

(Γ j \{ωj}),

ψ : C0
(
IBn \

{
ω j
∣∣ j ∈ J

}
,F
)
−→ C0 (Γ,F) , x 7−→ x|Γ ,

and denote by ϕ : C0

(
IBn \

⋃
j∈J

Γ j,F

)
−→C0

(
IBn \

{
ω j
∣∣ j ∈ J

}
,F
)

the inclusion map.

Then

0−→ C0

(
IBn \

⋃
j∈J

Γ j,F

)
ϕ−→ C0

(
IBn \

{
ω j
∣∣ j ∈ J

}
,F
) ψ−→ C0 (Γ,F)−→ 0

is an exact sequence in ME . By the Product Theorem (Proposition 2.3.1 c)), C0 (Γ,F) is
K-null so by the Topological six-term sequence (Proposition 2.1.8 b)) and Theorem 3.1.2
e1),

Ki

(
C0

(
IBn \

⋃
j∈J

Γ j,F

))
≈

≈ Ki(C0
(
IBn \

{
ω j
∣∣ j ∈ J

}
,F
)
)≈ Ki+1(F)Card J−1 .

COROLLARY 3.1.4 Let (k j) j∈J be a finite family in IN and for every j ∈ J let Γ j be

a nonempty finite subset of IBk j . If Ω denotes the Alexandroff compactification of the

topological sum of the family (IBk j \Γ j) j∈J then

Ω ∈ ϒ , p(Ω) = 1 , q(Ω) = ∑
j∈J

(Card Γ j−1) .

For every j ∈ J let ω j ∈ Γ j. By Theorem 3.1.2 a), IBk j \{ωj} is ϒ-null and the assertion
follows from Corollary 2.3.5 b).

COROLLARY 3.1.5 If Ω is a path connected compact space, ω ∈Ω, and ω ′ ∈ IBn×Ω

then

Ki (C0 (Ω\{ω},F))≈ Ki
(
C0
(
IBn×Ω\{ω ′},F

))
.

B¡ Theorem 3.1.2 a), C0 (IBn \{ω0},F) is K-null for every ω0 ∈ IBn and the assertion
follows from Corollary 2.4.5.
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COROLLARY 3.1.6 Let Γ be a closed set of IBn and Ω an open set of IBn, Ω⊂ Γ. Then

for all ω ∈ Γ\Ω,

Ki (C0 ((Γ\Ω)\{ω},F))≈ Ki (C0 (Γ\{ω},F))×Ki+1 (C0 (Ω,F)) ,

Ki (C0 (Γ\Ω,F))≈ Ki (C (Γ,F))×Ki+1 (C0 (Ω,F)) .

By Theorem 3.1.2 b),

Ki (C0 (Γ\{ω},F))≈ Ki+1 (C0 (IBn \Γ,F)) ,

Ki (C0 ((Γ\Ω)\{ω},F))≈ Ki+1 (C0 (IBn \ (Γ\Ω),F))

and by the Product Theorem (Proposition 2.3.1a)),

Ki+1 (C0 (IBn \ (Γ\Ω),F))≈ Ki+1 (C0 (IBn \Γ,F))×Ki+1 (C0 (Ω,F)) ,

so
Ki (C0 ((Γ\Ω)\{ω},F))≈ Ki (C0 (Γ\{ω},F))×Ki+1 (C0 (Ω,F)) .

The last relation follows from the Alexandroff K-theorem (Proposition 2.2.1 a)).

COROLLARY 3.1.7 If Ω is an open set of IBn, Ω 6= IBn, and Γ a compact set of Ω then

Ki (C0 (Ω\Γ,F))≈ Ki (C0 (Ω,F))×Ki+1 (C (Γ,F)) .

Let ω ∈ IBn \Ω. By Theorem 3.1.2 b),

Ki (C0 (Ω,F))≈ Ki+1 (C0 ((IBn \Ω)\{ω},F)) ,

Ki (C0 (Ω\Γ,F))≈ Ki+1 (C0 (((IBn \Ω)\{ω})∪Γ,F)) .

By the Product Theorem (Proposition 2.3.1 a)),

Ki+1 (C0 (((IBn \Ω)\{ω})∪Γ,F))≈

≈ Ki+1 (C0 ((IBn \Ω)\{ω},F))×Ki+1 (C (Γ,F)) ,

so
Ki (C0 (Ω\Γ,F))≈ Ki (C0 (Ω,F))×Ki+1 (C (Γ,F)) .

90 Science Publishing Group



3.2 Euclidean Spaces and Spheres

3.2 Euclidean Spaces and Spheres

DEFINITION 3.2.1 We put

SSn−1 := { α ∈ IRn | ‖α‖= 1} , IT := SS 1 .

THEOREM 3.2.2

a) IRn ∈ ϒ , p(IRn) = 1+(−1)n

2 , q(IRn) = 1−(−1)n

2 ,

IRϒ ⊂ (IRn)ϒ , Ki (C0 (IRn,F))≈ Ki+n (F) .

b) SS n ∈ ϒ , p(SS n) =
3+(−1)n

2 , q(SS n) =
1−(−1)n

2 , IRϒ ⊂ (SS n)ϒ ,

Ki(C (SSn,F))≈

≈

{
Ki(F)2 if n is even

Ki(F)×Ki+1(F) if n is odd
= Ki(F)×Ki+n(F) ,

and the map

Ki(F)×Ki+n(F)−→ Ki(C (SS n,F)), (a,b) 7−→ Ki(λ )a+Ki+n(ϕ)b

is a group isomorphism, where ϕ : C0 (IRn,F) ≈ Ki+n(F) −→ C (SS n,F) denotes

the inclusion map and

λ : F −→ C (SS n,F) , x 7−→ x1C (SSn,IC) .

c) Let Γ be a closed set of IRn, Γ 6= IRn.

c1) The map

C0 (IRn,F)−→ C0 (Γ,F) , x 7−→ x|Γ

is K-null.

c2) If Γ is compact then

Ki(C0 (IRn \Γ,F))≈ Ki+n(F)×Ki+1(C (Γ,F)) .
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If in addition Γ ∈ ϒ then IRn \Γ ∈ ϒ, and

p(IRn \Γ) =

{
q(Γ)+1 if n is even

q(Γ) if n is odd
,

q(IRn \Γ) =

{
p(Γ) if n is even

p(Γ)+1 if n is odd
.

d) If Γ is finite then IRn \Γ ∈ ϒ, and

p(IRn \Γ) =

{
1 if n is even
0 if n is odd

,

q(IRn \Γ) =

{
CardΓ if n is even

CardΓ+1 if n is odd
.

e) Let Γ be a closed set of SS n, Γ 6= SS n, ω ∈ Γ, and Γ′ := Γ\{ω}.

e1) Ki(C0 (SS n \Γ,F))≈ Ki+n(F)×Ki+1(C0 (Γ\{ω},F)).

e2) If Γ′ ∈ ϒ then SS n \Γ ∈ ϒ, and

p(SS n \Γ) =

{
q(Γ′)+1 if n is even

q(Γ′) if n is odd
,

q(SS n \Γ) =

{
p(Γ′) if n is even

p(Γ′)+1 if n is odd
.

e3) If Γ is finite, then SS n \Γ ∈ ϒ, and

p(SS n \Γ) =

{
1 if n is even
0 if n is odd

,

q(SS n \Γ) =

{
CardΓ′ if n is even
CardΓ if n is odd

.

f) If m ∈ IN ,m < n, then

Ki(C0 (SS n \ SS m,F))≈ Ki(C0 (IRn \ IRm,F))≈ Ki(F)×Ki+n−m+1(F) .

g) For m ∈ IN ,m < n,

Ki(C0 (IBn \ SS m,F))≈ Ki+m+1(F) .
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a) Since IR is homeomorphic to ]0,1[= IB1 \{−1,1} we get

IR ∈ ϒ , p(IR) = 0 , q(IR) = 1

from Theorem 3.1.2 e3) and the assertion follows from Corollary 1.5.12.

b) Since SSn is homeomorphic to the Alexandroff compactification of IRn, b) follows
from a) and the Alexandroff K-theorem (Theorem 2.2.1 a),b)).

c1) We may assume 0 ∈ IRn \Γ. Put

ϑ : Γ×]0,1]−→ IRn , (ω,s) 7−→ 1
s

ω

and for every s ∈ [0,1]

ψs : C0 (IRn,F)−→ C0 (Γ,F) , x 7−→

{
x◦ϑ(· , s) if s 6= 0

0 if s = 0
.

Then for every x ∈ C0 (IRn,F),

[0,1]−→ C0 (Γ,F) , s 7−→ ψsx

is continuous, ψ1x = x|Γ, and ψ0x = 0. Thus the assertion follows from the
homotopy axiom (Axiom 1.2.5).

c2) We identify the homeomorphic spaces { α ∈ IRn | ‖α‖< 1} and IRn, put ω :=
(1,0, · · · ,0) ∈ IBn and

ψ : C0 (IBn \{ω},F)−→C0 ((SS n−1 \{ω})∪Γ,F) , x 7−→ x|((SS n−1 \{ω})∪Γ) ,

and denote by ϕ : C0 (IRn \Γ,F)−→ C0 (IBn \{ω},F) the inclusion map and by δi

the index maps associated to the exact sequence in ME

0−→ C0 (IRn \Γ,F)
ϕ−→ C0 (IBn \{ω},F)

ψ−→ C0 ((SS n−1 \{ω})∪Γ,F)−→ 0 .

By Theorem 3.1.2 a), C0 (IBn \{ω},F) is K-null so by the Topological six-term
sequence (Proposition 2.1.8 c)), the map

δi+1 : Ki+1(C0 ((SS n−1 \{ω})∪Γ,F))−→ Ki(C0 (IRn \Γ,F))

is a group isomorphism. By the Product Theorem (Proposition 2.3.1 a),b)),

Ki+1(C0 ((SS n−1 \{ω})∪Γ,F))≈ Ki+1(C0 (SS n−1 \{ω},F))×Ki+1(C (Γ,F)) ,
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and Γ ∈ ϒ implies IRn \Γ ∈ ϒ. By a), Ki+1(C0 (SS n−1 \{ω},F))≈ Ki+n(F) so

Ki(C0 (IRn \Γ,F))≈ Ki+n(F)×Ki+1(C (Γ,F))

as well as the last assertions.

d) follows from c) and the Product Theorem (Proposition 2.3.1 a),b)).

e) SS n \Γ is homeomorphic to IRn \ (Γ\{ω}) and the assertion follows from c) and d).

f) Step 1

Ki(C0 (SS n \ SS m,F))≈ Ki(C0 (IRn \ IRm,F))

Let ω ∈ SS m. Then SS n \ SS m = (SS n \ {ω}) \ (SS m \ {ω}). Since (SS n \ {ω}) \ (SS m \
{ω}) is homeomorphic to IRn \ IRm we get

Ki(C0 (SS n \ SS m,F))≈ Ki(C0 (IRn \ IRm,F)) .

Step 2

Ki(C0 (IRn \ IRm,F))≈ Ki(F)×Ki+n−m+1(F)

We identify IRn \ IRm with

{
α ∈ IBn | ‖α‖< 1 ,

n
∑

j=m+1
α2

j 6= 0

}
, put

ψ : IBn \ IBm −→ SS n−1 \ SS m−1 , x 7−→ x|(SS n−1 \ SS m−1) ,

and denote by ϕ : IRn \ IRm −→ IBn \ IBm the inclusion map and by δi the index
maps associated to the exact sequence in ME

0−→ C0 (IRn \ IRm,F)
ϕ−→ C0 (IBn \ IBm,F)

ψ−→ C0 (SS n−1 \ SS m−1,F)−→ 0 .

By Proposition 2.4.1, C0 (IBn \ IBm,F) is K-null so by the Topological six-term
sequence (Proposition 2.1.8 c)) and Step 1,

Ki(C0 (IRn \ IRm,F))≈ Ki+1(C0 (SS n−1 \ SS m−1,F))≈

≈ Ki+1
(
C0
(
IRn−1 \ IRm−1,F

))
.

For m = 1, by e1),

Ki(C0 (IRn \ IR,F))≈ Ki+1(C0 (SS n−1 \ SS 0,F))≈ Ki+n(F)×Ki(F) .
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By induction and by the above,

Ki(C0 (IRn \ IRm,F))≈ Ki+n−m+1
(
C0
(
IRn−m+1 \ IR,F

))
≈

≈ Ki+n−m+1(F)×Ki(F) .

g) Let ω ∈ SS m. Since SS m \{ω} is homeomorph to IRm, by a),

Ki(C0 (SS m \{ω},F))≈ Ki+m(F) .

By Theorem 3.1.2 b),

Ki(C0 (IBn \ SS m,F))≈ Ki+1(C0 (SS m \{ω},F))≈ Ki+1+m(F) .

EXAMPLE 3.2.3 Put

Ω1 := SS 1∪
{

re
2πi j

n

∣∣∣ r ∈ [0,1], j ∈ INn

}
,

Ω2 := SS 2∪{ α ∈ IB3 | α3 = 0}∪{ α ∈ IB3 | α1 = α2 = 0} ,

Ω3 := SS n−1∪

( ⋃
j∈INn

{
α ∈ IBn | α j = 0

})
.

a) Ki (C (Ω1,F)) = Ki (F)×Ki+1 (F)n.

b) Ki (C (Ω2,F))≈ Ki (F)3×Ki+1 (F)2.

c) Ki (C (Ω3,F)) = Ki (F)×Ki+n+1 (F)2n
.

a) By Theorem 3.2.2 b) and the Product Theorem (Proposition 2.3.1 a)),

Ki (C0 (IB2 \Ω1,F))≈ Ki (F)n

and by Theorem 3.1.2 a),b),c),

Ki (C (Ω1,F))≈ Ki (C (IB2,F))×Ki+1 (C0 (IB2 \Ω1,F))≈ Ki (F)×Ki+1 (F)n .

b) By Theorem 3.2.2 a),b),

IR2, SS 1 ∈ ϒ , p(IR2) = 1 , q(IR2) = 0 , p(SS 1) = 1 , q(SS 1) = 1 ,
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so by Corollary 1.5.11 d1),

Ki
(
C0
(
IR2× SS 1,F

))
≈ Ki (F)×Ki+1 (F) .

Since IB3 \Ω2 is homeomorphic to the topological sum of two copies of IR2× SS 1 we get
by the Product Theorem (Proposition 2.3.1 a))

Ki (C0 (IB3 \Ω2,F))≈ Ki (F)2×Ki+1 (F)2 .

By Theorem 3.1.2 a),b),c),

Ki (C (Ω2,F))≈ Ki (C (IB3,F))×Ki+1 (C0 (IB3 \Ω2,F))≈ Ki (F)3×Ki+1 (F)2 .

c) By Theorem 3.2.2 a), Ki (C0 (IRn,F)) ≈ Ki+n (F). Since IBn \Ω3 is homeomorphic
to the topological sum of 2n copies of IRn, we get by the Product Theorem (Proposition
2.3.1 a)) Ki (C0 (IBn \Ω3,F))≈ Ki+n (F)2n

. By Theorem 3.1.2 a),b),c),

Ki (C (Ω3,F))≈ Ki (C (IBn,F))×Ki+1 (C0 (IBn \Ω3,F))≈

≈ Ki (F)×Ki+n+1 (F)2n
.

Remark. The above a) and b) will be generalized in Example 3.5.11 b) and c),
respectively.

COROLLARY 3.2.4 Let (k j) j∈J be a finite family in IN and

p :=Card
{

j ∈ J | k j is even
}
, q :=Card

{
j ∈ J | k j is odd

}
.

a) If Ω denotes the Alexandroff compactification of the topological sum of the family

(IRk j) j∈J then

Ω ∈ ϒ , IRϒ ⊂Ωϒ , p(Ω) = p+1 , q(Ω) = q .

b) For every j ∈ J let ω j ∈ SS k j and let Ω′ denote the compact space obtained from

the topological sum of the family (SS k j) j∈J by identifying all the points of the family

(ω j) j∈J . If J 6= /0 then

Ω
′ ∈ ϒ , IRϒ ⊂Ω

′
ϒ , p(Ω′) = p+1 , q(Ω′) = q .

In particular if k j = 1 for all j ∈ J then p(Ω′) = 1, q(Ω′) =Card J.
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a) By Theorem 3.2.2 a), IRk j ∈ ϒ, IRϒ ⊂ (IRk j)ϒ,

p
(

IRk j
)
=

{
1 if k j is even
0 if k j is odd

, q
(

IRk j
)
=

{
0 if k j is even
1 if k j is odd

for every j ∈ J. The assertion follows now from the Product Theorem (Proposition 2.3.1
b)) and from Alexandroff’s K-theorem (Proposition 2.2.1 b)).

b) follows from a) since Ω and Ω′ are homeomorphic.

COROLLARY 3.2.5 Let (k j) j∈J be a finite family in IN,

p :=Card
{

j ∈ J | k j is even
}
, q :=Card

{
j ∈ J | k j is odd

}
,

(Γ j) j∈J a pairwise disjoint family of closed sets of IBn such that Γ j is homeomorphic to

SS k j for every j ∈ J, and Γ :=
⋃

j∈J Γ j. Then

IBn \Γ ∈ ϒ , IRϒ ⊂ (IBn \Γ)ϒ , p(IBn \Γ) = q , q(IBn \Γ) = 2p−1 .

By Theorem 3.2.2 a),b), for j ∈ J,

IRk j , SS k j ∈ ϒ , IRϒ ⊂ (IRk j)ϒ∩ (SS k j)ϒ ,

p
(

IRk j
)
=

1+(−1)k j

2
, q

(
IRk j

)
=

1− (−1)k j

2
,

p
(

SS k j

)
=

3+(−1)k j

2
, q

(
SS k j

)
=

1− (−1)k j

2
.

Let ω ∈ Γ and Γ′ := Γ\{ω}. By the Product Theorem (Proposition 2.3.1 b)),

Γ
′ ∈ ϒ , IRϒ ⊂ Γ

′
ϒ , p(Γ′) = 2p−1 , q(Γ′) = q ,

so by Theorem 3.1.2 d),

IBn \Γ ∈ ϒ , IRϒ ⊂ (IBn \Γ)ϒ , p(IBn \Γ) = q , q(IBn \Γ) = 2p−1 .

COROLLARY 3.2.6 If Ω is a connected closed set of IB2 possessing a triangulation

with r0 vertices, r1 chords, and r2 triangles then

Ki (C (Ω,F))≈ Ki (F)×Ki+1 (F)1−r0+r1−r2 .
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Sketch of a proof. If Ω has k holes then r0− r1 + r2 + k = 1. By Theorem 3.1.2 c),

Ki (C (Ω,F))≈ Ki (F)×Ki+1 (C0 (IB2 \Ω,F)) .

By Theorem 3.2.2 a) and the Product Theorem (Proposition 2.3.1 a)),

Ki (C0 (IB2 \Ω,F))≈ Ki (F)k

so

Ki (C (Ω,F))≈ Ki (F)×Ki+1 (F)1−r0+r1−r2 .

COROLLARY 3.2.7 We identify the homeomorphic spaces IRn and

{ α ∈ IRn | ‖α‖< 1} .

Let Γ be a finite subset of IRn, ∆ a subset of Γ, ω ∈ ∆, Γ′ := Γ\{ω}, ∆′ := ∆\{ω}. We

use the notation of the Topological triple (Proposition 2.1.11) and put

Ω1 := IBn \{ω} , Ω2 := IRn \∆ , Ω3 := IRn \Γ .

a) δ1,2,i and δ1,3,i are group isomorphisms.

b) ψ2,3 is K-null.

c) If we put Φi := δ1,3,(i+1) ◦Ki+1(ϕ
′)◦ (δ1,2,(i+1))

−1 then

0−→ Ki+1(C (Γ\∆,F))
δ2,3,(i+1)−→ Ki(C0 (IRn \Γ,F))

Ki(ϕ2,3)−→
Φi←−

Ki(ϕ2,3)−→
Φi←−

Ki(C0 (IRn \∆,F))−→ 0

is a split exact sequence and the map

Ki+1(C (Γ\∆,F))×Ki(C0 (IRn \∆,F))−→ Ki(C0 (IRn \Γ,F)) ,

(a,b) 7−→ δ2,3,(i+1)a+Φib

is a group isomorphism.
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By Theorem 3.1.2 a), C0 (Ω1,F) is K-null and by Proposition 2.4.10, ψ2,3 is K-null.
By the Product Theorem (Proposition 2.3.1 a)),

Ki(ψ ◦ϕ
′) = idKi(C0(Ω1\Ω2,F))

and a) and c) follow from the Topological triple (Proposition 2.1.11 c)).

COROLLARY 3.2.8 Let ω ∈ SS n−1. We use the notation of the Topological triple
(Proposition 2.1.11) and put

Ω1 := IBn , Ω2 := IBn \{ω} , Ω3 := IBn \ SS n−1 .

a) ϕ1,3 is K-null.

b) δ2,3,i : Ki(C0 (SS n−1 \{ω},F)) −→ Ki+1(C0 (IBn \ SS n−1,F)) is a group

isomorphism.

c) If we put Φi := Ki(ϕ)◦ (δ2,3,i)
−1 then

0−→ Ki(C (IBn,F))
Ki(ψ1.3)−→ Ki(C (SS n−1,F))

δ1,3,i−→
Φi←−

δ1,3,i−→
Φi←−

Ki+1(C0 (IBn \ SS n−1,F))−→ 0

is a split exact sequence and the map

Ki(C (IBn,F))×Ki+1(C0 (IBn \ SS n−1,F))−→ Ki(C (SS n−1,F)),

(a,b) 7−→ Ki(ψ1,3)a+Φib

is a group isomorphism.

d) Let φ : G−→ H be a morphism in ME and put

φIB : C (IBn,G)−→ C (IBn,H) , x 7−→ φ ◦ x ,

φSS : C (SS n−1,G)−→ C (SS n−1,H) , x 7−→ φ ◦ x ,

φIB,SS : C0 (IBn \ SS n−1,G)−→ C0 (IBn \ SS n−1,H) , x 7−→ φ ◦ x .

If we identify Ki(C (SS n−1,F)) with

Ki(C (IBn,F))×Ki+1(C0 (IBn \ SS n−1,F))
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for F ∈ {G,H} using the isomorphism of c) then

Ki(φSS ) : Ki(C (SS n−1,G))−→ Ki(C (SS n−1,H)),

(a,b) 7−→ (Ki(φIB)a,Ki+1(φIB,SS )b) .

By Theorem 3.1.2 a), C0 (IBn \{ω},F) is K-null and the assertion follows from the
Topological triple (Proposition 2.1.11 a)) and Corollary 2.1.12 b).

PROPOSITION 3.2.9 Put

Ω := IBn+1 \{ α ∈ SS n | αn+1 = 0} ,

Ω
′ := SS n \{ α ∈ SS n | αn+1 = 0} ,

ψ : C0 (Ω,F)−→ C0
(
Ω
′,F
)
, x 7−→ x|Ω′

and denote by

ϕ : C0 (IBn+1 \ SS n,F)−→ C0 (Ω,F)

the inclusion map and by δi the index maps associated to the exact sequence in ME

0−→ C0 (IBn+1 \ SS n,F)
ϕ−→ C0 (Ω,F)

ψ−→ C0
(
Ω
′,F
)
−→ 0 .

a)

Ki(C0 (Ω,F))≈ Ki+n(F) , Ki
(
C0
(
Ω
′,F
))
≈ Ki+n(F)2 ,

Ki+1(C0 (IBn+1 \ SS n,F))≈ Ki+n(F) .

b) If we identify the groups of a) then

δi : Ki
(
C0
(
Ω
′,F
))
−→ Ki+1(C0 (IBn+1 \ SS n,F)) , (a,b) 7−→ a+b ,

0−→ Ki(C0 (Ω, ·)) Ki(ψ)−→ Ki
(
C0
(
Ω
′, ·
)) δi−→ Ki+1(C0 (IBn+1 \ SS n, ·))−→ 0

is an exact sequence, and there is a group automorphism Φi : Ki+n(F)−→ Ki+n(F)

such that

Ki(ψ) : Ki(C0 (Ω,F))−→ Ki
(
C0
(
Ω
′,F
))

, a 7−→ (Φia,−Φia) .
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c) If

λ
′ : C0 (Ω,F)−→ C (IBn+1,F) ,

λ
′′ : C0

(
Ω
′,F
)
−→ C (SS n,F)

denote the inclusion maps and if we identify Ki(C0 (Ω
′,F)) with Ki+n(F)2 using a)

and Ki(C (SS n,F)) with Ki(F)×Ki+n(F) using Theorem 3.2.2 b) then λ ′ is K-null

and

Ki
(
λ
′′) : Ki

(
C
(
Ω
′,F
))
−→ Ki(C (SS n,F)) , (a,b) 7−→ (0,a+b) .

a) By Theorem 3.2.2 a), Ki(C0 (IRn,F)) ≈ Ki+n(F). Since IBn+1 \ SS n is
homeomorphic to IRn+1, Ki+1(C0 (IBn+1 \ SS n,F)) ≈ Ki+n(F). Since Ω′ is
homeomorphic to the topological sum of IRn and IRn, Ki(C0 (Ω

′,F)) ≈ Ki+n(F)2 by the
Product Theorem (Proposition 2.3.1 a)). Put

Γ := { α ∈Ω | αn+1 = 0}

and for every s ∈]0,1]

ϑs : Ω\Γ−→Ω\Γ , (α j) j∈INn+1 7−→ ((α j) j∈INn ,sαn+1) .

By Proposition 2.4.1, C0 (Ω\Γ,F) is K-null, so by the Topological six-term sequence
(Proposition 2.1.8 a)), Ki(C0 (Ω,F)) ≈ Ki(C0 (Γ,F)). Since Γ is homeomorphic to IRn,
Ki(C0 (Ω,F))≈ Ki+n(F) by the above.

b) Put ω := (1,0, · · · ,0) ∈ IBn+1,

ψ
′ : C0 (IBn+1 \{ω},F)−→ C0 (SS n \{ω},F) , x 7−→ x|(SS n \{ω}) ,

and denote by
ϕ
′ : C0 (IBn+1 \ SS n,F)−→ C0 (IBn+1 \{ω},F) ,

ϕ
′′ : C0 (Ω,F)−→ C0 (IBn+1 \{ω},F)

ϕ
′′′ : C0

(
Ω
′,F
)
−→ C0 (SS n \{ω},F)

the inclusion maps and by δ ′i the six-term sequence index maps associated with the exact
sequence in ME

0−→ C0 (IBn+1 \ SS n,F)
ϕ ′−→ C0 (IBn+1 \{ω},F)

ψ ′−→ C0 (SS n \{ω},F)−→ 0 .
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By Theorem 3.1.2 a), C0 (IBn+1 \{ω},F) is K-null so by the Topological six-term
sequence (Proposition 2.1.8 c)),

δ
′
i : Ki(C0 (SS n \{ω},F))−→ Ki+1(C0 (IBn+1 \ SS n,F))

is a group isomorphism. By the commutativity of the index maps (Axiom 1.2.8), δi =

δ ′i ◦Ki(ϕ
′′′). Thus if we identify the above groups using δ ′i then δi is identified with

Ki(ϕ
′′′). By Corollary 2.3.2

Ki(ϕ
′′′) : Ki

(
C0
(
Ω
′,F
))
−→ Ki (C0 (SS n \{ω},F)) , (a,b) 7−→ a+b .

Since SS n \{ω} is homeomorphic to IRn, we get

δi : Ki
(
C0
(
Ω
′,F
))
−→ Ki+1(C0 (IBn+1 \ SS n,F)) , (a,b) 7−→ a+b .

Thus δi is surjective and the other assertions follow from the six-term axiom (Axiom
1.2.7).

c) λ ′ is K-null since it factorizes through null (Theorem 3.1.2 a)). Put
ω := (1,0, · · · ,0) ∈ IBn+1 and denote by

λ
′′′ : C0 (SS n \{ω},F)−→ C (SS n,F)

the inclusion map. By the proof of b), since λ ′′ = λ ′′′ ◦ϕ ′′′,

Ki
(
λ
′′) : Ki

(
C
(
Ω
′,F
))
−→ Ki(C (SS n,F)) , (a,b) 7−→ (0,a+b)

by the Alexandroff K-theorem (Theorem 2.2.1 a)).

PROPOSITION 3.2.10 Let Γ be a closed set of IRn, Γ 6= IRn,

ϕ : C0 (IRn \Γ,F)−→ C0 (IRn,F)

the inclusion map,

ψ : C0 (IRn,F)−→ C0 (Γ,F) , x 7−→ x|Γ ,

and δi the index maps associated to the exact sequence in ME

0−→ C0 (IRn \Γ,F)
ϕ−→ C0 (IRn,F)

ψ−→ C0 (Γ,F)−→ 0 .
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a) ψ is K-null.

b) The sequence

0−→ Ki+1(C0 (Γ,F))
δi+1−→ Ki(C0 (IRn \Γ,F))

Ki(ϕ)−→ C0 (Γ,F)−→ 0

is exact.

c) Let (Ω j) j∈J be a finite family of pairwise disjoint open sets of IRn the union of which

is IRn \Γ. If there is a j0 ∈ J such that C0
(
IRn \Ω j0 ,F

)
is K-null then for every

clopen set Γ′ of Γ

Ki
(
C0
(
IRn \Γ

′,F
))
≈ Ki+1

(
C0
(
Γ
′,F
))
×Ki+n(F) .

a) follows from Proposition 2.4.10.

b) follows from a) and the six-term axiom (Axiom 1.2.7).

c) We use the notation of Proposition 2.3.7. For Γ′ = Γ the assertion follows from
Proposition 2.3.7 c2) and Theorem 3.2.2 b). Let

ϕ̃ : C0
(
IRn \Γ

′,F
)
−→ C0 (IRn,F) ,

˜̃ϕ : C0 (IRn \Γ,F)−→ C0
(
IRn \Γ

′,F
)

be the inclusion maps,

ψ̃ : C0 (IRn,F)−→ C0
(
Γ
′,F
)
, x 7−→ x|Γ′ ,

δ̃i the index maps associated to the exact sequence in ME

0−→ C0
(
IRn \Γ

′,F
) ϕ̃−→ C0 (IRn,F)

ψ̃−→ C0
(
Γ
′,F
)
−→ 0 ,

and Φ̃i := Ki
( ˜̃ϕ
)
◦Φi. Since ϕ = ϕ̃ ◦ ˜̃ϕ ,

Ki(ϕ̃)◦ Φ̃i = Ki(ϕ̃)◦Ki
( ˜̃ϕ
)
◦Φi = Ki(ϕ)◦Φi = idKi(C0(IRn,F)) .

Thus

0−→ Ki+1
(
C0
(
Γ
′,F
)) δ̃i+1−→ Ki

(
C0
(
IRn \Γ

′,F
)) Ki(ϕ̃)−→

Φ̃i←−
Ki(C0 (IRn,F))−→ 0

is a split exact sequence and this implies c).
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PROPOSITION 3.2.11 Let Ω,Ω′ be compact spaces and m∈ IN. If Ω is path connected,

Ω×Ω′ ⊂ IBn, and IBn \ (Ω×Ω′) is homeomorphic to the topological sum of IBn \ (Ω×
IBm) and Ω× (IBm \Ω′) then for all ω ∈Ω and ω0 ∈Ω×Ω′

Ki
(
C0
(
(Ω×Ω

′)\{ω0},F
))
≈

≈ Ki (C0 (Ω\{ω},F))×Ki+1
(
C0
(
Ω× (IBm \Ω

′),F
))

.

In particular if there is a p ∈ IN such that IBm \Ω′ is homeomorphic to p copies of IRm

then

Ki
(
C0
(
(Ω×Ω

′)\{ω0},F
))
≈

≈ Ki (C0 (Ω\{ω},F))×Ki+m+1 (C (Ω,F))p .

By Theorem 3.1.2 b) and the Product Theorem (Proposition 2.3.1 a)),

Ki
(
C0
(
(Ω×Ω

′)\{ω0},F
))
≈ Ki+1

(
C0
(
IBn \ (Ω×Ω

′),F
))
≈

≈ Ki+1 (C0 (IBn \ (Ω× IBm),F))×Ki+1
(
C0
(
Ω× (IBm \Ω

′),F
))

.

By Theorem 3.1.2 b) and Corollary 3.1.5,

Ki+1 (C0 (IBn \ (Ω× IBm),F))≈ Ki (C0 ((Ω× IBm)\{ω0},F))≈

≈ Ki (C0 (Ω\{ω},F))

and so
Ki
(
C0
(
(Ω×Ω

′)\{ω0},F
))
≈

≈ Ki (C0 (Ω\{ω},F))×Ki+1
(
C0
(
Ω× (IBm \Ω

′),F
))

.

We prove now the last assertion. By Theorem 3.1.2 a),

Ki+1 (C0 (IRm,C (Ω,F)))≈ Ki+m+1 (C (Ω,F))

so by the Product Theorem (Proposition 2.3.1 a)),

Ki+1
(
C0
(
Ω× (IBm \Ω

′),F
))
≈ Ki+1

(
C0
(
IBm \Ω

′,C (Ω,F)
))
≈

≈ Ki+1 (C0 (IRm,C (Ω,F)))p ≈ Ki+m+1 (C (Ω,F))p ,

Ki
(
C0
(
(Ω×Ω

′)\{ω0},F
))
≈

≈ Ki (C0 (Ω\{ω},F))×Ki+m+1 (C (Ω,F))p .
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COROLLARY 3.2.12 Let Ω be a connected graph contained in IB2 and containing SS 1,

r0 and r1 the number of vertices and chords of Ω, respectively, and Γ a nonempty finite

subset of SS n×Ω. Then

Ki (C0 ((SS n×Ω)\Γ,F))≈

≈ Ki+n (F)×Ki+1+n (F)1−r0+r1 ×Ki+1 (F)r1−r0+Card Γ .

Assume first Γ = {ω0} for some ω0 ∈ SS n×Ω. There is an embedding of SS n×Ω in
IBn+2 such that IBn+2 \(SS n×Ω) is homeomorphic to the topological sum of IBn+2 \(SS n×
IB2) and SS n× (IB2 \Ω). Since SS n× (IB2 \Ω) is homeomorphic to 1− r0 + r1 copies of
SS n× IR2, we get by Proposition 3.2.11, for ω ∈ SS n,

Ki (C0 ((SS n×Ω)\{ω0},F))≈

≈ Ki (C0 (SS n \{ω},F))×Ki+1 (C (SS n,F))1−r0+r1 .

By Theorem 3.2.2 a),b),

Ki (C0 ((SS n×Ω)\{ω0},F))≈ Ki+n (F)×Ki+1+n (F)1−r0+r1 ×Ki+1 (F)1−r0+r1 .

By Proposition 2.4.11,

Ki (C0 ((SS n×Ω)\Γ,F))≈

≈ Ki (C0 ((SS n×Ω)\{ω0},F))×Ki+1 (F)Card Γ−1 ≈

≈ Ki+n (F)×Ki+1+n (F)1−r0+r1 ×Ki+1 (F)r1−r0+Card Γ .

COROLLARY 3.2.13 If

Ω := SS n−1∪

( ⋃
j∈INn

{
α ∈ IBn | α j = 0

})
,

m ∈ IN, and Γ is a finite subset of SS m×Ω then

Ki (C0 ((SS m×Ω)\Γ,F))≈

≈ Ki+m (F)×Ki+n+1 (F)2n
×Ki+m+n+1 (F)2n

×Ki+1 (F)Card Γ−1 .
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Assume first Γ = {ω0} for some ω0 ∈ SS m×Ω. There is an embedding of SS m×Ω in
IBm+n+1 such that IBm+n+1 \ (SS m ×Ω) is homeomorphic to the topological sum of
IBm+n+1 \ (SS m × IBn) and SS m × (IBn \ Ω). Since IBn \ Ω is homeomorphic to the
topological sum of 2n copies of IRn, by Proposition 3.2.11, for ω ∈ SS m,

Ki (C0 ((SS m×Ω)\{ω0},F))≈

≈ Ki (C0 (SS m \{ω},F))×Ki+n+1 (C (SS m,F))2n
.

By Proposition 3.2.2 a),b),

Ki (C0 ((SS n×Ω)\{ω0},F))≈ Ki+m (F)×Ki+1+n (F)2n
×Ki+1+m+n (F)2n

.

By Proposition 2.4.11,

Ki (C0 ((SS m×Ω)\Γ,F))≈

≈ Ki (C0 ((SS m×Ω)\{ω0},F))×Ki+1 (F)Card Γ−1 ≈

≈ Ki+m (F)×Ki+n+1 (F)2n
×Ki+m+n+1 (F)2n

×Ki+1 (F)Card Γ−1 .

LEMMA 3.2.14 Let (k j) j∈INn be a family in IN, n 6= 1, and m := 1+ ∑
j∈INn

k j. There is

an embedding of ∏
j∈INn

SS k j in IBm such that IBm \ ∏
j∈INn

SS k j has two connected components:

one is homeomorphic to IR1+kn × ∏
j∈INn−1

SS k j and the other is homeomorphic to IBm \(
IB1+kn × ∏

j∈INn−1

SS k j

)
.

We prove the assertion by induction with respect to n ∈ IN \ {1}. Assume first n = 2,
put

Γ :=
{

α ∈ IBm | ‖α‖=
1
2
, α2+k1 = α3+k1 = · · ·= αm = 0

}
,

and for every α ∈ IBm denote by d(α) the distance of α to Γ. Then{
α ∈ IBm | d(α) =

1
4

}
is an embedding of SS k1 × SS k2 in IBm with the desired properties.
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Let now n > 2 and assume the assertion holds for n−1. Let Γ be a closed set of IBm−kn

homeomorphic to ∏
j∈INn−1

SS k j . We may assume Γ⊂ SS m−km . We denote for every α ∈ IBm

by d(α) the distance of α to 1
2 Γ. Then

{
α ∈ IBm | d(α) = 1

4

}
is an embedding with the

desired properties.

PROPOSITION 3.2.15 Let (k j) j∈INn be a family in IN.

a)
n
∏
j=1

SS k j ∈ ϒ , IRϒ ⊂

(
n
∏
j=1

SS k j

)
ϒ

,

Ki

(
C

(
n

∏
j=1

SS k j ,F

))
≈

≈

 Ki(F)2n
if all (k j) j∈INn are even(

Ki(F)×Ki+1(F)
)2n−1

if not all (k j) j∈INn are even
.

b) If Γ is a nonempty finite subset of ∏
j∈INn

SS k j then

Ki

(
C0

(
∏

j∈INn

SS k j \Γ,F

))
≈

≈

{
Ki (F)2n−1×Ki+1 (F)Card Γ−1 if all k j are even

Ki (F)2n−1−1×Ki+1 (F)2n−1+Card Γ−2 if not all k j are even
.

a) By Theorem 3.2.2 b), SS k j ∈ ϒ, IRϒ ⊂ (SS k j)ϒ for every j ∈ J so by Proposition

1.5.11 a),f),
n
∏
j=1

SS k j ∈ ϒ , IRϒ ⊂

(
n
∏
j=1

SS k j

)
ϒ

. By Theorem 3.2.2 b), with the notation of

Proposition 1.5.11 a),f),

p j =
3+(−1)k j

2
, q j =

1− (−1)k j

2
, p j +q j = 2 , p j−q j = 1+(−1)k j ,

pJ =
1
2

(
2n +

n

∏
j=1

(
1+(−1)k j

))
, qJ =

1
2

(
2n−

n

∏
j=1

(
1+(−1)k j

))
,

and this implies the result.
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b) Assume first Γ = {ω0} for some ω0 ∈ ∏
j∈INn

SS k j . We prove the assertion by

induction with respect to n ∈ IN. For n = 1 this follows from Theorem 3.2.2 e1). Let
n 6= 1 and assume the assertion holds for n− 1. By Lemma 3.2.14, IBm \ ∏

j∈INn

SS k j is

homeomorphic to the topological sum of IR1+kn × ∏
j∈INn−1

SS k j and

IBm \

(
IB1+kn × ∏

j∈INn−i

SS k j

)
. By Proposition 3.2.11, for ω ∈ ∏

j∈INn−1

SS k j ,

Ki

(
C0

(
∏

j∈INn

SS k j \{ω0},F

))
≈

≈ Ki

(
C0

(
∏

j∈INn−1

SS k j \{ω},F

))
×

×Ki+1

(
C0

(
(IBm \ SS kn)× ∏

j∈INn−1

SS k j ,F

))
.

By a) and Theorem 3.2.2 g),

Ki+1

(
C0

(
(IBn \ SS kn)× ∏

j∈INn−1

SS k j ,F

))
≈

≈ Ki+kn

(
C

(
∏

j∈INn−1

SS k j ,F

))
≈

≈

 Ki+kn (F)2n−1
if all (k j) j∈INn−1 are even(

Ki (F)×Ki+1 (F)
)2n−2

if not all (k j) j∈INn−1 are even
.

By the induction hypothesis,

Ki

(
C0

(
∏

j∈INn−1

SS k j \{ω},F

))
≈

≈

{
Ki (F)2n−1−1 if all (k j) j∈INn−1 are even

Ki (F)2n−2−1×Ki+1 (F)2n−2
if not all (k j) j∈INn−1 are even

so

Ki

(
C0

(
∏

j∈INn

SS k j \{ω0},F

))
≈
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≈

{
Ki (F)2n−1 if all (k j) j∈INn are even

Ki (F)2n−1−1×Ki+1 (F)2n−1
if not all (k j) j∈INn are even

.

This finishes the inductive proof.

We prove now the general case and put Ω := ∏
j∈INn

SS k j . Since it is possible to find a

closed set ∆ of Ω such that Γ ⊂ ∆ and ∆ \ {ω0} is K-null, the assertion follows from
Proposition 2.4.11.

3.3 Some Morphisms

PROPOSITION 3.3.1 We put

ϑ : IBn −→ IBn , (α j) j∈INn 7−→ (α1, · · · ,αn−1,−αn) ,

ϑ
′ : IRn −→ IRn , (α j) j∈INn 7−→ (α1, · · · ,αn−1,−αn) ,

ϑ
′′ : SS n−1 −→ SS n−1 , (α j) j∈INn 7−→ (α1, · · · ,αn−1,−αn) ,

φ : C (IBn,F)−→ C (IBn,F) , x 7−→ x◦ϑ ,

φ
′ : C0 (IRn,F)−→ C0 (IRn,F) , x 7−→ x◦ϑ

′ ,

φ
′′ : C (SS n−1,F)−→ C (SS n−1,F) , x 7−→ x◦ϑ

′′ .

a) Ki(φ) : Ki(C (IBn,F))−→ Ki(C (IBn,F)) , a 7−→ a.

b) Ki(φ
′) : Ki(C0 (IRn,F))−→ Ki(C0 (IRn,F)) , b 7−→ −b.

c)

Ki(φ
′′) : Ki(C (SS n−1,F))−→ Ki(C (SS n−1,F)) ,

(a,b) 7−→

{
(b,a) if n = 1
(a,−b) if n > 1

,

where we identified Ki(C (SS n−1,F)) with

Ki(C (IBn,F))×Ki+1(C0 (IBn \ SS n−1,F))

using the group isomorphism of Corollary 3.2.8 d) if n > 1.
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a) follows from the homotopy axiom (Axiom 1.2.5) since φ is homotopic to the identity
map of C (IBn,F).

b) We identify IRn with the homeomorphic space IBn \ SS n−1.

Assume first n = 1. Put

ψ : C (IB1,F)−→ C ({−1,1},F) , x 7−→ x|{−1,1}

and denote by ϕ : C0 (]−1,1[,F) −→ C (IB1,F) the inclusion map and by δi the index
maps associated to the exact sequence in ME

0−→ C0 (]−1,1[,F)
ϕ−→ C (IB1,F)

ψ−→ C ({−1,1},F)−→ 0 .

By Corollary 2.4.7, Ki(ψ)a = (a,a) for every a∈Ki(C (IB1,F)) so by the six-term axiom
(Axiom 1.2.7),

δi(a+b,a+b) = 0 , δi(a,b) =−δi(b,a)

for all (a,b) ∈ Ki(C ({−1,1},F)). By the commutativity of the index maps (Axiom
1.2.8), Ki+1(φ

′)◦δi = δi ◦Ki(φ
′′). For (a,b) ∈ Ki(C ({−1,1},F)), by the above,

Ki+1(φ
′)δi(a,b) = δiKi(φ

′′)(a,b) = δi(b,a) =−δi(a,b) .

Since δi is surjective (because ϕ factorizes through null and is therefore K-null),
Ki(φ

′)b =−b for all b ∈ Ki (C0 (]−1,1[,F)).

If n > 1 then the assertion follows from the case n = 1, since
C0 (IRn,F)≈ C0

(
IR,C0

(
IRn−1,F

))
c) follows from a), b), and Corollary 3.2.8 c).

COROLLARY 3.3.2 If we put

ϑ : IBn −→ IBn , α 7−→ −α ,

ϑ
′ : IRn −→ IRn , α 7−→ −α ,

ϑ
′′ : SS n−1 −→ SS n−1 , α 7−→ −α ,

φ : C (IBn,F)−→ C (IBn,F) , x 7−→ x◦ϑ ,
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φ
′ : C0 (IRn,F)−→ C0 (IRn,F) , x 7−→ x◦ϑ

′ ,

φ
′′ : C (SS n−1,F)−→ C (SS n−1,F) , x 7−→ x◦ϑ

′′

then

Ki(φ) : Ki(C (IBn,F))−→ Ki(C (IBn,F)) , a 7−→ a ,

Ki(φ
′) : Ki(C0 (IRn,F))−→ Ki(C0 (IRn,F)) , b 7−→ (−1)nb ,

Ki(φ
′′) : Ki(C (SS n−1,F))−→ Ki(C (SS n−1,F)) ,

(a,b) 7−→

{
(b,a) if n = 1

(a,(−1)n+1b) if n > 1
,

where we identified Ki(C (SS n−1,F)) with

Ki(C (IBn,F))×Ki+1(C0 (IBn \ SS n−1,F))

using the group isomorphism of Corollary 3.2.8 c) if n > 1.

The assertion for Ki(φ) follows from the homotopy axiom (Axiom 1.2.5) since φ is
homotopic to the identity map of C (IBn,F). If n is even then the same holds for Ki(φ

′).
Assume now n odd and let us denote by φ̄ ′ the map denoted by φ ′ in Proposition 3.3.1.
Then φ ′ ◦ φ̄ ′ is homotopic to the identity map of C0 (IRn,F) so by Corollary 3.3.1, for
every b ∈ Ki(C0 (IRn,F)),

Ki(φ
′)b =−Ki(φ

′)Ki(φ̄
′)b =−b = (−1)nb .

The assertion for Ki(φ
′′) follows from the corresponding assertions for Ki(φ) and Ki(φ

′)

and from Corollary 3.2.8 d).

PROPOSITION 3.3.3 Let α,β ∈ [0,2π[, α < β , Ω :=
{

eiω
∣∣ ω ∈]α,β [

}
, Γ := IT \Ω,

ϕ : C0 (Ω,F)−→ C ( IT,F) the inclusion map, and

ψ : C ( IT,F)−→ C (Γ,F) , x 7−→ x|Γ ,

ψ̄ : C (Γ,F)−→ F , x 7−→ x(1) ,

ϑ :]0,2π[−→]α,β [ , ω 7−→ β −α

2π
ω +α .
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For every x ∈ C0 (Ω,F) put

x̃ : IT−→ F , eiω 7−→

{
x
(

eiϑ(ω)
)

if ω ∈]0,2π[

0 if ω ∈ {0,2π}

and define

φ : C0 (Ω,F)−→ C0 ( IT\{1},F) , x 7−→ x̃ .

a) Ki(φ) and Ki(ψ̄) are group isomorphisms and so

Ki(C0 (Ω,F))≈ Ki+1(F) , Ki(C (Γ,F))≈ Ki(F) .

b) If we identify Ki(C0 (Ω,F)) with Ki+1(F) and Ki(C (Γ,F)) with Ki(F) using the

isomorphisms from a) and Ki(C ( IT,F)) with Ki(F)×Ki+1(F) using e.g. Alexandroff

K-theorem (Theorem 2.2.1 a)) then

Ki(ϕ) : Ki(C0 (Ω,F))−→ Ki(C ( IT,F)) , b 7−→ (0,b) ,

Ki(ψ) : Ki(C ( IT,F))−→ Ki(C (Γ,F)) , (a,b) 7−→ a .

a) φ is an E-C*-isomorphism. Put

ψ̃ : F −→ C (Γ,F) , x 7−→ 1C (Γ,IC)x .

Then C (Γ,F)
ψ̄→ F

ψ̃→ C (Γ,F) is a homotopy in ME so Ki(φ) and Ki(ψ̄) are group
isomorphisms by the homotopy axiom (Axiom 1.2.5). The last assertion follows now
from Theorem 3.2.2 a).

b) For every s ∈ [0,1] put

ϑs : IT−→ IT , eiω 7−→


eisω if ω ∈ [0,α]

eisω e
2πi(1−s)(ω−α)

β−α if ω ∈]α,β [

eisω e2πi(1−s) if ω ∈ [β ,2π]

,

φs : C ( IT,F)−→ C ( IT,F) , x 7−→ x◦ϑs .

Then (φs)s∈[0,1] is a pointwise continuous path in C ( IT,F) such that φ1 is the identity map.
By the homotopy axiom (Axiom 1.2.5), Ki(φ0) is the identity map of Ki(C ( IT,F)). Let

ϕ
′ : C0 ( IT\{1},F)−→ C ( IT,F)
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be the inclusion map and

ψ
′ : C ( IT,F)−→ F , x 7−→ x(1) .

Then φ0 ◦ϕ = ϕ ′ ◦φ and ψ ′ ◦φ0 = ψ̄ ◦ψ so (by a)) for a ∈ Ki(F) and b ∈ Ki+1(F),

Ki(ϕ)b = Ki(φ0)Ki(ϕ)b = Ki(ϕ
′)Ki(φ)b = Ki(ϕ

′)b = (0,b) ,

Ki(ψ)(a,b) = Ki(ψ̄)Ki(ψ)(a,b) = Ki(ψ
′)Ki(φ0)(a,b) = Ki(ψ

′)(a,b) = a

by the Alexandroff K-theorem (Theorem 2.2.1 a)).

PROPOSITION 3.3.4 Put Γ :=
{

e
2πi j

n

∣∣∣ j ∈ INn

}
and

ψ : C ( IT,F)−→ C (Γ,F) , x 7−→ x|Γ ,

and denote by

ϕ : C0 ( IT\Γ,F)−→ C ( IT,F)

the inclusion map and by δi the index maps associated to the exact sequence in ME

0−→ C0 ( IT\Γ,F)
ϕ−→ C ( IT,F)

ψ−→ C (Γ,F)−→ 0 .

a) Ki(C0 ( IT\Γ,F))≈ Ki+1(F)n, Ki(C (Γ,F))≈ Ki(F)n.

b) We identify the isomorphic groups of a) and identify Ki(C ( IT,F)) with Ki(F)×
Ki+1(F) (Theorem 3.2.2 b)).

Ki(ϕ) : Ki(C0 ( IT\Γ,F))−→ Ki(C ( IT,F)) , (b j) j∈INn 7−→

(
0, ∑

j∈INn

b j

)
,

Ki(ψ) : Ki(C ( IT,F))−→ Ki(C (Γ,F)) , (a,b) 7−→ (a) j∈INn .

If n = 2 and Ki (F) is isomorphic to ZZ or to ZZ p for some p ∈ IN or to the group of

rational numbers then there is an automorphism

Φi : Ki (F)−→ Ki (F)

such that

δi : Ki (C (Γ,F))−→ Ki+1 (C0 ( IT\Γ,F)) , (a,b) 7−→ (Φi(a−b),Φ(b−a)).
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c) If we put

ϑ : IT\Γ−→ IT\{1} , z 7−→ zn ,

ϑ
′ : IT−→ IT , z 7−→ zn ,

ϑ
′′ : Γ−→ {1} , z 7−→ zn ,

φ : C0 ( IT\{1},F)−→ C0 ( IT\Γ,F) , x 7−→ x◦ϑ ,

φ
′ : C ( IT,F)−→ C ( IT,F) , x 7−→ x◦ϑ

′ ,

φ
′′ : C ({1},F)−→ C (Γ,F) , x 7−→ x◦ϑ

′′

then, with the identifications of a) and b),

Ki(φ) : Ki(C0 ( IT\{1},F))−→ Ki(C0 ( IT\Γ,F)) , b 7−→ (b) j∈INn ,

Ki(φ
′) : Ki(C ( IT,F))−→ Ki(C ( IT,F)) , (a,b) 7−→ (a,nb) ,

Ki(φ
′′) : Ki(C ({1},F))−→ Ki(C (Γ,F)) , a 7−→ (a) j∈INn .

a) Put Ω j :=
{

e
2πiω

n

∣∣∣ ω ∈] j−1, j[
}

for every j ∈ INn. By Proposition 3.3.3 a), for
every j ∈ INn,

Ki(C0 (Ω j,F))≈ Ki+1(F) .

so
Ki(C0 ( IT\Γ,F))≈ Ki+1(F)n , Ki(C (Γ,F))≈ Ki(F)n

by the Product Theorem (Proposition 2.3.1 a)).

b) By Corollary 2.4.7,

Ki(ψ) : Ki(C ( IT,F))−→ Ki(C (Γ,F)) , (a,b) 7−→ (a) j∈INn .

If we denote by
ϕ j : C0 (Ω j,F)−→ C ( IT,F)

the inclusion map then

Ki(ϕ j) : Ki(C0 (Ω j,F))−→ Ki(C ( IT,F)) , b 7−→ (0,b)

by Proposition 3.3.3 b). By Proposition 3.3.3 a) and Corollary 2.3.2,

Ki(ϕ) : Ki(C0 ( IT\Γ,F))−→ Ki(C ( IT,F)) , (b j) j∈INn 7−→

(
0, ∑

j∈INn

b j

)
.
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In order to prove the last assertion we define a′,b′,a′′,b′′ ∈ Ki (F) by

(a′,b′) := δi(1,0) , (a′′,b′′) := δi(0,1) .

From
0 = δi(1,1) = (a′,b′)+(a′′,b′′) = (a′+a′′,b′+b′′)

we get a′′ =−a′ and b′′ =−b′. There are j,k ∈ ZZ such that δi( j,k) = (1,−1). Then

(1,−1) = δi( j,k) = ( ja′, jb′)− (ka′,kb′) = (( j− k)a′,( j− k)b′) ,

( j− k)a′ = 1 , ( j− k)b′ =−1 .

Thus a′ is invertible in the ring Ki (F) and a′−1 = j− k. It follows b′ =−a′. If we put

Φi : Ki (F)−→ Ki (F) , c 7−→ a′c

then Φi is an automorphism and for all a,b ∈ Ki (F),

δi(a,b) = (a′a,−a′a)− (a′b,−a′b) = (a′(a−b),a′(b−a)) = (Φi(a−b),Φi(b−a)) .

c) The assertions for Ki(φ) and Ki(φ
′′) follow from the Product Theorem (Proposition

2.3.1 a)). If ϕ ′ : C0 ( IT\{1},F)−→ C ( IT,F) denotes the inclusion map and

ψ
′ : C ( IT,F)−→ C ({1},F) , x 7−→ x|{1}

then the diagram

Ki(C0 ( IT\{1},F))
Ki(ϕ

′)−−−−→ Ki(C ( IT,F))
Ki(ψ

′)−−−−→ Ki(C ({1},F))

Ki(φ)

y yKi(φ
′)

yKi(φ
′′)

Ki(C0 ( IT\Γ,F)) −−−−→
Ki(ϕ)

Ki(C ( IT,F)) −−−−→
Ki(ψ)

Ki(C (Γ,F))

is commutative. Let (a,b) ∈ Ki(C ( IT,F)) and put (a′,b′) := Ki(φ
′)(a,0). By b),

(a) j∈INn = Ki(φ
′′)a = Ki(φ

′′)Ki(ψ
′)(a,0) =

= Ki(ψ)Ki(φ
′)(a,0) = Ki(ψ)(a′,b′) = (a′) j∈INn ,

Ki(φ
′)(0,b) = Ki(φ

′)Ki(ϕ
′)b = Ki(ϕ)Ki(φ)b = Ki(ϕ)(b) j∈INn = (0,nb)

so Ki(φ
′)(a,b) = (a,nb).
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COROLLARY 3.3.5 If we put

ϑ : IB2 −→ IB2 , z 7−→ zn ,

ϑ
′ : IC−→ IC , z 7−→ zn ,

ϑ
′′ : SS 1 −→ SS 1 , z 7−→ zn ,

φ : C (IB2,F)−→ C (IB2,F) , x 7−→ x◦ϑ ,

φ
′ : C0 (IC,F)−→ C0 (IC,F) , x 7−→ x◦ϑ

′ ,

φ
′′ : C (SS 1,F)−→ C0 (SS 1,F) , x 7−→ x◦ϑ

′′ .

then Ki(φ) is the identity map of Ki(C (IB2,F)) and

Ki(φ
′) : Ki(C0 (IC,F))−→ Ki(C0 (IC,F)) , a 7−→ na ,

Ki(φ
′′) : Ki(C (SS 1,F))−→ Ki(C (SS 1,F)) , (a,b) 7−→ (a,nb) ,

We identify the homeomorphic spaces IC and IB2 \ SS 1. By Corollary 3.2.8 c),

Ki(C (SS 1,F))≈ Ki(C (IB2,F))×Ki+1(C0 (IB2 \ SS 1,F))

and by Proposition 3.3.4 e),

Ki(φ
′′) : Ki(C (SS 1,F))−→ Ki(C (SS 1,F)) , (a,b) 7−→ (a,nb) .

By Corollary 2.2.2 b) and Theorem 3.1.2 a), Ki(φ) is the identity map of Ki(C (IB2,F))

and
Ki(φ

′) : Ki(C0 (IB2 \ SS 1,F))−→ Ki(C0 (IB2 \ SS 1,F)) , a 7−→ na .

PROPOSITION 3.3.6 Let m,n ∈ IN and

ϑ1 : IT−→ IT , w 7−→ wm ,

ϑ2 : IT−→ IT , z 7−→ zn ,

ψ : C ( IT× IT,F)−→ C ( IT× IT,F) , x 7−→ x◦ (ϑ1×ϑ2) .

We identify Ki(C ( IT,F ′)) with Ki(F ′)×Ki+1(F ′) for all E-C*-algebras F ′ by using the

group isomorphism of Theorem 3.2.2 b). Let

a ∈ Ki(C ( IT× IT,F))≈ Ki(C ( IT,C ( IT,F)))≈ Ki(C ( IT,F))×Ki+1(C ( IT,F))
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and put a0 ∈Ki(C ( IT,F)), a1 ∈Ki+1(C ( IT,F)) such that a=(a0,a1) and a0,0, a1,1 ∈Ki(F)

and a0,1, a1,0 ∈ Ki+1(F) such that a0 = (a0,0, a0,1) and a1 = (a1,0, a1,1). Then

Ki(ψ) = ((a0,0, mna1,1), (na0,1, ma1,0)) .

We put
φ : C ( IT,F)−→ C ( IT,F) , x 7−→ x◦ϑ2 ,

φ1 : C ( IT,C ( IT,F))−→ C ( IT,C ( IT,F)) , x 7−→ x◦ϑ1 ,

φ2 : C ( IT,C ( IT,F))−→ C ( IT,C ( IT,F)) , x 7−→ φ ◦ x ,

By Corollary 3.3.5,

Ki(φ1)a = (a0, ma1), Ki(φ)a0 = (a0,0, na0,1), Ki+1(φ)a1 = (a1,0, na1,1)

so by Corollary 3.2.8 c), d),

Ki(φ2)Ki(φ1)a = (Ki(φ)a0, Ki+1(φ)ma1) = ((a0,0, na0,1), (ma1,0, mna1,1)) .

Since ψ = φ2 ◦φ1,
Ki(ψ) = ((a0,0, mna1,1), (na0,1, ma1,0)) .

3.4 Some Non-orientable Compact Spaces

DEFINITION 3.4.1 We denote by IPn the n-dimensional projective space, which is

obtained from IBn by identifying α with −α for all α ∈ IBn with ‖α‖= 1.

PROPOSITION 3.4.2 Put

Ω := IPn+1 \{ α ∈ IPn+1 | ‖α‖= 1, αn+1 = 0} ,

Ω
′ := { α ∈Ω | ‖α‖= 1} ,

ψ : C0 (Ω,F)−→ C0
(
Ω
′,F
)
, x 7−→ x|Ω′

and denote by

ϕ : C0 (IBn+1 \ SS n,F)−→ C0 (Ω,F)

the inclusion map and by δi the index maps associated to the exact sequence in ME

0−→ C0 (IBn+1 \ SS n,F)
ϕ−→ C0 (Ω,F)

ψ−→ C0
(
Ω
′,F
)
−→ 0 .
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a) Ki (C0 (IBn+1 \ SS n,F)) ≈ Ki+n+1 (F) , Ki (C0 (Ω
′,F)) ≈ Ki+n (F), and there is an

automorphism Φi : Ki+n (F)−→ Ki+n (F) such that

δi : Ki
(
C0
(
Ω
′,F
))
−→ Ki+1 (C0 (IBn+1 \ SS n,F)) ,

a 7−→Φi (a− (−1)na) .

b) If n is even then δi = 0, Ki (ϕ) is injective, Ki (ψ) is surjective, and

Ki (C0 (Ω,F))

Ki+1 (F)
≈ Ki (F) .

c) If n is odd and for a fixed i ∈ {0,1}

a ∈ Ki (F) , 2a = 0 =⇒ a = 0

then Ki (ψ) = 0, Ki (C0 (Ω,F))≈ Ki(F)
2Ki(F) ,

Ki (ϕ) : Ki (C0 (IBn+1 \ SS n,F))−→ Ki (C0 (Ω,F))

is the quotient map, and

δi : Ki
(
C0
(
Ω
′,F
))
−→ Ki+1 (C0 (IBn+1 \ SS n,F)) , a 7−→ 2Φia .

a) By Theorem 3.2.2 a), Ki(C0 (IRn,F)) ≈ Ki+n(F). Since IBn+1 \ SS n is
homeomorphic to IRn+1, Ki(C0 (IBn+1 \ SS n,F)) ≈ Ki+n+1(F). Since Ω′ is
homeomorphic to IRn, Ki(C0 (Ω

′,F)) ≈ Ki+n(F). We use the notation of Proposition
3.2.9, which we mark by a bar in order to distinguish it from the present notation.
Moreover we denote by ϑ : Ω̄−→Ω and ϑ ′ : Ω̄′ −→Ω′ the covering maps and put

φ : C0 (Ω,F)−→ C0
(
Ω̄,F

)
, x 7−→ x◦ϑ ,

φ
′ : C0

(
Ω
′,F
)
−→ C0

(
Ω̄
′,F
)
, x 7−→ x◦ϑ

′ .

By the Product Theorem (Proposition 2.3.1 a)), Proposition 3.2.9 a), and Proposition 3.3.1
b),

Ki(φ
′) : Ki

(
C0
(
Ω
′,F
))
−→ Ki

(
C0
(
Ω̄
′,F
))

, a 7−→ (a,(−1)na) .

By the commutativity of the index maps (Axiom 1.2.8), δi = δ̄i ◦Ki(φ
′) so by Proposition

3.2.9 b),

δi : Ki
(
C0
(
Ω
′,F
))
−→ Ki+1(C0 (IBn+1 \ SS n,F)) , a 7−→Φi(a− (−1)na) .

b) and c) follow from a) and the six-term axiom (Axiom 1.2.7).
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COROLLARY 3.4.3 We use the notation and the hypothesis of Proposition 3.4.2, take

n = 1, put Γ := { x ∈ IP2 | ‖x‖= 1},

ψ
′ : C (IP2,F)−→ C (Γ,F) , x 7−→ x|Γ ,

and denote by ϕ ′ : C0 (IB2 \ SS 1,F) −→ C (IP2,F) the inclusion map and by δ ′i the index

maps associated to the exact sequence in ME

0−→ C0 (IB2 \ SS 1,F)
ϕ ′−→ C (IP2,F)

ψ ′−→ C (Γ,F)−→ 0 .

Then Ki (C (IP2,F))≈ Ki (F)× Ki(F)
2Ki(F) , Ki (C (Γ,F))≈ Ki (F)×Ki+1 (F),

Ki
(
ϕ
′) : Ki (C0 (IB2 \ SS 1,F))−→ Ki (Ki (C (IP,F))) , a 7−→ (0,Φia) ,

Ki
(
ψ
′) : Ki (C (IP2,F))−→ Ki (C (Γ,F)) , (a,c) 7−→ (a,0) ,

δ
′
i : Ki (C (Γ,F))−→ Ki+1 (C0 (IB2 \ SS 1,F)) , (a,b) 7−→ 2b .

PROPOSITION 3.4.4 Let

ϑ : [0,1]−→ IT , ω 7−→ e2πiω ,

φ : C ( IT,F)−→ C ([0,1],F) , x 7−→ x◦ϑ .

If we identify Ki(C ( IT,F)) with Ki(F)×Ki+1(F) (Theorem 3.2.2 b)) and Ki(C ([0,1],F))

with Ki(F) (Theorem 3.1.2 a)) then

Ki(φ) : Ki(C ( IT,F))−→ Ki(C ([0,1],F)) , (a,b) 7−→ a .

Put

ϑ
′ :]0,1[−→ IT\{1} , ω 7−→ e2πiω ,

φ
′ : C0 ( IT\{1},F)−→ C0 (]0,1[,F) , x 7−→ x◦ϑ

′

and denote by

ϕ : C0 (]0,1[,F)−→ C ([0,1],F) , ϕ
′ : C0 ( IT\{1},F)−→ C ( IT,F)

the inclusion maps. Then φ ◦ϕ ′ = ϕ ◦φ ′, so Ki(φ)◦Ki(ϕ
′) = Ki(ϕ)◦Ki(φ

′) = 0, since ϕ

factorizes through 0. Thus Ki(φ)(0,b) = 0 for all b ∈ Ki+1(F).
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Put
ψ : C ([0,1],F)−→ C ({0,1},F)≈ F×F , x 7−→ x|{0,1} ,

ψ
′ : C ( IT,F)−→ F , x 7−→ x(1) ,

µ : F −→ C ({0,1},F) , x 7−→ (x,x) .

Then ψ ◦φ = µ ◦ψ ′, so Ki(ψ)◦Ki(φ) = Ki(µ)◦Ki(ψ
′) and we get (by the above)

Ki(ψ)Ki(φ)(a,b) = Ki(ψ)Ki(φ)(a,0) = Ki(µ)Ki(ψ
′)(a,0) = Ki(µ)a = (a,a) ,

Ki(φ)(a,b) = a

for all (a,b) ∈ Ki(F)×Ki+1(F).

DEFINITION 3.4.5 We denote by IM the Möbius band obtained from [0,1]× [−1,1]
by identifying the points (0,β ) and (1,−β ) for every β ∈ [−1,1]. We put for every j ∈
{−1,0,1}

Γ
IM
j := { (α, j) ∈ IM | α ∈ [0,1]} .

PROPOSITION 3.4.6 For every j ∈ {−1,0,1} put

ψ j : C (IM,F)−→ C
(
Γ

IM
j ,F

)
, x 7−→ x|ΓIM

j .

a) ΓIM
0 is homeomorphic to IT and ΓIM

j is homeomorphic to [0,1] for all j ∈ {−1,1}.

b) C0
(
IM\ΓIM

0 ,F
)

is K-null and

Ki(ψ0) : Ki(C (IM,F))−→ Ki
(
C
(
Γ

IM
0 ,F

))
≈ Ki(F)×Ki+1(F)

is a group isomorphism.

c) If we identify Ki(C (IM,F)) with Ki(F)×Ki+1(F) using the group isomorphism

Ki(ψ0) of b) and Ki
(
C
(
ΓIM

1 ,F
))

with Ki(F) using a) (and Theorem 3.1.2 a)) then

Ki(ψ1) : Ki(C (IM,F))−→ Ki
(
C
(
Γ

IM
1 ,F

))
, (a,b) 7−→ a .

d) If we put ω := (0,0) = (1,0) ∈ IM, Γ := { (α,0) | α ∈]0,1[}, and

ψ : C0 (IM\{ω},F)−→ C0 (Γ,F) , x 7−→ x|Γ

then

Ki(ψ) : Ki(C0 (IM\{ω},F))−→ Ki(C0 (Γ,F))≈ Ki+1(F)

is a group isomorphism.
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e) If Γ′ is a finite subset of IM then

Ki
(
C0
(
IM\Γ

′,F
))
≈ Ki+1(F)Γ′

a) is easy to see.

b) For every s ∈]0,1] put

ϑs : IM\Γ
IM
0 −→ IM\Γ

IM
0 , (α,β ) 7−→ (α,sβ ) .

By Proposition 2.4.1 (replacing there Ω by IM \ΓIM
0 ), C0

(
IM\ΓIM

0 ,F
)

is K-null and the
assertion follows from the Topological six-term sequence (Proposition 2.1.8 a)) and a)
(and Theorem 3.2.2 b)).

c) follows from b) and Proposition 3.4.4.

d) If ϕ : C0
(
IM\ΓIM

0 ,F
)
−→ C0 (IM\{ω},F) denotes the inclusion map then

0−→ C0
(
IM\Γ

IM
0 ,F

) ϕ−→ C0 (IM\{ω},F)
ψ−→ C0 (Γ,F)−→ 0

is an exact sequence in ME . By b), C0
(
IM\ΓIM

0 ,F
)

is K-null so by the Topological
six-term sequence (Proposition 2.1.8 a)), Ki(ψ) is a group isomorphism. Since Γ is
homeomorphic to IR, Ki(C0 (Γ,F))≈ Ki+1(F) by Theorem 3.2.2 a).

e) follows from d) and Proposition 2.4.11.

PROPOSITION 3.4.7 Put

Γ
′ := Γ

IM
0 ∪Γ

IM
1 , Γ

′′ := Γ
IM
0 ∪Γ

IM
1 ∪Γ

IM
−1 , Γ

′′′ := Γ
IM
1 ∪Γ

IM
−1 ,

IM′ := IM\Γ
′ , IM′′ := IM\Γ

′′ IM′′′ := IM\Γ
′′′ .

Let

ϕ
′ : C0

(
IM′,F

)
−→ C (IM,F) ,

ϕ
′′ : C0

(
IM′′,F

)
−→ C (IM,F) ,

ϕ̄
′ : C0

(
IM′,F

)
−→ C0

(
IM\Γ

IM
0 ,F

)
,

ϕ̄
′′ : C0

(
IM′′,F

)
−→ C0

(
IM\Γ

IM
0 ,F

)
,
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ϕ
′′′ : C0

(
IM′′,F

)
−→ C0

(
IM′′′,F

)
,

λ
′ : C

(
Γ

IM
1 ,F

)
−→ C

(
Γ
′,F
)
,

λ
′′ : C

(
Γ
′′′,F

)
−→ C

(
Γ
′′,F
)

λ
′′′ : C

(
Γ

IM
0 ,F

)
−→ C

(
Γ
′′,F
)
,

be the inclusion maps,

ψ
′ : C (IM,F)−→ C

(
Γ
′,F
)
, x 7−→ x|Γ′ ,

ψ
′′ : C (IM,F)−→ C

(
Γ
′′,F
)
, x 7−→ x|Γ′′ ,

ψ̄
′ : C0

(
IM\Γ

IM
0 ,F

)
−→ C

(
Γ

IM
1 ,F

)
, x 7−→ x|ΓIM

1 ,

ψ̄
′′ : C0

(
IM\Γ

IM
0 ,F

)
−→ C

(
Γ
′′′,F

)
, x 7−→ x|Γ′′′ ,

ψ
′′′ : C0

(
IM′′′,F

)
−→ C

(
Γ

IM
0 ,F

)
, x 7−→ x|ΓIM

0 ,

and δ ′i ,δ
′′
i , δ̄ ′i , δ̄

′′
i ,δ ′′′i the index maps associated to the exact sequences in ME

0−→ C0
(
IM′,F

) ϕ ′−→ C (IM,F)
ψ ′−→ C

(
Γ
′,F
)
−→ 0 ,

0−→ C0
(
IM′′,F

) ϕ ′′−→ C (IM,F)
ψ ′′−→ C

(
Γ
′′,F
)
−→ 0 ,

0−→ C0
(
IM′,F

) ϕ̄ ′−→ C
(
IM\Γ

IM
0 ,F

) ψ̄ ′−→ C
(
Γ

IM
1 ,F

)
−→ 0 ,

0−→ C0
(
IM′′,F

) ϕ̄ ′′−→ C
(
IM\Γ

IM
0 ,F

) ψ̄ ′′−→ C
(
Γ
′′′,F

)
−→ 0 ,

0−→ C0
(
IM′′,F

) ϕ ′′′−→ C0
(
IM′′′,F

) ψ ′′′−→ C
(
Γ

IM
0 ,F

)
−→ 0 ,

respectively.

a) Γ′′′ is homeomorphic to IT.

b) The maps

δ̄
′
i : Ki

(
C
(
Γ

IM
1 ,F

))
≈ Ki(F)−→ Ki+1

(
C0
(
IM′,F

))
,

δ̄
′′
i : Ki

(
C
(
Γ
′′′,F

))
≈ Ki(F)×Ki+1(F)−→ Ki+1

(
C0
(
IM′′,F

))
are group isomorphisms.
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c) If we put Φ′i :=Ki(λ
′)◦(δ̄ ′i )−1, Φ′′i :=Ki(λ

′′)◦(δ̄ ′′i )−1 (using b)) then the sequences

0−→ Ki(C (IM,F))
Ki(ψ

′)−→ Ki
(
C
(
Γ
′,F
)) δ ′i−→

Φ′i←−
Ki+1

(
C0
(
IM′,F

))
−→ 0 ,

0−→ Ki(C (IM,F))
Ki(ψ

′′)−→ Ki
(
C
(
Γ
′′,F
)) δ ′′i−→

Φ′′i←−
Ki+1

(
C0
(
IM′′,F

))
−→ 0

are split exact and the maps

Ki(C (IM,F))×Ki+1
(
C0
(
IM′,F

))
−→ Ki

(
C
(
Γ
′,F
))

,

(a,b) 7−→ Ki(ψ
′)a+Φ

′
ib ,

Ki(C (IM,F))×Ki+1
(
C0
(
IM′′,F

))
−→ Ki

(
C
(
Γ
′′,F
))

,

(a,b) 7−→ Ki(ψ
′′)a+Φ

′′
i b

are group isomorphisms.

d) δ ′′′i = 0 and the sequence

0−→ Ki
(
C0
(
IM′′,F

)) Ki(ϕ
′′′)−→ Ki

(
C0
(
IM′′′,F

))
Ki
(
C0
(
IM′′′,F

)) Ki(ψ
′′′)−→ Ki

(
C
(
Γ

IM
0 ,F

))
−→ 0

is exact.

a) is easy to see.

b) By Proposition 3.4.6 b), C0
(
IM\ΓIM

0 ,F
)

is K-null and the assertion follows from a),
the Topological six-term sequence (Proposition 2.1.8 b)), and Proposition 3.4.6 a) (and
Theorem 3.1.2 a), Theorem 3.2.2 b)).

c) If we put Ω1 := IM, Ω2 := IM \ΓIM
0 , and Ω3 := IM′ (respectively Ω3 := IM′′) then

the assertion follows from the Topological triple (Proposition 2.1.11 a)).

d) By the commutativity of the index maps (Axiom 1.2.8), δ ′′′i = δ ′′i ◦Ki(λ
′′′). By c),

Im(Φ′′i ◦δ ′′i )⊂ ImKi(λ
′′). Since ImKi(λ

′′′) = Ki
(
C
(
ΓIM

0 ,F
))

we get

Φ
′′
i ◦δ

′′′
i = Φ

′′
i ◦δ

′′
i ◦Ki(λ

′′′) = 0 .

Thus δ ′′′i = δ ′′i ◦Φ′′i ◦δ ′′′i = 0 and the assertion follows from the six-term axiom
(Axiom 1.2.7).
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DEFINITION 3.4.8 We denote by IK the Klein bottle obtained from the Möbius band IM
by identifying the points (α,−1) and (α,1) for all α ∈ [0,1] and put for every j ∈ {0,1}

Γ
IK
j := { (α, j) ∈ IK | α ∈ [0,1]} .

PROPOSITION 3.4.9 We put IK′ := IK\ΓIK
0 , IK′′ := IK\ (ΓIK

0 ∪ΓIK
1 ),

ψ : C0
(
IK′,F

)
−→ C

(
Γ

IK
1 ,F

)
, x 7−→ x|ΓIK

1

and denote by ϕ : C0 (IK′′,F)−→ C0 (IK′,F) the inclusion map and by δi the index maps

associated to the exact sequence in ME

0−→ C0
(
IK′′,F

) ϕ−→ C0
(
IK′,F

) ψ−→ C
(
Γ

IK
1 ,F

)
−→ 0 .

We use the notation of Proposition 3.4.7 (so ΓIK
0 = ΓIM

0 and IK′′ = IM′′).

a) ΓIK
0 and ΓIK

1 are homeomorphic to IT.

b) The map

(δ̄ ′′i+1)
−1 : Ki

(
C0
(
IM′′,F

))
−→ Ki+1

(
C
(
Γ
′′′,F

))
≈ Ki(F)×Ki+1(F)

is a group isomorphism.

c) If we identify Ki(C
(
ΓIK

1 ,F
)
) with Ki(F)×Ki+1(F) using a) and Theorem 3.2.2 b)

and Ki+1(C0 (IK′′,F)) with Ki(F)×Ki+1(F) using b) then

δi : Ki
(
C
(
Γ

IK
1 ,F

))
−→ Ki+1

(
C0
(
IK′′,F

))
, (a,b) 7−→ (a,2b) .

d) If δi is injective then ψ is K-null and Ki(C0 (IK′,F))≈ Ki(F)
2Ki(F) and if we denote by

Φi : Ki(F)−→ Ki(F)

2Ki(F)

the quotient map then

Ki (ϕ) : Ki
(
C0
(
IK′′,F

))
−→ Ki

(
C0
(
IK′,F

))
, (a,b) 7−→Φib .

a) is easy to see.
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b) follows from Proposition 3.4.7 b).

c) We denote by

ϑ : IM\Γ
IM
0 −→ IK′

the covering map, by

ϑ
′ : Γ

′′′ −→ Γ
IK
1

the map defined by ϑ , and put

φ : C0
(
IK′,F

)
−→ C0

(
IM\Γ

IM
0 ,F

)
, x 7−→ x◦ϑ ,

φ
′ : C0

(
Γ

IK
1 ,F

)
−→ C0

(
Γ
′′′,F

)
, x 7−→ x◦ϑ

′ .

With the identifications of Γ′′′ and ΓIK
1 with IT (by a) and Proposition 3.4.7 a)),

ϑ
′ : Γ

′′′ −→ Γ
IK
1 , z 7−→ z2 .

By the commutativity of the index maps (Axiom 1.2.8) the diagrams

Ki(C0 (IM′′,F))
Ki(ϕ)−−−−→ Ki(C0 (IK′,F))

Ki(ψ)−−−−→ Ki
(
C
(
ΓIK

1 ,F
))y=

yKi(φ)

yKi(φ
′)

Ki(C0 (IM′′,F)) −−−−→
Ki(ϕ̄ ′′)

Ki(C0 (IM′′′),F)) −−−−→
Ki(ψ̄ ′′)

Ki(C (Γ′′′,F))

Ki
(
C
(
ΓIK

1 ,F
)) δi−−−−→ Ki+1(C0 (IM′′,F))yKi(φ
′)

y=

Ki(C (Γ′′′,F)) −−−−→
δ̄ ′′i

Ki+1(C0 (IM′′,F))

are commutative. By Proposition 3.3.4 c),

Ki(φ
′) : Ki

(
C
(
Γ

IK,F
))
−→ Ki

(
C
(
Γ
′′′,F

))
, (a,b) 7−→ (a,2b) .

By b),

δi : Ki
(
C
(
Γ

IK
1 ,F

))
−→ Ki+1

(
C0
(
IK′′,F

))
, (a,b) 7−→ (a, .2b) .

d) By the six-term axiom (Axiom 1.2.7), ψ is K-null. The other assertions follow from
c) and the six-term axiom (Axiom 1.2.7).
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3.5 Pasting Locally Compact Spaces

PROPOSITION 3.5.1 Let Ω1,Ω2 be locally compact spaces, Γ1 and Γ2 closed sets of

Ω1 and Ω2, respectively, ϑ : Γ1 −→ Γ2 a homeomorphism, Ω′ the topological sum of

Ω1 \Γ1 and Ω2 \Γ2, Ω the locally compact space obtained from the topological sum of

Ω1 and Ω2 by identifying the points ω and ϑ(ω) for all ω ∈ Γ1, Γ the closed set of Ω

corresponding to the identified Γ1 and Γ2 (so Ω\Γ = Ω′), ϕ : C0 (Ω\Γ,F)−→C0 (Ω,F)

the inclusion map,

ψ : C0 (Ω,F)−→ C0 (Γ,F) , x 7−→ x|Γ ,

and δi the index maps associated to the exact sequence in ME

0−→ C0 (Ω\Γ,F)
ϕ−→ C0 (Ω,F)

ψ−→ C0 (Γ,F)−→ 0 .

Let J := {1,2} and for every j ∈ J let

ϕ j : C0 (Ω j \Γ j,F)−→ C0 (Ω j,F) ,

ϕ
′
j : C0 (Ω j \Γ j,F)−→ C0

(
Ω
′,F
)
,

ϕ
′′
j : C0 (Ω j \Γ j,F)−→ C0 (Ω,F)

be the inclusion maps,

ψ j : C0 (Ω j,F)−→ C0 (Γ j,F) , x 7−→ x|Γ j ,

ψ
′
j : C0

(
Ω
′,F
)
−→ C0 (Ω j \Γ j,F) , x 7−→ x|(Ω j \Γ j) ,

and δ j,i the index maps associated to the exact sequence in ME

0−→ C0 (Ω j \Γ j,F)
ϕ j−→ C0 (Ω j,F)

ψ j−→ C0 (Γ j,F)−→ 0 .

a) δ j,i = Ki+1(ψ
′
j)◦δi for every j ∈ J and

δi = Ki+1(ϕ
′
1)◦δ1,i +Ki+1(ϕ

′
2)◦δ2,i .

b) Assume C0 (Ω1,F) K-null.

b1) δ1,i : Ki(C0 (Γ1,F))−→ Ki11(C0 (Ω1 \Γ1,F)) is a group isomorphism.
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b2) δi is injective.

b3) ψ is K-null.

b4) Ki(ϕ
′′
2 ) : Ki(C0 (Ω2 \Γ2,F))−→ Ki(C0 (Ω,F)) is a group isomorphism.

b5) If we put

Φi := Ki(ϕ
′
2)◦Ki(ϕ

′′
2 )
−1 : Ki(C0 (Ω,F))−→ Ki

(
C0
(
Ω
′,F
))

then the map

Ki+1(C0 (Γ,F))×Ki(C0 (Ω,F))−→ Ki
(
C0
(
Ω
′,F
))

,

(a,b) 7−→ δi+1a+Φib

is a group isomorphism.

b6) If also C0 (Ω2,F) is K-null then

Ki(C0 (Ω,F))≈ Ki+1(C0 (Γ,F)) ,

Ki
(
C0
(
Ω
′,F
))
≈ Ki+1(C0 (Γ,F))2 .

a) follows from Proposition 2.3.7 a), since ψ ′′j of this Proposition is the identity map in
the present case.

b1) follows from the Topological six-term sequence (Proposition 2.1.8 a)).

b2) Let a ∈ Ki(C0 (Γ,F)) such that δia = 0. By a), δ1,ia = Ki+1(ψ
′
1)δia = 0 and by b1),

a = 0.

b3) follows from b2) and the six-term axiom (Axiom 1.2.7).

b4) and b5) follow from b3) and Proposition 2.3.7 c1), c2).

b6) follows from b1), b4), and the Product Theorem (Proposition 2.3.1 a)).

COROLLARY 3.5.2 Let Γ be a locally compact space, (Ω j) j∈J a nonempty finite family

of locally compact spaces such that C0 (Ω j,F) is K-null for every j ∈ J, and for every

j ∈ J let Γ j be a closed set of Ω j and ϑ j : Γ −→ Γ j a homeomorphism. Let Ω′ the

topological sum of the family (Ω j \Γ j) j∈J , and Ω the locally compact space obtained
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from the topological sum of the family (Ω j) j∈J by identifying for every ω ∈ Γ all the

points ϑ j(ω) ( j ∈ J). Then

Ki(C0 (Ω,F))≈ Ki+1(C0 (Γ,F))Card J−1 ,

Ki
(
C0
(
Ω
′,F
))
≈ Ki(C0 (Ω,F))×Ki+1(C0 (Γ,F))≈ Ki+1(C0 (Γ,F))Card J .

We prove the Corollary by induction with respect to Card J. For Card J ∈ {1,2} the
assertion follows from Proposition 3.5.1 b1),b5),b6). Let k ∈ J, assume the assertion
holds for J′ := J \{k}, and denote by Ω′′ the topological sum of the family (Ω j \Γ j) j∈J′ .
By Proposition 3.5.1 b4),b5) and the induction hypothesis,

Ki(C0 (Ω,F))≈ Ki
(
C0
(
Ω
′′,F
))
≈ Ki+1(C0 (Γ,F))Card J−1 ,

Ki
(
C0
(
Ω
′,F
))
≈ Ki+1(C0 (Γ,F))×Ki

(
C0
(
Ω
′′,F
))
≈ Ki+1(C0 (Γ,F))J .

COROLLARY 3.5.3 Let m,n ∈ IN,

Γ+ := { α ∈ IBn | ‖α‖= 1, αn > 0} , Γ− := { α ∈ IBn | ‖α‖= 1, αn ≤ 0} ,

and Ω the locally compact space obtained from the topological sum of the family (IBn \
Γ−) j∈INm by identifying all the Γ+. Then

Ki(C0 (Ω,F))≈ Ki+n(F)m−1 .

By Proposition 2.4.1, C0 (IBn \Γ−,F) is null-homotopic and so K-null. For n > 1, Γ+

is homeomorphic to IRn−1 so by Theorem 3.2.2 a),

Ki(C0 (Γ+,F))≈ Ki+n−1(F)

and this relation obviously holds also for n = 1. Then by Corollary 3.5.2,

Ki(C0 (Ω,F))≈ Ki+n(F)m−1 .

Remark. The above result can be deduced also from Example 2.4.9 by using
Proposition 1.5.11 d).
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COROLLARY 3.5.4 Let Ω′,Ω′′ be locally compact spaces, ω ′ ∈ Ω′, ω ′′ ∈ Ω′′, and Ω

the locally compact space obtained from the topological sum of Ω′ and Ω′′ by identifying

ω ′ and ω ′′. If C0 (Ω
′′,F) is K-null then

Ki (C0 (Ω,F))≈ Ki
(
C0
(
Ω
′ \{ω ′},F

))
.

The assertion follows from Proposition 3.5.1 b4).

PROPOSITION 3.5.5 Let Ω′,Ω′′ be compact spaces, ω ′ ∈ Ω′, ω ′′ ∈ Ω′′, and Ω the

compact space obtained by identifying the points ω ′ and ω ′′ in the topological sum of Ω′

and Ω′′. Then

Ki(C (Ω,F))≈ Ki
(
C0
(
Ω\Ω

′,F
))
×Ki

(
C
(
Ω
′,F
))

.

Let ϕ : C0 (Ω\Ω′,F)−→ C (Ω,F) be the inclusion map and

ψ : C (Ω,F)−→ C
(
Ω
′,F
)
, x 7−→ x|Ω′ .

We put for every x ∈ C (Ω′,F),

λx : Ω−→ F , ω 7−→

{
x(ω) if ω ∈Ω′

x(ω0) if ω ∈Ω′′
,

where ω0 ∈Ω denotes the point corresponding to the identified points ω ′ and ω ′′. Then

0−→ C0
(
Ω\Ω

′,F
) ϕ−→ C (Ω,F)

ψ
−→
λ←−

C
(
Ω
′,F
)
−→ 0

is a split exact sequence in ME and the assertion follows from the split exact axiom
(Axiom 1.2.3).

PROPOSITION 3.5.6 Let (Ω j) j∈INn be a family of compact spaces and for every j ∈ INn

let ω j,ω
′
j be distinct points of Ω j. If Ω denotes the compact space obtained from the

topological sum of the family (Ω j) j∈INn by identifying ω ′j with ω j+1 for all j ∈ INn−1 then

Ki(C (Ω,F))≈ Ki(F)×
n

∏
j=1

Ki(C0
(
Ω j \{ωj},F

)
) .

If (k j) j∈INn is a family in IN, Ω j = SS k j for every j ∈ INn, and

p :=Card
{

j ∈ INn | k j is even
}
, q :=Card

{
j ∈ INn | k j is odd

}
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then

Ki(C (Ω,F))≈ Ki(F)p+1×Ki+1(F)q .

We put Ω̄n := Ω and prove the assertion by induction with respect to n ∈ IN. For n = 1
the assertion follows from the Alexandroff K-theorem (Theorem 2.2.1 a)). Assume the
assertion hods for an n ∈ IN. By Proposition 3.5.5 and the induction hypothesis,

Ki
(
C
(
Ω̄n+1,F

))
≈ Ki

(
C0
(
Ω̄n+1 \ Ω̄n,F

))
×Ki

(
C
(
Ω̄n,F

))
≈

≈ Ki(C0 (Ωn+1 \{ωn+1},F))×Ki
(
C
(
Ω̄n,F

))
≈

≈ Ki(C0 (Ωn+1 \{ωn+1},F))×Ki(F)×
n

∏
j=1

Ki(C0
(
Ω j \{ωj},F

)
)≈

≈ Ki(F)×
n+1

∏
j=1

Ki(C0
(
Ω j \{ωj},F

)
) ,

which finishes the inductive proof. The last assertion follows now from Theorem 3.2.2 a),
since SS k j \{ωj} is homeomorphic to IRk j .

PROPOSITION 3.5.7 Let Ω1,Ω2 be locally compact spaces such that the

E−C ∗ −algebra C0 (Ω2,F) is K-null, Γ a compact set of Ω1, and ϑ : Γ −→ Ω2 a

continuous map. We denote by Ω the locally compact space obtained from the

topological sum of Ω1 and Ω2 by identifying the points ω and ϑ(ω) for all ω ∈ Γ.

a) If

ϕ : C0 (Ω1 \Γ,F)−→ C0 (Ω,F)

denotes the inclusion map then

Ki(ϕ) : Ki(C0 (Ω1 \Γ,F))−→ Ki(C0 (Ω,F))

is a group isomorphism. If in addition Ω ∈ ϒ or Ω1 \Γ ∈ ϒ then

Ω,Ω1 \Γ ∈ ϒ , p(Ω) = p(Ω1 \Γ) , q(Ω) = q(Ω1 \Γ) , Ωϒ = (Ω1 \Γ)ϒ .

b) If Ω∗ denotes the Alexandroff compactification of Ω then

Ki(C (Ω∗,F))≈ Ki(F)×Ki(C0 (Ω1 \Γ,F)) .
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a) If we put
ψ : C0 (Ω,F)−→ C0 (Ω2,F) , x 7−→ x|Ω2

then
0−→ C0 (Ω1 \Γ,F)

ϕ−→ C0 (Ω,F)
ψ−→ C0 (Ω2,F)−→ 0

is an exact sequence in ME . Since C0 (Ω2,F) is K-null, the assertion follows from the
Topological six-term sequence (Proposition 2.1.8 c)).

b) follows from a) and Alexandroff’s K-theorem (Theorem 2.2.1 a)).

COROLLARY 3.5.8 Let (Ω j) j∈J be a finite family of locally compact spaces, ω j ∈ Ω j

for all j ∈ J, and Ω the locally compact space obtained from the topological sum of the

family (Ω j) j∈J by identifying the points ω j for all j ∈ J.

a) If there is a j0 ∈ J such that C0
(
Ω j0 ,F

)
is K-null then

Ki(C0 (Ω,F))≈ ∏
j∈J\{j0}

Ki(C0
(
Ω j \{ωj},F

)
) .

b) If Ω j := [0,1[ for all j ∈ J and n :=Card J then

Ki(C0 (Ω,F))≈ Ki+1(F)n−1 .

c) Let j0 ∈ J and Ω j0 := [0,1[. If (k j) j∈J\{j0} is a family in IN,

p :=Card
{

j ∈ J \{j0} | k j is even
}
,

q :=Card
{

j ∈ J \{j0} | k j is odd
}
,

and Ω j := SS k j for every j ∈ J \ j0 then

Ki(C0 (Ω,F))≈ Ki(F)p×Ki+1(F)q .

a) Let Ω′ be the locally compact space obtained from the topological sum of the family
(Ω j)J\{j0} by identifying the points ω j for all j ∈ J \ {j0} and let ω̄ denote the point
obtained by this identification. If we replace in Proposition 3.5.7 Ω1 by Ω′, Ω2 by Ω j0 , Γ

by ω̄ , and take ϑ(ω̄) := ω j0 then we get

Ki(C0 (Ω,F))≈ Ki
(
C0
(
Ω
′ \{ω̄},F

))
.
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Ω′ \ {ω̄} is the topological sum of the family (Ω j \ {ωj}) j∈J\{j0} so by the Product
Theorem (Proposition 2.3.1 a)),

Ki
(
C0
(
Ω
′ \{ω̄},F

))
≈ ∏

j∈J\{j0}
Ki(C0

(
Ω j \{ωj},F

)
) .

b) follows immediately from a) since C0 ([0,1[,F) is K-null and

Ki(C0 ([0,1[\{ω},F))≈ Ki+1(F)

for all ω ∈ [0,1[.

c) For j ∈ J \ {j0}, SS k j \ {ωj} is homeomorphic to IRk j and so by Theorem 3.2.2 a),

Ki

(
C0

(
SS k j \{ωj},F

))
≈ Ki+k j(F). Since C0 ([0,1[,F) is K-null, we get from a),

Ki(C0 (Ω,F))≈ Ki(F)p×Ki+1(F)q .

COROLLARY 3.5.9 Let J1,J2,J3 be pairwise disjoint finite sets and let Ω be the locally

compact space (the graph) obtained from the topological sum of [0,1]×J1, [0,1[×J2, and

]0,1[×J3 by identifying some of the points of the set

{ (0, j) | j ∈ J1∪ J2 }∪{ (1, j) | j ∈ J1 } .

If s denotes the number of compact connected components of Ω and r0 and r1 denote the

number of vertices and chords of the graph Ω, respectively, then

Ki(C0 (Ω,F))≈ Ki(F)s×Ki+1(F)s+r1−r0 .

By the Product Theorem (Proposition 2.3.1 a)), we may assume Ω connected.

Assume first there is a j ∈ J3 such that Ω contains ]0,1[×{j}. Since Ω is connected,
Ω =]0,1[×{j}. Thus Ω is homeomorphic to IR, r1− r0 = 1, and the assertion follows
from Theorem 3.2.2 a).

Assume now there is a j ∈ J2 such that Ω contains [0,1[×{j}. By Proposition 3.5.7 a),

Ki(C0 (Ω,F))≈ Ki(C0 (Ω\ ([0,1[×{j}),F)) .

Ω and Ω \ ([0,1[×{j}) have the same r1− r0, so we may replace Ω by Ω \ ([0,1[×{j}).
Repeating the operation, we obtain finally a locally compact space, which is the
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topological sum of a finite family (]0,1[) j∈J , and in this case the assertion follows from
the Product Theorem (Proposition 2.3.1 a)) and Theorem 3.2.2 a).

Finally assume Ω compact. Then there is a j ∈ J1 such that Ω contains [0,1]×{j}. By
the above and by Alexandroff’s K-theorem

Ki(C (Ω,F))≈ Ki(F)×Ki(C0 (Ω\{(1, j)},F)) .

If s′,r′0,r
′
1 denote the corresponding numbers associated to Ω \ {(1, j)} then s′ = 0, r′0 =

r0−1, and r′1 = r1. All the connected components of Ω\{(1, j)} satisfy the condition of
the above paragraphs, so

Ki(C0 (Ω\{(1, j)},F))≈ Ki+1(F)r′1−r′0 ≈ Ki+1(F)1+r1−r0 ,

Ki(C (Ω,F))≈ Ki(F)×Ki+1(F)1+r1−r0 .

COROLLARY 3.5.10 If Ω is a compact graph contained in IBn then

Ki (C0 (IBn \Ω,F))≈ Ki (F)s−r0+r1 ×Ki+1 (F)s−1 ,

where s denotes the number of connected components of Ω and r0 and r1 the munber of

vertices and chords of Ω, respectively.

Let ω be a vertex of Ω. By Corollary 3.5.9 and Corollary 2.4.4 a),

Ki (C0 (Ω\{ω},F))≈ Ki (F)s−1×Ki+1 (F)s−r0+r1

and by Theorem 3.1.2 b),

Ki (C0 (IBn \Ω,F))≈ Ki+1 (C0 (Ω\{ω},F))≈ Ki (F)s−r0+r1 ×Ki+1 (F)s−1 .

EXAMPLE 3.5.11 Let n ∈ IN, Γ a closed set of SS n, /0 6= Γ 6= SS n, ω ∈ Γ, Γ′ the compact

space obtained from Γ× [0,1] by identifying the points of Γ×0, and Ω the compact space

obtained from the topological sum of SS n and Γ′ by identifying the points of Γ ⊂ SS n with

the points of Γ×{1} ⊂ Γ′.

a) Ki (C (Ω,F))≈ Ki (F)×Ki+n (F)×Ki+1 (C0 (Γ\{ω},F)).
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b) If Γ is finite then

Ki (C (Ω,F))≈ Ki (F)×Ki+n (F)×Ki+1 (F)Card Γ−1 .

c) If Γ is a graph then

Ki (C (Ω,F))≈ Ki (F)1+s+r1−r0 ×Ki+n (F)×Ki+1 (F)s−1 ,

where s denotes the number of connected components of Ω and r0 and r1 denote

the number of vertices and chords of the graph Γ, respectively,

a) By Theorem 3.2.2 e1),

Ki (C0 (SS n \Γ,F))≈ Ki+n (F)×Ki+1 (C0 (Γ\{ω},F)) .

By Proposition 2.4.1, C0 (Γ
′ \{0},F) is K-null, where 0 is the point obtained from the

identification of the points of Γ×{0}. By Proposition 3.5.7 a),

Ki (C0 (Ω\{0},F))≈ Ki (C0 (SS n \Γ,F)) ,

so by Alexandroff’s K-theorem (Theorem 2.2.1 a)),

Ki (C (Ω,F))≈ Ki (F)×Ki+n (F)×Ki+1 (C0 (Γ\{ω},F)) .

b) follows from a) and the Product Theorem (Proposition 2.3.1 a)).

c) By Corollary 3.5.9 and Alexandroff’s K-theorem (Theorem 2.2.1 a)),

Ki (C (Γ,F))≈ Ki (F)s×Ki+1 (F)s+r1−r0 ,

Ki (C0 (Γ\{ω},F))≈ Ki (F)s−1×Ki+1 (F)s+r1−r0 ,

so by a),
Ki (C (Ω,F))≈ Ki (F)1+s+r1−r0 ×Ki+n (F)×Ki+1 (F)s−1 .

PROPOSITION 3.5.12 Let (p j) j∈J be a finite family in IN, (J 6= /0), and for every j ∈ J

put Ω j := SS p j . Let Ω′ be the topological sum of the family (Ω j) j∈J , (Γk)k∈K a finite family

of pairwise disjoint nonempty finite subsets of Ω′, Γ :=
⋃

k∈K
Γk, and Ω the compact space

obtained from Ω′ by identifying for every k ∈ K the points of Γk. If Ω is connected then

Ki (C (Ω,F))≈ Ki (F)×Ki+1 (F)Card Γ−Card J−Card K+1×∏
j∈J

Ki+p j (F) .
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If K = /0, since Ω is connected, J is a one-point set and the assertion holds by Theorem
3.2.2 b). Thus we may assume K = INn for some n ∈ IN. Take k1 ∈ K and put J1 :={

j ∈ J | Ω j ∩Γk1 6= /0
}

. We define recursively an injective family (km)m∈INn in K and an
increasing family (Jm)m∈INn of subsets of J in the following way. Let m ∈ INn, m > 1,
and assume the families were defined up to m− 1. Since Ω is connected there is a km ∈
K \
{

kq
∣∣ q ∈ INm−1

}
such that Γkm ∩ Jm−1 6= /0. We put

Jm :=

{
j ∈ J | Ω j ∩

(
m⋃

q=1

Γkq

)
6= /0

}
.

It is easy to prove by induction with respect to m ∈ INn that

Card

(
m⋃

q=1

Γkq

)
−Card Jm−m+1≥ 0

for every m ∈ INn. In particular,

Card Γ−Card J−Card K +1≥ 0 .

For every j ∈ J, by Proposition 2.4.11 and Theorem 3.2.2 a),

Ki (C0 (Ω j \Γ,F))≈ Ki+1 (F)Card (Γ∩Ω j)−1×Ki+p j (F)

so that by the Product Theorem (Proposition 2.3.1 a)),

Ki
(
C0
(
Ω
′ \Γ,F

))
≈ Ki+1 (F)Card Γ−Card J×∏

j∈J
Ki+p j (F) .

For every k ∈ K let ωk be the point of Ω corresponding to the unified points of Γk and put
∆ := { ωk | k ∈ K }. Then by Proposition 2.4.11,

Ki (C0 (Ω\∆,F))≈ Ki
(
C0
(
Ω\{ωk0},F

))
×Ki+1 (F)Card K−1 ,

where k0 ∈ K. By the above and by Alexandroff’s K-theorem, since Ω\∆ = Ω′ \Γ,

Ki (C (Ω,F))×Ki+1 (F)Card K−1 ≈

≈ Ki (F)×Ki
(
C0
(
Ω\{ωk0},F

))
×Ki+1 (F)Card K−1 ≈

≈ Ki (F)×Ki (C0 (Ω\∆,F))≈ Ki (F)×Ki
(
C0
(
Ω
′ \Γ,F

))
≈

≈ Ki (F)×Ki+1 (F)Card Γ−Card J−Card K+1×Ki+1 (F)Card K−1×∏
j∈J

Ki+p j (F) ,

Ki (C (Ω,F))≈ Ki (F)×Ki+1 (F)Card Γ−Card J−Card K+1×∏
j∈J

Ki+p j (F) .
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COROLLARY 3.5.13 Let (p j) j∈INn be a family in IN and for every j ∈ INn put Ω j :=
SS p j . For every j ∈ INn let Γ j and Γ′j be disjoint nonempty finite subsets of Ω j such

that k j := Card Γ′j = Card Γ j+1 for every j ∈ INn−1. We denote by Ω the compact space

obtained from the topological sum of the family (Ω j) j∈INn by identifying in a bijective way

Γ′j with Γ j+1 for all j ∈ INn−1. Then

Ki(C (Ω,F))≈ Ki(F)×Ki+1(F)

n−1
∑

j=1
(k j−1)

×
n

∏
j=1

Ki+p j(F) .

PROPOSITION 3.5.14 Let Ω1, Ω2 be locally compact spaces and for every j ∈ {1,2}
let Γ j be a compact set of Ω j and ϑ j : IBn −→ Γ j a homeomorphism such that ∆ j :=
ϑ j(IBn \ SS n−1) is an open set of Ω j. We denote by Ω the locally compact space obtained

from the topological sum of Ω1 \ ∆1 and Ω2 \ ∆2 by identifying the points ϑ1(ω) and

ϑ2(ω) for all ω ∈ SS n−1. Then for every ω ∈ SS n−1,

Ki (C0 (Ω\{ϑ1(ω)},F))≈

≈ Ki (C0 (Ω1 \Γ1,F))×Ki (C0 (Ω2 \Γ2,F))×Ki+n−1 (F) .

We use the notation of the topological triple (Proposition 2.1.11), which we mark with
a prime in order to distinguish them from the present notation. We put Ω′2 := Ω\{ϑ1(ω)}
and take as Ω′3 the topological sum of Ω1 \Γ1 and Ω2 \Γ2 and as Ω′1 the locally compact
space obtained from Ω by completing first ϑ1(SS n−1) to ϑ1(IBn) and deleting then ω . By
the Product Theorem (Proposition 2.3.1 a)),

Ki
(
C0
(
Ω
′
3,F
))
≈ Ki (C0 (Ω1 \Γ1,F))×Ki (C0 (Ω2 \Γ2,F)) .

Since Ω′2 \Ω′3 is homeomorphic to SS n−1 \{ω}, we get by Theorem 3.2.2 e1),

Ki
(
C0
(
Ω
′
2 \Ω

′
3,F
))
≈ Ki+n−1 (F) .

Thus by the topological triple (Proposition 2.1.11 b3)) (and Theorem 3.1.2 b)),

Ki (C0 (Ω\{ϑ1(ω)},F))≈ Ki
(
C0
(
Ω
′
2,F
))
≈

≈ Ki
(
C0
(
Ω
′
3,F
))
×Ki

(
C0
(
Ω
′
2 \Ω

′
3,F
))
≈

≈ Ki (C0 (Ω1 \Γ1,F))×Ki (C0 (Ω2 \Γ2,F))×Ki+n−1 (F) .
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COROLLARY 3.5.15 If Sg is an orientable compact connected surface of genus g ∈ IN
and Γ is a nonempty finite subset of Sg then

Ki (C (Sg,F))≈ Ki (F)g+1×Ki+1 (F)3g−1 ,

Ki (C (Sg \Γ,F))≈ Ki (F)g×Ki+1 (F)3g−2+Card Γ .

Assume first Γ is a one-point set {ω}. We prove the second assertion in this case by
induction with respect to g ∈ IN. By Proposition 3.2.15 b), the assertion holds for g = 1.
Assume now the assertion holds for g ∈ IN. Let ∆1 be a closed disc of S1, ∆g a closed
disc of Sg, ω ∈ ∆1, and ω ∈ ∆g. Sg+1 \{ω} can be obtained from the topological sum of
S1 \∆1, Sg \∆2, and SS 1 \{ω} by pasting SS 1 \{ω} in the the boundaries of ∆1 \{ω} and
∆g \{ω}. By the induction hypothesis, since Sg \∆g is homeomorphic to Sg \{ω},

Ki (C0 (Sg \∆g,F))≈ Ki (F)g×Ki+1 (F)3g−1 .

By Proposition 3.5.14,

Ki (C0 (Sg+1 \{ω},F))≈ Ki (F)g+1×Ki+1 (F)3g+2 ,

which finishes the inductive proof.

The first assertion follows now from Alexandroff’s K-theorem (Proposition 2.2.1 a))
and the second one from Proposition 2.4.11.

The following Example shows a way to generalize Corollary 3.5.15.

EXAMPLE 3.5.16 Let Ω be the compact space obtained from the topological sum of

SS 1× SS 2 \∆, SS 1× SS 1× SS 1 \∆′, and SS 2, where ∆ and ∆′ denote balls homeomorphic to

IB3 by pasting SS 2 in the boundaries of ∆ and ∆′. Then for every nonempty finite subset Γ

of Ω,

Ki (C (Ω,F))≈ Ki (F)5×Ki+1 (F)6 ,

Ki (C0 (Ω\Γ,F))≈ Ki (F)4×Ki+1 (F)5+Card Γ .

Remark. Let

0−→ F1
ϕ−→ F2

ψ−→ F3 −→ 0 ,
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0−→ G1
ϕ ′−→ G2

ψ ′−→ G3 −→ 0

be exact sequences in ME and λ : F3 −→ G3 and isomorphism in ME . Then

H :=
{
(x,y) ∈ F2×G2 | ψ

′y = λψx
}

is a C*-subalgebra of F2×G2 containing the ideal F1×G1 of F2×G2. H corresponds to
the operation of pasting F2 and G2 in ME .
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Some Supplementary Results

Throughout this chapter F denotes an E-C*-algebra.





4.1 Full E-C*-algebras

4.1 Full E-C*-algebras

DEFINITION 4.1.1 A full E-C*-algebra is a unital C*-algebra F for which E is a

canonical unital C*-subalgebra such that αx= xα for all (α,x)∈E×F. Every full E-C*-

algebra is canonically an E-C*-algebra, the exterior multiplication being the restriction

of the interior multiplication. We denote by CE the category of full E-C*-algebras for

which the morphisms are the unital E-linear C*-homomorphisms. In particular CIC is

the category of all unital C*-algebras with unital C*-homomorphisms. A full E-C*-
subalgebra of F is a C*-subalgebra of F containing E. An isomorphism of full E-C*-

algebras is also called E-C*-isomorphism.

If ∏
j∈J

Fj is a finite family of full E-C*-algebras, J 6= /0, then ∏
j∈J

Fj is a full E-C*-algebra ,

the canonical embedding E→ ∏
j∈J

Fj being given by

E −→∏
j∈J

Fj, α 7−→ (α) j∈J .

If F is a full E-C*-algebra and G a unital C*-algebra then the map

E −→ F⊗G, α 7−→ α⊗1G

is an injective C*-homomorphism. In particular, the E-C*-algebra F⊗G has a canonical
structure of a full E-C*-algebra.

PROPOSITION 4.1.2 Let F be an E-C*-algebra . We denote by F̌ the vector space

E×F endowed with the bilinear map

(E×F)× (E×F)−→ E×F, ((α,x),(β ,y)) 7−→ (αβ ,αy+βx+ xy)

and with the involution

E×F −→ E×F, (α,x) 7−→ (α∗,x∗) .

a) F̌ is an involutive unital algebra with (1E ,0) as unit and { (α,0) | α ∈ E } is a

unital involutive subalgebra of F̌ isomorphic to E.
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b) If E and F are C*-subalgebras of a C*-algebra G then the map

ϕ : F̌ −→ E×G , (α,x) 7−→ (α,α + x)

is an injective involutive algebra homomorphism with closed image

{ (α,y) ∈ E×G | α− y ∈ F } .

In particular ϕ(F̌) is a C*-subalgebra of E ×G and there is a norm on F̌ with

respect to which F̌ is a C*-algebra.

c) There is a unique C*-norm on F̌ making it a C*-algebra. Moreover F̌ is a full

E-C*-algebra and F may be identified with the closed ideal

{ (0,x) | x ∈ F }

of F̌. We shall always consider F̌ endowed with the structure of a full

E-C*-algebra .

d) If F is a full E-C*-algebra then the map

F̌ −→ E×F, (α,x) 7−→ (α,α + x)

is an isomorphism of E-C*-algebras with inverse

E×F −→ F̌ , (α,x) 7−→ (α,x−α) .

e) If E = IC then F̌ is the unitization F̃ of F.

a) is easy to verify.

b) Only the assertion that the image of ϕ is closed needs a proof. Let (α,x) ∈ ϕ(F̌).
There are sequences (αn)n∈IN and (xn)n∈IN in E and F , respectively, such that

lim
n→∞

(αn,αn + xn) = (α,x) .

It follows

α = lim
n→∞

αn ∈ E , x−α = lim
n→∞

xn ∈ F , (α,x) = ϕ(α,x−α) ∈ ϕ(F̌) .

Thus ϕ(F̌) is closed.
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c) Let Ω be the spectrum of E and F̃ the unitization of F . Then E and F are C*-
subalgebras of the C*-algebra C

(
Ω, F̃

)
and the assertion follows from b).

d) follows from c) and b).

e) is obvious.

EXAMPLE 4.1.3 Let F be a commutative E-C*-algebra.

a) F̌ is commutative. We denote by ΩE , ΩF , and ΩF̌ the spectra of E, F, and F̌,

respectively.

b) ΩF is homeomorphic to an open set Ω′ of ΩF̌ such that F ≈ C0 (Ω
′, IC).

c) There is a unique surjective continuous map ϑ : ΩF̌ −→ΩE such that if we put

φ : E ≈ C (ΩE , IC)−→ F̌ ≈ C (ΩF̌ , IC) , α 7−→ α ◦ϑ

then φ is an injective continuous C*-homomorphism (so we may identify E with

φ(E)).

d) The restriction of ϑ to ΩF̌ \Ω′ is a homeomorphism.

e) If F is unital then ΩF̌ is homeomorphic to the topological sum of ΩE and ΩF .

a) is easy to see.

b) follows from the fact that F may be identified with a closed ideal of F̌

(Proposition 4.1.2 c)).

c) is proved in [1] Proposition 4.1.2.15.

d) Let ω ∈ΩE and put

ω
′ : F̌ −→ IC , (α,x) 7−→ α(ω) .

Then ω ′ ∈ΩF̌ \Ω′ and ϑ(ω ′) = ω , so ϑ |(ΩF̌ \Ω′) is surjective.

Let ω1,ω2 ∈ΩF̌ \Ω′, ω1 6= ω2. There is an (α,x) ∈ F̌ with

〈(α,x),ω1〉 6= 〈(α,x),ω2〉 .
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Since 〈(α,x),ω j〉= 〈α,ω j〉 for every j ∈ {1,2}, ϑ |(ΩF̌ \Ω′) is injective.

e) follows from d) since in this case Ω′ is clopen.

Remark. The above d) may be seen as a kind of generalization of Alexandroff’s
compactification.

DEFINITION 4.1.4 We put for every E-C*-algebra F

ι
F : F −→ F̌ , x 7−→ (0,x) ,

π
F : F̌ −→ E , (α,x) 7−→ α ,

λ
F : E −→ F̌ , α 7−→ (α,0) ,

σ
F := λ

F ◦π
F .

If E = IC then

F̌ = F̃ , ιF = ι
F , πF = π

F , λF = λ
F .

All these maps are E-linear C*-homomorphisms,

π
F ◦ ι

F = 0, π
F ◦λ

F = idE , π
F ◦σ

F = π
F ,

ιF and λ F are injective, πF , λ F , and σF are unital, and

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

is a split exact sequence in ME .

PROPOSITION 4.1.5

a) If F
ϕ→ F ′ is a morphism in ME then the map

ϕ̌ : F̌ −→ F̌ ′ , (α,x) 7−→ (α,ϕx)

is an involutive unital algebra homomorphism, injective or surjective if ϕ is so. If

F = F ′ and if ϕ is the identity map then ϕ̌ is also the identity map.

144 Science Publishing Group



4.1 Full E-C*-algebras

b) Let F1,F2,F3 be E-C*-algebras and let ϕ : F1 → F2 and ψ : F2 → F3 be E-linear

C*-homomorphisms. Then
ˇ︷ ︸︸ ︷

ψ ◦ϕ = ψ̌ ◦ ϕ̌ .

Remark. If E = IC then ϕ̌ = ϕ̃ .

EXAMPLE 4.1.6 Let F be a full E-C*-algebra and F ′ a closed ideal of F.

a) F ′ endowed with the exterior multiplication

E×F ′ −→ F ′, (α,x) 7−→ αx

is an E-C*-algebra .

b) The map

F̌ ′ −→ E×F, (α,x) 7−→ (α,α + x)

is an injective E-linear C*-homomorphism with image{
(α,x) ∈ E×F | α− x ∈ F ′

}
.

c) CE is a full subcategory of ME .

PROPOSITION 4.1.7 Let F be a full E-C*-algebra and J a finite set.

a) FJ = F⊗ l2(J) endowed with the maps

F×FJ −→ FJ , (x,ξ ) 7−→ (xξ j) j∈J ,

FJ×F −→ FJ , (ξ ,x) 7−→ (ξ jx) j∈J ,

FJ×FJ −→ F, (ξ ,η) 7−→∑
j∈J

η
∗
j ξ j

is a unital Hilbert F-module ([1] Proposition 5.6.4.2 c)).

b) Let L (FJ) be the Banach space of operators on FJ . The set LF(FJ) of

adjointable operators on FJ is a Banach subspace of L (FJ). LF(FJ) endowed

with the restriction of the norm of L (FJ) it is a full E-C*-algebra ([1] Theorem
5.6.1.11 d), [1] Proposition 5.6.1.8 g),h)).
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PROPOSITION 4.1.8 For every E-C*-algebra F the sequence

0−→ Ki (F)
Ki(ιF)
−→ Ki

(
F̌
) Ki(πF)

−→
Ki(λF)
←−

Ki (E)−→ 0

is split exact and the map

Ki (F)×Ki (E)−→ Ki
(
F̌
)
, (a,b) 7−→ Ki

(
ι

F)a+Ki
(
λ

F)b

is a group isomorphism.

Since the sequence in ME

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

is split exact the assertion follows from the split exact axiom (Axiom 1.2.3).

COROLLARY 4.1.9 Let G be a C*-algebra.

a) The sequence in ME

0−→ F⊗G
ιF⊗idG−→ F̌⊗G

πF⊗idG−→
λF⊗idG←−

E⊗G−→ 0

is split exact.

b) The sequence

0−→ Ki(F⊗G)
Ki(ιF⊗idG)−→ Ki

(
F̌⊗G

) Ki(πF⊗idG)
−→

Ki(λF⊗idG)
←−

Ki(E⊗G)−→ 0

is split exact and the map

Ki(E⊗G)×Ki(F⊗G)−→ Ki
(
F̌⊗G

)
,

(a,b) 7−→ Ki
(
λ

F ⊗ idG
)

a+Ki
(
ι

F ⊗ idG
)

b

is a group isomorphism.

c) Let F
ϕ→ F ′ be a morphism in ME and G

ψ→ G′ a morphism in MIC. If we identify

the isomorphic groups of b) then

Ki (ϕ̌⊗ψ) : Ki
(
F̌⊗G

)
−→ Ki

(
F̌ ′⊗G′

)
,

(a,b) 7−→ (Ki (idE ⊗ψ)a,Ki (ϕ⊗ψ)b)

is a group isomorphism.
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a) follows from Proposition 1.4.8 a).

b) follows from a) and the split exact axiom (Axiom 1.2.3).

c) follows from b) and the commutativity of the following diagram:

F⊗G
ιF⊗idG−−−−→ F̌⊗G

λ F⊗idG←−−−− E⊗G

ϕ⊗ψ

y ϕ̌⊗ψ

y yidE⊗ψ

F ′⊗G′ −−−−−→
ιF ′⊗idG′

F̌ ′⊗G′ ←−−−−−
λ F ′⊗idG′

E⊗G′
.

COROLLARY 4.1.10 Let F
φ1→ F ′ and F

φ2→ F ′ be morphisms in ME . If F is K-null then

Ki
(
φ̌1
)
= Ki

(
φ̌2
)
.

By Proposition 4.1.8, the map

Ki (F)×Ki (E)−→ Ki
(
F̌
)
, (a,b) 7−→ Ki

(
ι

F)a+Ki
(
λ

F)b

is a group isomorphism. Since F is K-null, Ki
(
λ F
)

is a group isomorphism. We get from
φ̌1 ◦λ F = φ̌2 ◦λ F ,

Ki
(
φ̌1
)
◦Ki

(
λ

F)= Ki
(
φ̌2
)
◦Ki

(
λ

F) , Ki
(
φ̌1
)
= Ki

(
φ̌2
)
.

4.2 Continuity and Stability

AXIOM 4.2.1 (Continuity axiom) If {(Fj) j∈J , (ϕ j,k) j,k∈I} is an inductive system in

ME such that ϕ j,k are injective for all j,k ∈ J, k < j, and if {F, (ϕ j) j∈J} denotes its

inductive limit in ME then {Ki (F) , (Ki (ϕ j)) j∈J} is the inductive limit of the inductive

system {(Ki (Fj)) j∈J , (Ki
(
ϕ j,k
)
) j,k∈J}.

PROPOSITION 4.2.2 If Ω is a totally disconnected compact space then

Ki(C (Ω,F))≈
{

a ∈ Ki(F)Ω

∣∣∣ a(Ω) is finite
}
.
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Let Ξ be the set of clopen partitions of Ω ordered by fineness and for every Θ :=
(Ω j) j∈J ∈ Ξ and x ∈ FΘ put

x̃ : Ω−→ F , ω 7−→ x( j) for ω ∈Ω j .

Then the map

FΘ −→ C (Ω,F), x 7−→ x̃

is an injective E-C*-homomorphism for every Θ ∈ Ξ and C (Ω,F) is isomorphic to the
corresponding inductive limit in ME of (FΘ)Θ∈Ξ. By Lemma 2.1.4 c), Ki(FΘ)≈ Ki(F)Θ

for every Θ ∈ Ξ and the assertion follows from the continuity axiom (Axiom 4.2.1).

PROPOSITION 4.2.3 Let ξ be an ordinal number, (Ωη)η<ξ a family of path connected,

non-compact, locally compact spaces, and ωη ∈ Ωη for every η < ξ . We denote by Ωξ

the locally compact space obtained by endowing the disjoint union of the family of sets

(Ωη)η<ξ with the topology for which a subset U of Ωξ is open if it has the following

properties:

1) Ωη ∩U is open for every η < ξ .

2) If ωη ∈U for some η < ξ and if there is a ζ < η with η = ζ + 1 then Ωζ \U is

compact.

3) If ωη ∈ U for some limit ordinal number η < ξ then there is a ζ < η such that⋃
ζ<ζ ′<η Ωζ ′ ⊂U.

If Ki(C0 (Ωη ,F)) = 0 for all η < ξ then Ki

(
C0

(
Ωξ ,F

))
= 0.

The assertion is trivial for ξ = 0. We prove the general case by transfinite induction.
If ξ = η + 1 for some η < ξ for which the assertion holds then by Corollary 3.5.4, the
assertion holds also for ξ . If ξ is a limit ordinal number and the assertion holds for every
η < ξ then by the continuity axiom (Axiom 4.2.1) the assertion holds also for ξ since
C0

(
Ωξ ,F

)
is the inductive limit of the inductive system { C0 (Ω

η ,F) | η < ξ }.

Remark. If Ωη = [0,1[ for every η < ξ then Ωξ is ”one-dimensional”.
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LEMMA 4.2.4 Let {(Fj) j∈J , (ϕ j,k) j,k∈J} be an inductive system in ME , {F, (ϕ j) j∈J} its

inductive limit in ME , G an E-C*-algebra, and for every j ∈ J an injective morphism

ψ j : Fj −→ G in ME such that ψ j = ψk ◦ϕk, j for all j,k ∈ J, j < k. Then the morphism

ψ : F −→ G in ME such that ψ j = ψ ◦ϕ j for all j,k ∈ J, j < k, ([5] Theorem L.2.1) is

injective.

For j ∈ J and x ∈ Fj,∥∥ϕ jx
∥∥≤ ‖x‖= ∥∥ψ jx

∥∥= ∥∥ψϕ jx
∥∥≤ ∥∥ϕ jx

∥∥ ,
so ψ preserves the norms on ϕ j(Fj). Since

⋃
j∈J

ϕ j(Fj) is dense in F , ψ preserves the

norms, i.e. it is injective.

PROPOSITION 4.2.5 Let {(G j) j∈J , (ϕ j,k) j,k∈J} be an inductive system in MIC such that

ϕ j,k are injective for all j,k ∈ J, k < j, and let {G, (ϕ j) j∈J} be its inductive limit in

MIC . If {F ′, (ψ j) j∈J} denotes the inductive limit in ME of the inductive system {(F ⊗
G j) j∈J , (idF ⊗ϕ j,k) j,k∈J} in ME and ψ : F ′ −→ F⊗G denotes the morphism in ME such

that ψ ◦ψ j = idF ⊗ϕ j for all j ∈ J ([5] Theorem L.2.1) then ψ is an isomorphism.

By [5] Corollary T.5.19, idF ⊗ϕ j are injective for all j ∈ J. By Lemma 4.2.4, ψ is
injective. Since

F⊗

(⋃
j∈J

G j

)
⊂ Imψ ,

ψ is surjective and so it is an isomorphism.

COROLLARY 4.2.6 If {(G j) j∈J , (ϕ j,k) j,k∈J} is an inductive system in MIC such that

ϕ j,k are injective for all j,k ∈ J, k < j, and if {G, (ϕ j) j∈J} is its inductive limit in

MIC then {Ki (F⊗G) , (Ki (idF ⊗ϕ j)) j∈J} is the inductive limit of the inductive system

{(Ki (F⊗G j)) j∈J , (Ki
(
idF ⊗ϕ j,k

)
) j,k∈J}. In particular if G j is ϒ-null for every j ∈ J

then G is also ϒ-null.

By [5] Corollary T.5.19, idF ⊗ϕ j,k are injective for all j,k ∈ J, k < j. By Proposition
4.2.5, {F ⊗G, (idF ⊗ ϕ j) j∈J} may be identified with the inductive limit in ME of the
inductive system {(F ⊗G j) j∈J , (idF ⊗ϕ j,k) j,k∈J} in ME and the assertion follows from
the continuity axiom (Axiom 4.2.1).
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COROLLARY 4.2.7 Let (G j) j∈J be an infinite family in ϒ1, J the set of nonempty finite

subsets of J ordered by inclusion, and for all K,L ∈ J, K ⊂ L, put GK :=
⊗
j∈K

G j and

ϕ(L,K) : GK −→ GL ,
⊗
j∈K

x j 7−→
⊗
j∈L

y j ,

where

y j :=

{
x j if j ∈ K

1G j if j ∈ L\K
.

Then {(GK)K∈J, (ϕ(L,K))K,L∈J} is an inductive system in MIC and its limit belongs to

ϒ1.

We denote by {G, (ϕ(K))K∈J} the above inductive limit. By Proposition 1.6.5, GK ∈
ϒ1 for all K ∈ J so by Corollary 4.2.6, p(G) = 1, q(G) = 0. Let F

φ→ F ′ be a morphism
in ME and let K ∈ J. Then the diagram

F
φGK ,F−−−−→ F⊗GK

idF⊗ϕ(K)−−−−−→ F⊗G

φ

y yφ⊗idGK

yφ⊗idG

F ′ −−−−→
φGK ,F ′

F ′⊗GK −−−−−−→
idF ′⊗ϕ(K)

F ′⊗G

is commutative. Since

φG,F = (idF ⊗ϕ(K))◦φGK ,F , φG,F ′ = (idF ′ ⊗ϕ(K))◦φGK ,F ′ ,

the diagrams

F
φG,F−−−−→ F⊗G

φ

y yφ⊗idG

F ′ −−−−→
φG,F ′

F ′⊗G

Ki (F)
Ki(φG,F)−−−−−→ Ki (F⊗G)

Ki(φ)

y yKi(φ⊗idG)

Ki (F ′) −−−−−→
Ki(φG,F ′)

Ki (F ′⊗G)

are commutative and so G ∈ ϒ1.

COROLLARY 4.2.8 Let {(G j) j∈J , (ϕ j,k) j,k∈J} be an inductive system in MIC such that

ϕk, j are injective for all j,k ∈ J, j < k, and let {G, (ϕ j) j∈J} be its inductive limit. We
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assume that for all j,k ∈ J, j < k,

G j,Gk ∈ ϒ , Φi,Gk,F = Ki
(
idF ⊗ϕk, j

)
◦Φi,G j ,F .

Then

G ∈ ϒ , Φi,G,F = Ki (idF ⊗ϕ j)◦Φi,G j ,F

for all j ∈ J.

By Corollary 4.2.6, {Ki (F⊗G) , (Ki (idF ⊗ϕ j)) j∈J} is the inductive limit of the
inductive system {(Ki (F⊗G j)) j∈J , (Ki

(
idF ⊗ϕ j,k

)
) j,k∈J}. By the hypothesis of the

Corollary,

Ki
(
idF ⊗ϕk, j

)
: Ki (F⊗G j)−→ Ki (F⊗Gk)

is a group isomorphism for all j,k ∈ J, j < k, so

Ki (idF ⊗ϕ j) : Ki (F⊗G j)−→ Ki (F⊗G)

is also a group isomorphism for all j ∈ J. Let F
φ→ F ′ be a morphism in ME . The

assertion follows from the commutativity of the diagram

Ki (F)p(G j)×Ki+1 (F)q(G j) Ki(φ)
p(G j)×Ki+1(φ)

q(G j)

−−−−−−−−−−−−−−→ A

Φi,G j ,F

y Φi,G j ,F ′
y

Ki (F⊗G j)
Ki(φ⊗G j)−−−−−→ Ki (F ′⊗G j)

Ki(idF⊗ϕ j)
y Ki(idF ′⊗ϕ j)

y
Ki (F⊗G) −−−−−→

Ki(φ⊗idG)
Ki (F ′⊗G)

where A := Ki (F ′)
p(G j)×Ki+1 (F ′)

q(G j).

DEFINITION 4.2.9 We denote for every family (G j) j∈J of additive groups by ∑
j∈J

G j its

direct sum i.e.

∑
j∈J

G j :=

{
a ∈∏

j∈J
G j

∣∣∣∣∣ { j ∈ J | a j 6= 0
}

is finite

}
.
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PROPOSITION 4.2.10 If (Fj) j∈J is a family of E-C*-algebras and F is its C*-direct

sum ([1] Example 4.1.1.6) then

Ki (F)≈∑
j∈J

Ki (Fj) .

In particular, the C*-direct sum of a family of K-null E-C*-algebras is K-null.

If J is finite then the assertion follows from Proposition 1.3.3. The general case follows
now from the continuity (Axiom 4.2.1).

COROLLARY 4.2.11 If (Ω j) j∈J is a family of locally compact spaces and Ω is its

topological sum then

Ki(C0 (Ω,F))≈∑
j∈J

Ki (C0 (Ω j,F))≈

≈

{
a ∈∏

j∈J
Ki(C0 (Ω j,F))

∣∣∣∣∣ { j ∈ J | a j 6= 0
}

is finite

}
.

By Proposition 4.2.5, C0 (Ω,F) is the direct sum of the family (C0 (Ω j,F)) j∈J and the
assertion follows from Proposition 4.2.10.

PROPOSITION 4.2.12 If ξ is an ordinal number endowed with its usual topology then

Ki(C0 (ξ ,F))≈ ∑
η<ξ

Ki(F).

We prove the assertion by transfinite induction. If ξ is not a limit ordinal number then
the assertion follows from Corollary 2.3.4 a). Assume ξ is a limit ordinal number and
for all η < ζ < ξ let ϕζ ,η : C0 (η ,F)−→ C0 (ζ ,F) be the inclusion map. By Proposition
4.2.5, C0 (ξ ,F) may be identified with the inductive limit in ME of the inductive system
{(C0 (η ,F))η<ξ , (ϕζ ,η)η<ζ<ξ} in ME . Thus the assertion follows from the continuity
axiom (Axiom 4.2.1) and the induction hypothesis.

DEFINITION 4.2.13 We denote for every n ∈ IN by M(n) the C*-algebra of

n×n-matrices with entries in IC.
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AXIOM 4.2.14 (Stability axiom) There is an h ∈ IN, h 6= 1, such that

M(h) ∈ ϒ , p(M(h)) = 1 , q(M(h)) = 0 ,

Φi,M(h),F = Ki (idF ⊗ϕ)◦Φi,IC,F ,

where

ϕ : IC−→M(h) , α 7−→


α 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 .

PROPOSITION 4.2.15 We put for all j,k ∈ IN∗, j < k,

ϕk, j : M(h j)−→M(hk) , x 7−→


x 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 .

a) For all j ∈ IN,

M(h j) ∈ ϒ , p(M(h j)) = 1 , q(M(h j)) = 0 ,

Φi,M(h j),F = Ki
(
idF ⊗ϕ j,0

)
◦Φi,IC,F .

b) For all j,k ∈ IN∗, j < k,

Φi,M(hk),F = Ki
(
idF ⊗ϕk, j

)
◦Φi,M(h j),F

and Ki
(
idF ⊗ϕk, j

)
is a group isomorphism.

a) We prove the assertion by induction with respect to j ∈ IN. For j = 1 the assertion is
exactly the Stability axiom (Axiom 4.2.14). Let j > 1 and assume the assertion holds for
j−1. With the notation of Proposition 1.5.4 b),(

idF⊗M(h)⊗ϕ( j−1),0
)
◦φIC,F⊗M(h) ◦ (idF ⊗ϕ1,0) = idF ⊗ϕ j,0 ,

so by the above and by the induction hypothesis,

Ki
(
idF ⊗ϕ j,0

)
◦Φi,IC,F =
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= Ki
(
idF⊗M(h)⊗ϕ( j−1),0

)
◦Φi,IC,F⊗M(h) ◦Ki (idF ⊗ϕ1,0)◦Φi,IC,F =

= Φi,M(h j−1),F⊗M(h) ◦Φi,M(h),F .

Thus

Ki
(
idF ⊗ϕ j,0

)
◦Φi,IC,F : Ki (F)−→ Ki

(
F⊗M(h j)

)
is a group isomorphism. Let F

φ→ F ′ be a morphism in ME . Since the diagram

Ki (F)
Φi,IC,F−−−−→ Ki (F⊗M(1))

Ki(idF⊗ϕ j,0)−−−−−−−→ Ki
(
F⊗M(h j)

)
Ki(φ)

y yKi(φ⊗idM(1))
yKi

(
φ⊗idM(h j)

)
Ki (F ′) −−−−→

Φi,IC,F ′
Ki (F ′⊗M(1)) −−−−−−−−−→

Ki(idF ′⊗ϕ( j,0))
Ki
(
F ′⊗M(h j)

)
is commutative, we may take

Φi,M(h j),F = Ki
(
idF ⊗ϕ j,0

)
◦Φi,IC,F .

b) By a),

Ki
(
idF ⊗ϕk, j

)
◦Φi,M(h j),F = Ki

(
idF ⊗ϕk, j

)
◦Ki

(
idF ⊗ϕ j,0

)
◦Φi,IC,F =

= Ki
(
idF ⊗ϕk,0

)
= Φi,M(hk),F .

THEOREM 4.2.16 Let H be an infinite-dimensional Hilbert space and K (H) the C*-

algebra of compact operators on H. Then

K (H) ∈ ϒ , p(K (H)) = 1 , q(K (H)) = 0 ,

Φi,K (H),F = Ki (idF ⊗ϕ)◦Φi,IC,F ,

where ϕ : IC−→K (H) is an inclusion map.

Let Ξ be the set of subspaces of H of dimension h j for some j ∈ IN∗ ordered by
inclusion and for every K ∈ Ξ let πK be the orthogonal projection of H on K and
GK := πKK (H)πK . We denote for all K,L ∈ Ξ, K ⊂ L, by

ϕL,K : GK −→ GL , ϕK : GK −→K (H)
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the inclusion maps. Then {(GK)K∈Ξ , (ϕL,K)L,K∈Ξ} is an inductive system in MIC and
{K (H) ,(ϕK)K∈Ξ} is its inductive limit. By Proposition 4.2.15, for K,L ∈ Ξ, K ⊂ L,

GK ,GL ∈ ϒ , p(GK) = p(GL) = 1 , q(GK) = q(GL) = 0 ,

Φi,GL,F = Ki (idF ⊗ϕL,K)◦Φi,GK ,F ,

and Ki (idF ⊗ϕL,K) is a group isomorphism. By Corollary 4.2.8, for K ∈ Ξ,

K (H) ∈ ϒ , Φi,K (H),F = Ki (idF ⊗ϕK)◦Φi,GK ,F ,

so p(K (H)) = 1 , q(K (H)) = 0.
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Part II

Projective K-theory





Throughout this part we use the following notation: T is a group, 1 is its neutral
element, K is the complex Hilbert space l2(T ), (Tn)n∈IN is an increasing sequence of
finite subgroups of T the union of which is T , T0 := {1}, E is a unital commutative
C*-algebra, and f is a Schur E-function for T (Definition 5.0.1).

In the usual K-theory the orthogonal projections (used for K0) and the unitaries (used
for K1) are identified with elements of the square matrices, which is not a very elegant
procedure from the mathematical point of view, but is justified as a very efficient
pragmatic solution. It seems to us that in the present more complicated construction the
danger of confusion produced by these identifications is greater and we decided to
separate these three domains. Unfortunately this separation complicates the presentation
and the notation. Moreover, we also do identifications! In general the stability does not
hold. We present in Theorem 6.3.3 (as an example) some strong conditions under which
stability holds for K0.

For projective representations of groups we use [2] (but the groups will be finite here)
and for the K-theory we use [4], the construction of which we follow step by step. In the
sequel we give a list of notation used in this Part.

1) We put for every involutive algebra F ,

Pr F :=
{

P ∈ F | P = P∗ = P2}
and for every A⊂ F ,

Ac := { x ∈ F | y ∈ A =⇒ xy = yx} .

2) We denote for every unital involutive algebra F by 1F its unit and set

Un F := {U ∈ F | UU∗ =U∗U = 1F } .

3) If F is a unital C*-algebra and U,V ∈Un F then we denote by U ∼h V the assertion
U and V are homotopic in Un F and put

Un0 F := {U ∈Un F | U ∼h 1F } .

Moreover GL(F) denotes the group of invertible elements of F and GL0(F) the
elements of GL(F) which are homotopic to 1F in GL(F).



4) If F is a unital C*-algebra and G is a unital C*-subalgebra of F then we denote by
UnG F the set of elements of Un F which are homotopic to an element of Un G

in Un F and by GLG(F) the set of elements of GL(F) which are homotopic to an
element of GL(G) in GL(F).

5) If Ω is a topological space, F a C*-algebra, and A⊂ F then we put

C (Ω,A) := { X ∈ C (Ω,F) | ω ∈Ω =⇒ X(ω) ∈ A} .

6) Hilbert E-C*-algebra ([1] Definition 5.6.1.4).

7) LE(H) ([1] Definition 5.6.1.7).
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DEFINITION 5.0.1 Let S be a group and let 1 be its neutral element. A Schur E-
function for S is a map

f : S×S−→Un E

such that f (1,1) = 1E and

f (r,s) f (rs, t) = f (r,st) f (s, t)

for all r,s, t ∈ T . We denote by F (S,E) the set of Schur E-functions for S.

Schur functions are also called normalized factor set or multiplier or two-co-cycle (for
S with values in Un E) in the literature.

DEFINITION 5.0.2 Let F be an full E-C*-algebra and n ∈ IN∗. We put for every t ∈ Tn,
ξ ∈ FTn = F⊗ l2(Tn), and x ∈ F ,

Vtξ :=V F
t ξ : Tn −→ F , s 7−→ f (t, t−1s)ξ (t−1s) ,

x⊗ idK : FTn −→ FTn , ξ 7−→ (xξs)s∈Tn ,

so we have

(x⊗ idK)Vtξ : Tn −→ F , s 7−→ f (t, t−1s)xξ (t−1s) .

We define

Fn :=

{
∑

t∈Tn

(Xt ⊗ idK)Vt

∣∣∣∣∣ (Xt)t∈Tn ∈ FTn

}
.

If F
ϕ−→ G is a morphism in CE then we put

ϕn : Fn −→ Gn , X 7−→ ∑
t∈Tn

((ϕXt)⊗ idKn)Vt .

Fn is a full E-C*-subalgebra of LF(FTn) (Proposition 4.1.7 b), [2] Theorem 2.1.9 h),
k)), so 1Fn = 1E , and ϕn is an E-C*-homomorphism, injective or surjective if ϕ is so
([2] Corollary 2.2.5). Moreover Fm is canonically a full E-C*-subalgebra of Fn for every
m ∈ IN∗, m < n ([2] Proposition 2.1.2). For every n ∈ IN, Fn×Gn ≈ (F×G)n.

DEFINITION 5.0.3 We fix in Part II a sequence (Cn)n∈IN ∈ ∏
n∈IN

En, put

An :=C∗nCn , Bn :=CnC∗n ,
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and assume An, Bn ∈ Pr En, An+Bn = 1E = 1En , and Cn ∈ (En−1)
c for every n∈ IN (where

we used the inclusion En−1 ⊂ En in the last relation).

From
An = An(An +Bn) = A2

n +AnBn = An +AnBn ,

Cn =Cn(An +Bn) =CnAn +CnBn =Cn +C2
nC∗n

we get AnBn =C2
n = 0 for every n ∈ IN.

We have Cn ∈ (Fn−1)
c for every n ∈ IN and for every full E-C*-algebra F (where we

used the inclusion Fn−1 ⊂ Fn).

DEFINITION 5.0.4 Let (Sm)m∈IN be a sequence of finite groups and (kn)n∈IN a strictly

increasing sequence in IN such that Tn =
kn
∏

m=1
Sm for all n ∈ IN. We identify Sm with a

subgroup of T for every m ∈ IN. Assume that for every m ∈ IN there is a gm ∈F (Sm,E)

such that
f (s, t) = ∏

m∈IN
gm(sm, tm)

for all s, t ∈ T . For every n ∈ IN let m ∈ IN, kn−1 < m≤ kn, let χ : ZZ2 × ZZ2 −→ Sm be an
injective group homomorphism, and β1,β2 ∈Un E. We put

a := χ(1,0) , b := χ(0,1) , α1 := f (a,a) , α2 := f (b,b) ,

Cn :=
1
2
((β1⊗ idK)V f

a +(β2⊗ idK)V
f

b ) .

If f (a,b) = − f (b,a) = 1E and α1β 2
1 +α2β 2

2 = 0 then (Cn)n∈IN fulfills the conditions of
Axiom 5.0.3.

The assertion follows from [2] Theorem 2.2.18 a), b).

Remark 1. If E = IC, Sm = ZZ2 × ZZ2 , and km = m for every m ∈ IN then (by [2]
Proposition 3.2.1 c) and [2] Corollary 3.2.2 d)) we may choose (Cn)n∈IN in such a way
that the corresponding K-theory coincides with the classical one.

Remark 2. Denote by Tn the set of permutations p of IN such that
{ j ∈ IN | p( j) 6= j} ⊂ IN4n so T is the set of permutations p of IN such that
{ j ∈ IN | p( j) 6= j} is finite. This example shows that the given conditions for Tn in
Example 5.0.4 are not automatically fulfilled.
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6.1 K0 for CE

6.1 K0 for CE

Throughout this section F denotes a full E-C*-algebra.

PROPOSITION 6.1.1 Let n ∈ IN.

a) An, Bn ∈ (Fn−1)
c (where we used the inclusion Fn−1 ⊂ Fn).

b) AnFnAn is a unital C*-algebra with An as unit.

c) The map

ρ̄
F
n : Fn−1 −→ Fn , X 7−→ AnX = XAn = AnXAn =C∗nXCn

(where we used the inclusion Fn−1 ⊂ Fn) is an E-linear injective

C*-homomorphism.

Only the injectivity of ρ̄F
n needs a proof. Let X ∈ Fn−1 with ρ̄F

n X = 0. Then

C∗nCnX = 0 , XCn =CnX = 0 ,

XBn = XCnC∗n = 0 , X = X(An +Bn) = 0 .

Remark. ρ̄F
n is not unital since ρ̄F

n 1E = An.

DEFINITION 6.1.2 We put for all m,n ∈ IN, m < n,

ρ
F
n,m := ρ̄

F
n ◦ ρ̄

F
n−1 ◦ · · · ◦ ρ̄

F
m+1 : Fm −→ Fn .

Then {(Fn)n∈IN, (ρ
F
n,m)n,m∈IN} is an inductive system of full E-C*-algebras with injective

E-linear (but not unital) maps. We denote by {F→, (ρF
n )n∈IN} its algebraic inductive

limit. F→ is an involutive (but not unital) algebra endowed with the structure of an

algebraic E-C*-algebra, ρF
n is injective and E-linear for every n ∈ IN, and (ImρF

n )n∈IN

is an increasing sequence of involutive subalgebras and algebraic E-C*-subalgebras of

F→ the union of which is F→. We put for every X ∈ Fn,

X→ := X→n := XF
→n := ρ

F
n X ,

Science Publishing Group 167



Chapter 6 The Functor K0

and

1→n := 1F
→n := ρ

F
n 1Fn = ρ

F
n 1E ,

F→n := Imρ
F
n .

In particular

(An)→ = ρ
F
n An = 1→,n−1, (Bn)→ = ρ

F
n Bn, (Cn)→ = ρ

F
n Cn .

We put

Pr F→ :=
{

P ∈ F→ | P = P∗ = P2}= ⋃
n∈IN

(Pr F→n) .

For P,Q∈Pr F→ we put P∼0 Q if there is an X ∈F→ with X∗X =P, XX∗=Q (in this case

there is an n ∈ IN such that P,Q,X ∈ F→n); ∼0 is the Murray - von Neumann equivalence

relation, which we shall use also in the case of C*-algebras. For every P ∈ Pr F→ we

denote by Ṗ its equivalence class in Pr F/∼0.

Often we shall identify Fn with F→n by using ρF
n . By this identification F→n is a full

E-C*-algebra with 1→n as unit.

F→ is also endowed with a C*-norm and its completion in this norm is the C*-inductive
limit of the above inductive system, but we shall not use this supplementary structure in
the sequel.

PROPOSITION 6.1.3 If n ∈ IN and P ∈ Pr F→,n−1 then

P = (An)→P∼0 (Bn)→P = (Cn)→P(Cn)
∗
→ .

We have
((Cn)→P)∗((Cn)→P) = P(Cn)

∗
→(Cn)→P = (An)→P ,

((Cn)→P)((Cn)→P)∗ = P(Cn)→(Cn)
∗
→P = (Bn)→P ,

so (An)→P∼0 (Bn)→P.

PROPOSITION 6.1.4 For every finite family (Pi)i∈I in Pr F→ there is a family (Qi)i∈I in

Pr F→ such that Pi ∼0 Qi for every i ∈ I and QiQ j = 0 for all distinct i, j ∈ I.
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We prove the assertion by complete induction with respect to Card I. Let i0 ∈ I and put
J := I \ {i0}. We may assume, by the induction hypothesis, that there is an n ∈ IN with
Pi ∈ Pr F→,n−1 for all i ∈ I and PiPj = 0 for all distinct i, j ∈ J. By Proposition 6.1.3,

Pi0 = (An)→Pi0 ∼0 (Cn)→Pi0(Cn)
∗
→ =: Qi0 ,

and
Qi0Pj = (Cn)→Pi0(Cn)

∗
→(An)→Pj = (Cn)→Pi0(C

∗
nAn)→Pj = 0

for all j ∈ J.

PROPOSITION 6.1.5 Let P,Q ∈ Pr F→.

a) If P′,P′′,Q′,Q′′ ∈ Pr F→ such that

P∼0 P′ ∼0 P′′, Q∼0 Q′ ∼0 Q′′, P′Q′ = P′′Q′′ = 0

then

P′+Q′ ∼0 P′′+Q′′ .

We put

Ṗ⊕ Q̇ :=
˙︷ ︸︸ ︷

P′+Q′ .

b) Pr F→/∼0 endowed with the above composition law ⊕ is an additive semi-group

with 0̇ as neutral element. We denote by K0(F) its associated Grothendieck group

and by

[ · ]0 : Pr F→ −→ K0(F)

the Grothendieck map ([4] 3.1.1).

c) K0(F) = { [P]0− [Q]0 | P,Q ∈ Pr F→ }.

d) For every a ∈ K0(F) there are P,Q ∈ Pr F→ and n ∈ IN such that

P = P(An)→, Q = Q(Bn)→, a = [P]0− [Q]0 .

a) Let X ,Y ∈ F→ with

X∗X = P′, XX∗ = P′′, Y ∗Y = Q′, YY ∗ = Q′′ .
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Then
0 = P′Q′ = X∗XY ∗Y, 0 = P′′Q′′ = XX∗YY ∗

so
XY ∗ = X∗Y = 0, (X +Y )∗(X +Y ) = X∗X +Y ∗Y = P′+Q′ ,

(X +Y )(X +Y )∗ = XX∗+YY ∗ = P′′+Q′′ , P′+Q′ ∼0 P′′+Q′′ .

b) and c) follow from a) and Proposition 6.1.4.

d) follows from c) and Proposition 6.1.3.

COROLLARY 6.1.6 The following are equivalent for all n ∈ IN and P,Q ∈ Pr F→n.

a) [P]0 = [Q]0.

b) There is an R ∈ Pr F→ such that

PR = QR = 0 , P+R∼0 Q+R .

c) There is an m ∈ IN, m > n+1, such that

P+(Bm)→ ∼0 Q+(Bm)→

or (by identifying Fm with F→m)(
m

∏
i=n+1

Ai

)
P+

(
1E −

m

∏
i=n+1

Ai

)
∼0

(
m

∏
i=n+1

Ai

)
Q+

(
1E −

m

∏
i=n+1

Ai

)
.

a⇒ b follows from Proposition 6.1.4 (and from the definition of the Grothendieck
group).

b⇒ c. We may assume R ∈ F→,m−1 for some m > n+1. By Proposition 6.1.3,

P+(Bm)→R∼0 P+R∼0 Q+R∼0 Q+(Bm)→R ,

so
P+(Bm)→ = P+(Bm)→R+((Bm)→− (Bm)→R)∼0

∼0 Q+(Bm)→R+((Bm)→− (Bm)→R) = Q+(Bm)→ .
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It follows(
m

∏
i=n+1

Ai

)
P+

(
1E −

m

∏
i=n+1

Ai

)
= ρ

F
m,nP+Bm +

(
Am−

m

∏
i=n+1

Ai

)
∼0

∼0 ρ
F
m,nQ+Bm +

(
Am−

m

∏
i=n+1

Ai

)
=

(
m

∏
i=n+1

Ai

)
Q+

(
1E −

m

∏
i=n+1

Ai

)
.

c⇒a is trivial.

COROLLARY 6.1.7 If for every n ∈ IN and P ∈ Pr F→n there is an m ∈ IN, m > n+1,

such that P+(Bm)→ ∼0 1E then K0(F) = {0}.

Let P,Q ∈ Pr F→. By our hypothesis there is an m ∈ IN such that P+(Bm)→ ∼0 Q+

(Bm)→. By Corollary 6.1.6 c⇒ a, [P]0 = [Q]0. Thus by Proposition 6.1.5 c), K0(F)= {0}.

COROLLARY 6.1.8 K0(E) 6= {0}.

Assume K0(E) = {0}. Then [1E ]0 = [0]0, so by Corollary 6.1.6 a⇒ c, there is an n∈ IN
such that

1E ∼0 1E −
n

∏
i=1

Ai .

Let ω be a point of the spectrum of E. Since En(ω) is a product of square matrices the
above relation leads to a contradiction by using the trace function.

PROPOSITION 6.1.9 Let G be an additive group and ν : Pr F→→ G a map such that

1) P,Q ∈ Pr F→, PQ = 0 =⇒ ν(P+Q) = ν(P)+ν(Q).

2) P,Q ∈ Pr F→, P∼0 Q =⇒ ν(P) = ν(Q).

Then there is a unique group homomorphism µ : K0(F)→ G such that µ[P]0 = ν(P) for

every P ∈ Pr F→.
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By 2), ν is well-defined on Pr F→/∼0 and by 1) and Proposition 6.1.5 a),b), ν is an
additive map on Pr F→/∼0. By 2) and Corollary 6.1.6 a⇒b, ν is well-defined on K0(F).
The existence and uniqueness of µ with the given properties follows now from Proposition
6.1.5 c).

PROPOSITION 6.1.10 Let F
ϕ−→ G be a morphism in CE .

a) For m,n ∈ IN, m < n, the diagram

Fm
ρF

n,m−−−−→ Fn

ϕm

y yϕn

Gm −−−−→
ρG

n,m

Gn

is commutative. Thus there is a unique E-linear involutive algebra homomorphism

ϕ→ : F→ −→ G→ with

ϕ→ ◦ρ
F
n = ρ

G
n ◦ϕn

for every n ∈ IN.

b) ϕ→ is injective or surjective if ϕ is so.

c) There is a unique group homomorphism K0(ϕ) : K0(F)−→ K0(G) such that

K0(ϕ)[P]0 = [ϕ→P]0

for every P ∈ Pr F→.

d) If ϕ is the identity map then K0(ϕ) is also the identity map.

e) If ϕ = 0 then K0(ϕ) = 0.

a) It is sufficient to prove the assertion for n = m+1. For X ∈ Fm,

ϕnρ̄
F
n X = ϕn(AnX) = AnϕnX = ρ̄

G
n ϕnX

(where we used the inclusion Fm ⊂ Fn).

b) follows from the fact that for every n ∈ IN, ϕn is injective or surjective if ϕ is so ([2]
Theorem 2.1.9 a))).
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c) By a) and Proposition 6.1.3, the map

Pr F→ −→ K0(G), P 7−→ [ϕ→P]0

possesses the properties from Proposition 6.1.9.

d) and e) are obvious.

COROLLARY 6.1.11 If F
ϕ−→ G

ψ−→ H are morphisms in CE then

(ψ ◦ϕ)→ = ψ→ ◦ϕ→, K0(ψ ◦ϕ) = K0(ψ)◦K0(ϕ) .

PROPOSITION 6.1.12

a) The maps

µ : F̌ −→ F , (α,x) 7−→ α + x ,

λ
′ : E −→ F̌ , α 7−→ (α,−α)

are E-C*-homomorphisms.

b)

µ ◦ ι
F = idF , ι

F ◦µ +λ
′ ◦π

F = idF̌ ,

K0(ι
F)◦K0(µ)+K0(λ

′)◦K0(π
F) = idK0(F̌) .

c)

0−→ K0(F)
K0(ι

F )−→ K0(F̌)
K0(π

F )
−→

K0(λ
F )

←−
K0(E)−→ 0

is a split exact sequence.

a) is easy to see.

b) For (α,x),(β ,y) ∈ F̌ ,

ι
F

µ(α,x) = (0,α + x), λ
′
π

F(α,x) = (α,−α) ,

(ιF
µ(α,x))(λ ′πF(β ,y)) = (0,α + x)(β ,−β ) = (0,0) ,

(ιF
µ +λ

′
π

F)(α,x) = (α,x)
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so ιF ◦µ +λ ′ ◦πF is a full E-C*-homomorphism and

ι
F ◦µ +λ

′ ◦π
F = idF̌ .

By a) and Corollary 6.1.11,

ι
F
→ ◦µ→+λ

′
→ ◦π

F
→ = idF̌→ .

By Proposition 6.1.10 c),d) and Corollary 6.1.11, for P ∈ Pr F̌→,

(K0(ι
F)◦K0(µ)+K0(λ

′)◦K0(π
F))[P]0 = K0(ι

F ◦µ)[P]0 +K0(λ
′ ◦π

F)[P]0 =

= [ιF
→µ→P]0 +[λ ′→π

F
→P]0 = [(ιF ◦µ +λ

′ ◦π
F)→P]0 = [P]0

so by Proposition 6.1.5 c),

K0(ι
F)◦K0(µ)+K0(λ

′)◦K0(π
F) = idK0(F̌) .

c) By b), Proposition 6.1.10 d),e), and Corollary 6.1.11,

K0(π
F)◦K0(ι

F) = K0(π
F ◦ ι

F) = 0 ,

K0(π
F)◦K0(λ

F) = K0(π
F ◦λ

F) = idK0(E) ,

K0(µ)◦K0(ι
F) = K0(µ ◦ ι

F) = idK0(F)

and so K0(ι
F) is injective. By b), for a ∈ K0(F̌),

a = K0(ι
F)K0(µ)a+K0(λ

′)K0(π
F)a .

Thus if a ∈ Ker K0(π
F) then a = K0(ι

F)K0(µ)a ∈ ImK0(ι
F), and so

Ker K0(π
F) = ImK0(ι

F).

6.2 K0 for ME

DEFINITION 6.2.1 Let F be an E-C*-algebra and consider the split exact sequence

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

introduced in Definition 4.1.4. We put

K0(F) := Ker K0(π
F) .
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By Proposition 6.1.12 c), this definition does not contradict the definition given in
Proposition 6.1.5 b) for the case that F is an full E-C*-algebra .

K0({0}) = {0} since π{0} is bijective.

PROPOSITION 6.2.2 Let F
ϕ−→ G be a morphism in ME .

a) The diagram

F ιF
−−−−→ F̌ πF

−−−−→ E

ϕ

y yϕ̌ ‖

G −−−−→
ιG

Ǧ −−−−→
πG

E

is commutative.

b) The diagram

K0(F)
⊂−−−−→ K0(F̌)

K0(π
F )−−−−→ K0(E)

K0(ϕ)

y yK0(ϕ̌) ‖

K0(G) −−−−→
⊂

K0(Ǧ) −−−−→
K0(πG)

K0(E)

is commutative, where K0(ϕ) is defined by K0(ϕ̌).

c) If P ∈ Pr F→ then

K0(ϕ)[P]0 = [ϕ→P]0 .

d) K0(idF) = idK0(F).

e) If ϕ = 0 then K0(ϕ) = 0.

a) is obvious.

b) By a) and Corollary 6.1.11, the right part of the diagram is commutative. This
implies the existence (and uniqueness) of K0(ϕ).

c) By a), b), Proposition 6.1.10 a),c), and Corollary 6.1.11,

K0(ϕ)[P]0 = K0(ϕ̌)[ι
F
→P]0 = [ϕ̌→ι

F
→P]0 = [ιG

→ϕ→P]0 = [ϕ→P]0 .

d) and e) follow from c) and Proposition 6.1.5 c).
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COROLLARY 6.2.3 Let F
ϕ−→ G

ψ−→ H be morphisms in ME .

a) K0(ψ)◦K0(ϕ) = K0(ψ ◦ϕ).

b) If ϕ is an isomorphism then K0(ϕ) is also an isomorphism and

K0(ϕ)
−1 = K0(ϕ

−1) .

a) follows from Proposition 4.1.5 b), Corollary 6.1.11, and Proposition 6.2.2 b).

b) follows from a) and Proposition 6.2.2 d).

PROPOSITION 6.2.4 For every E-C*-algebra F,

K0(F) =
{
[P]0− [σF

→P]0
∣∣ P ∈ Pr F̌→

}
.

For P ∈ Pr F̌→, by Proposition 6.2.2 c) and Corollary 6.1.11 (since πF = πF ◦ σF ),

K0(π
F)[σF

→P]0 = [πF
→σ

F
→P]0 = [πF

→P]0 = K0(π
F)[P]0

so

[P]0− [σF
→P]0 ∈ Ker K0(π

F) = K0(F) .

Let a ∈ K0(F). By Proposition 6.1.5 d), there are Q,R ∈ Pr F̌→ and n ∈ IN such that

Q = Q(An)→ , R = R(Bn)→ , a = [Q]0− [R]0 .

Then

a = [Q(An)→]0 +[(Bn)→−R(Bn)→]0− ([R(Bn)→]0− [(Bn)→−R(Bn)→]0) =

= [Q(An)→+((Bn)→−R(Bn)→)]0− [(Bn)→]0 .

If we put

P := Q(An)→+((Bn)→−R(Bn)→)

then

a = [P]0− [(Bn)→]0 .
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By Proposition 6.2.2 c) and Corollary 6.1.11 (and Definition 4.1.4)

0 = K0(π
F)a = K0(π

F)[P]0−K0(π
F)[(Bn)→]0 = [πF

→P]0− [πF
→(Bn)→]0 ,

[σF
→P]0 = [λ F

→π
F
→P]0 = K0(λ

F)[πF
→P]0 = K0(λ

F)[πF
→(Bn)→]0 =

= [λ F
→π

F
→(Bn)→]0 = [σF

→(Bn)→]0 = [(Bn)→]0 ,

a = [P]0− [σF
→P]0 .

PROPOSITION 6.2.5 Let F be an full E-C*-algebra and n ∈ IN.

a) Cn +C∗n ∈Un0 En.

b) For X ,Y ∈ Fn−1,

(Cn +C∗n)(AnX +BnY )(Cn +C∗n) = BnX +AnY .

c) If U,V ∈Un Fn−1 then AnU +BnV ∈Un Fn.

d) If U ∈Un Fn−1 then AnU +Bn ∈Un Fn and AnU +BnU∗ ∈Un0 Fn.

a) From
(Cn +C∗n)(Cn +C∗n) = Bn +An = 1E

it follows that Cn+C∗n is unitary. Being selfadjoint, its spectrum is contained in {−1,+1}
and so it belongs to Un0 En ([4] Lemma 2.1.3 (ii)).

b) We have

(Cn +C∗n)(AnX +BnY )(Cn +C∗n) = (CnX +C∗nY )(Cn +C∗n) = BnX +AnY .

c) We have
(AnU +BnV )(AnU +BnV )∗ = An +Bn = 1E ,

(AnU +BnV )∗(AnU +BnV ) = An +Bn = 1E .

d) By c), AnU +Bn ∈Un Fn. By b),

(Cn +C∗n)(AnU∗+Bn)(Cn +C∗n) = BnU∗+An ,
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so it follows from a), that AnU∗+Bn is homotopic to BnU∗+An in Un Fn and so

AnU +BnU∗ = (AnU +Bn)(An +BnU∗)

is homotopic in Un Fn to

(AnU +Bn)(AnU∗+Bn) = An +Bn = 1E ,

i.e. AnU +BnU∗ ∈Un0 Fn.

PROPOSITION 6.2.6 Let F be a full E-C*-algebra, n ∈ IN, P,Q ∈ Pr Fn, and X ∈ Fn

with X∗X = P, XX∗ = Q. Then there is a U ∈Un0 Fn+2 with

U(An+2An+1P)U∗ = An+2An+1Q , i.e. U→P→U∗→ = Q→ .

We have X(1E −P) = (1E −Q)X = 0. Put

V := An+1X +Cn+1(1E −P)+C∗n+1(1E −Q)+Bn+1X∗ (∈ Fn+1) .

Then

V ∗ = An+1X∗+C∗n+1(1E −P)+Cn+1(1E −Q)+Bn+1X ,

VV ∗ = An+1Q+Bn+1(1E −P)+An+1(1E −Q)+Bn+1P = An+1 +Bn+1 = 1E ,

V ∗V = An+1P+An+1(1E −P)+Bn+1(1E −Q)+Bn+1Q = An+1 +Bn+1 = 1E

so V ∈Un Fn+1. Moreover

VAn+1P = An+1X , An+1XV ∗ = An+1Q .

Put

U := An+2V +Bn+2V ∗ .

By Proposition 6.2.5 d), U ∈Un0 Fn+2. We have

U(An+2An+1P)U∗ = (An+2V +Bn+2V ∗)An+2An+1P(An+2V ∗+Bn+2V ) =

= An+2An+1X(An+2V ∗+Bn+2V ) = An+2An+1Q .

PROPOSITION 6.2.7 Let F
ϕ−→ G be a morphism in ME and a ∈ Ker K0(ϕ).
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a) There are n ∈ IN, P ∈ Pr F̌→n, and U ∈Un0 Ǧ→,n+2 such that

a = [P]0− [σF
→P]0 U(ϕ̌→P)U∗ = σ

G
→ϕ̌→P .

b) If ϕ is surjective then there is a P ∈ Pr F̌→ such that

a = [P]0− [σF
→P]0, ϕ̌→P = σ

G
→ϕ̌→P .

a) By Proposition 6.2.4, there are m ∈ IN and Q ∈ Pr F̌→,m−1 such that

a = [Q]0− [σF
→Q]0 .

Since ϕ̌ ◦σF = σG ◦ ϕ̌ , by Proposition 6.1.10 c) and Corollary 6.1.11,

0 = K0(ϕ)a = [ϕ̌→Q]0− [ϕ̌→σ
F
→Q]0 = [ϕ̌→Q]0− [σG

→ϕ̌→Q]0 .

By Corollary 6.1.6 a⇒c, there is an n ∈ IN, n > m, such that

ϕ̌→Q+(Bn)→ ∼0 σ
G
→ϕ̌→Q+(Bn)→ = σ

G
→(ϕ̌→Q+(Bn)→) .

Put
P := Q+(Bn)→ ∈ Pr F̌→n .

Then
[P]0− [σF

→P]0 = [Q]0 +[(Bn)→]0− [σF
→Q]0− [(Bn)→]0 = a ,

[ϕ̌→P]0− [σG
→ϕ̌→P]0 = [ϕ̌→Q]0 +[(Bn)→]0− [σG

→ϕ̌→Q]0− [(Bn)→]0 = 0 .

By Corollary 6.1.6 a⇒b and Proposition 6.2.6, there is a U ∈Un0 Ǧ→,n+2 with

U(ϕ̌→P)U∗ = σ
G
→ϕ̌P .

b) By a), there are n ∈ IN, n > 2, Q ∈ Pr F̌→,n−2, and U ∈Un0 Ǧ→n such that

a = [Q]0− [σF
→Q]0, U(ϕ̌→Q)U∗ = σ

G
→ϕ̌→Q .

Since ϕn : F̌n −→ Ǧn is surjective, by [4] Lemma 2.1.7 (i), there is a V ∈Un F̌→n with
ϕ̌nV =U . We put

P :=V QV ∗ ∼0 Q

so
a = [P]0− [σF

→P]0
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and

ϕ̌→P = (ϕ̌→V )(ϕ̌→Q)(ϕ̌→V ∗) =U(ϕ̌→Q)U∗ = σ
G
→ϕ̌→Q ,

σ
G
→ϕ̌→P = σ

G
→ϕ̌→Q = ϕ̌→P .

PROPOSITION 6.2.8 Let

0−→ F
ϕ−→ G

ψ−→ H −→ 0

be an exact sequence in ME .

a) ϕ̌→ is injective.

b) The following are equivalent for all X ∈ Ǧ→:

b1) X ∈ Im ϕ̌→.

b2) ψ̌→X = σH
→ψ̌→X.

c) K0(F)
K0(ϕ)−→ K0(G)

K0(ψ)−→ K0(H) is exact.

a) ϕ̌ is injective (Proposition 4.1.5 a)) and the assertion follows from Proposition 6.1.10
b).

b1⇒ b2 follows from ψ ◦ϕ = 0.

b2⇒ b1. Let n ∈ IN such that X ∈ Ǧ→n, which we identify with Ǧn. Then X has the
form

X = ∑
t∈Tn

((αt ,Yt)⊗ idK)V Ǧ
t ,

where (αt ,Yt) ∈ Ǧ for every t ∈ Tn, and so by b2),

∑
t∈Tn

((αt ,ψYt)⊗ idK)V Ȟ
t = ψ̌nX = σ

H
n ψ̌nX = ∑

t∈Tn

((αt ,0)⊗ idK)V Ȟ
t .

It follows ψYt = 0 for every t ∈ Tn ([2] Theorem 2.1.9 a)). Thus for every t ∈ Tn there is
a Zt ∈ F with ϕZt = Yt and we get

X = ∑
t∈Tn

((αt ,ϕZt)⊗ idK)V Ǧ
t =
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= ϕ̌n

(
∑

t∈Tn

((αt ,Zt)⊗ idK)V F̌
t

)
∈ Im ϕ̌n ⊂ Im ϕ̌→ .

c) By Corollary 6.2.3 a) and Proposition 6.2.2 e),

K0(ψ)◦K0(ϕ) = K0(ψ ◦ϕ) = 0

so ImK0(ϕ) ⊂ Ker K0(ψ). Let a ∈ Ker K0(ψ). By Proposition 6.2.7 b), there is a P ∈
Pr Ǧ→ such that

a = [P]0− [σG
→P]0, ψ̌→P = σ

H
→ψ̌→P .

Then P has the form
P = ∑

t∈Tn

((αt ,Xt)⊗ idK)V Ǧ
t

for some n ∈ IN with (αt ,Xt) ∈ E×G for every t ∈ Tn, where we identified Ǧn with Ǧ→n.
We get

∑
t∈Tn

((αt ,ψXt)⊗ idK)V Ȟ
t = ψ̌→P = σ

H
→ψ̌→P = ∑

t∈Tn

((αt ,0)⊗ idK)V Ȟ
t .

Thus ψXt = 0 ([2] Theorem 2.1.9 a)) and there is an Yt ∈ F with ϕYt = Xt for every t ∈ Tn.
We put

Q := ∑
t∈Tn

((αt ,Yt)⊗ idK)V F̌
t ∈ Pr F̌→

with the usual identification (ϕ̌ is an embedding !). Then

ϕ̌→Q = ∑
t∈Tn

((αt ,ϕYt)⊗ idK)V Ǧ
t = ∑

t∈Tn

((αt ,Xt)⊗ idK)V Ǧ
t = P

and by Proposition 6.2.2 c) (since ϕ̌ ◦σF = σG ◦ ϕ̌),

K0(ϕ)([Q]0− [σF
→Q]0) = [ϕ̌→Q]0− [ϕ̌→σ

F
→Q]0 =

= [ϕ̌→Q]0− [σG
→ϕ̌→Q]0 = [P]0− [σG

→P]0 = a .

Thus Ker K0(ψ)⊂ ImK0(ϕ), Ker K0(ψ) = ImK0(ϕ).

PROPOSITION 6.2.9 (Split Exact Theorem for K0) If

0−→ F
ϕ−→ G

ψ
−→
λ←−

H −→ 0
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is a split exact sequence in ME then

0−→ K0(F)
K0(ϕ)−→ K0(G)

K0(ψ)
−→

K0(λ )←−
K0(H)−→ 0

is also split exact. In particular the map

K0(F)×K0(H)−→ K0(G), (a,b) 7−→ K0(ϕ)a+K0(λ )b

is a group isomorphism and K0(F̌)≈ K0(E)×K0(F) for every E-C*-algebra F.

By Proposition 6.2.8 c), the second sequence is exact at K0(G). From

K0(ψ)◦K0(λ ) = K0(ψ ◦λ ) = K0(idH) = idK0(H)

(Corollary 6.2.3 a) and Proposition 6.2.2 d)) it follows that this sequence is (split) exact
at K0(H).

Let a ∈ Ker K0(ϕ). By Proposition 6.2.7 a), there are n ∈ IN, P ∈ Pr F̌→n, and U ∈
Un0 Ǧ→,n+2 such that

a = [P]0− [σF
→P]0, U(ϕ̌→P)U∗ = σ

G
→ϕ̌→P .

Put
V := (λ̌→ψ̌→U∗)U ∈Un Ǧ→,n+2 .

Then
ψ̌→V = (ψ̌→U∗)(ψ̌→U) = 1→,n+2, σ

H
→ψ̌→V = ψ̌→V .

By Proposition 6.2.8 b2 ⇒ b1, there is a W ∈ Un F̌→,n+2 with ϕ̌→W = V (ϕ̌ is an
embedding). We have

ϕ̌→(WPW ∗) =V (ϕ̌→P)V ∗ = (λ̌→ψ̌→U∗)U(ϕ̌→P)U∗(λ̌→ψ̌→U) =

= (λ̌→ψ̌→U∗)(σG
→ϕ̌→P)(λ̌→ψ̌→U) = λ̌→ψ̌→(U∗(σG

→ϕ̌→P)U) =

= λ̌→ψ̌→ϕ̌→P = σ
G
→ϕ̌→P = ϕ̌→σ

F
→P .

Since ϕ̌→ is injective (Proposition 6.2.8 a)),

P∼0 WPW ∗ = σ
F
→P, a = 0

and K0(ϕ) is injective.
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The last assertion follows since

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

is a split exact sequence.

COROLLARY 6.2.10 Let F,G be E-C*-algebras.

a) If we put

ι1 : F −→ F×G , x 7−→ (x,0), π1 : F×G−→ F , (x,y) 7−→ x ,

ι2 : G−→ F×G , y 7−→ (0,y), π2 : F×G−→ F , (x,y) 7−→ y ,

then the sequences

0−→ K0(F)
K0(ι1)−→ K0(F×G)

K0(π2)−→
K0(ι2)←−

K0(G)−→ 0 ,

0−→ K0(G)
K0(ι2)−→ K0(F×G)

K0(π1)−→
K0(ι1)←−

K0(F)−→ 0

are split exact.

b) The map

K0(F)×K0(G)−→ K0(F×G), (a,b) 7−→ K0(ι1)a+K0(ι2)b

is a group isomorphism (Product Theorem for K0).

a) is easy to see.

b) follows from a) and Proposition 6.2.9.

THEOREM 6.2.11 (Homotopy invariance of K0)

a) If ϕ,ψ : F −→ G are homotopic morphisms in ME , then K0(ϕ) = K0(ψ).

b) If F
ϕ−→ G, G

ψ−→ F is a homotopy in ME then

K0(ϕ)◦K0(ψ) = idK0(G), K0(ψ)◦K0(ϕ) = idK0(F) .
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c) If F and G are homotopic E-C*-algebras then K0(F) and K0(G) are isomorphic.

d) If F is an E-C*-algebra such that idF is homotopic to

0F : F −→ F , x 7−→ 0

then F is homotopic to {0}.

e) If the E-C*-algebra F is homotopic to {0} then K0(F) = {0}.

a) Let

φs : F −→ G, s ∈ [0,1]

be a pointwise continuous path of morphisms in ME such that φ0 = ϕ, φ1 = ψ . Then

φ̌s : F̌ −→ Ǧ, s ∈ [0,1]

is a pointwise continuous path of morphisms in CE with φ̌0 = ϕ̌, φ̌1 = ψ̌ and for every
n ∈ IN,

(φ̌s)→n : (F̌)→n −→ (Ǧ)→n, s ∈ [0,1]

is a pointwise continuous path in CE with (φ̌0)→n = (ϕ̌)→n and (φ̌1)→n = (ψ̌)→n. For
every P ∈ Pr F̌→n,

[0,1]−→ Pr (Ǧ)→n, s 7−→ (φ̌s)→nP

is continuous so (by [4] Proposition 2.2.7)

K0(ϕ)[P]0 = [ϕ→P]0 = [ψ→P]0 = K0(ψ)[P]0

(Proposition 6.2.2 c)). By Proposition 6.2.4, K0(ϕ) = K0(ψ).

b) follows from a), Corollary 6.2.3 a), and Proposition 6.2.2 d).

c) follows from b).

d) If we put ϕ : F −→ {0} and ψ : {0} −→ F then ψ ◦ϕ = 0F is homotopic to idF and
ϕ ◦ψ is homotopic to id{0}, so F is homotopic to {0}.

e) follows from c).

We show now that K0 is continuous with respect to inductive limits.
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THEOREM 6.2.12 (Continuity of K0) Let {(Fi)i∈I , (ϕi j)i, j∈I} be an inductive system in

ME and let {F, (ϕi)i∈I} be its inductive limit in ME . By Corollary 6.2.3 a),

{(K0(Fi))i∈I , (K0(ϕi j))i, j∈I}

is an inductive system in the category of additive groups. Let {G , (ψi)i∈I} be its limit in

this category and let ψ : G −→ K0(F) be the group homomorphism such that ψ ◦ψi =

K0(ϕi) for every i ∈ I. Then ψ is a group isomorphism.

{(F̌i)i∈I , (ϕ̌i j)i, j∈I} is an inductive system in CE and by [2] Proposition 1.2.9 b),
{F̌ , (ϕ̌i)i∈I} may be identified with its inductive limit in CE . By[2] Proposition 2.3.5, for
every n ∈ IN, {((F̌i)→n)i∈I , ((ϕ̌i j)→n)i, j∈I} is an inductive system in CE and
{(F̌→n, ((ϕ̌i)→n)i∈I} may be identified with its inductive limit in CE .

Step 1 ψ is surjective

Let Q ∈ Pr (F̌)→n. By [5] L.2.2, there are i ∈ I and P ∈ Pr (F̌i)→n such that
‖(ϕ̌i)→nP−Q‖ < 1, so by [4] Proposition 2.2.4, (ϕ̌i)→nP ∼0 Q. By Proposition 6.2.2
b),c)

ψψi[P]0 = K0(ϕi)[P]0 = K0(ϕ̌i)[P]0 = [(ϕ̌i)→nP]0 = [Q]0 .

Since
Pr F̌→ =

⋃
n∈IN

Pr (F̌)→n ,

ψ is surjective.

Step 2 ψ is injective

Let a ∈ G with ψa = 0. Since G =
⋃

i∈I Im ψi, there is an i ∈ I and an ai ∈ K0(Fi) with
a = ψiai. There are n ∈ IN and P,Q ∈ Pr (F̌i)→n such that

ai = [P]0− [Q]0

(by Proposition 6.1.5 c)). By Proposition 6.2.2 c),

0 = ψa = ψψia = K0(ϕi)a = K0(ϕi)[P]0−K0(ϕi)[Q]0 =
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= [(ϕ̌i)→nP]0− [(ϕ̌i)→nQ]0 .

By Corollary 6.1.6 a⇒b, there is an R ∈ Pr (F̌i)→ such that

PR = QR = 0, P+R∼0 Q+R

and we get

a = [P]0 +[R]0− [Q]0− [R]0 = [P+R]0− [Q+R]0 = 0 .

6.3 Stability of K0

The stability of K0 holds only under strong supplementary hypotheses. We present
below such possible hypotheses, which we fix for this section. We shell give only a
sketch of the proof.

Let S be a finite group, χ : ZZ2 × ZZ2 −→ S an injective group homomorphism,

a := ω(1,0), b := ω(0,1), c := ω(1,1) ,

and g a Schur E-function for S such that

g(a,b) = g(a,c) = g(b,c) =−g(b,a) = 1E .

We put for every n ∈ IN,

Tn := Sn =
{

t ∈ SIN ∣∣ m ∈ IN, m > n⇒ tm = 1
}
,

T :=
⋃

n∈IN

Tn =
{

t ∈ SIN ∣∣ {n ∈ IN, tn 6= 1} is finite
}
,

f : T ×T −→ E , (s, t) 7−→ ∏
n∈IN

g(sn, tn) ,

n
s: IN−→ S , m 7−→

{
s if m = n

1 if m 6= n
,

for every s ∈ S, and

Cn :=
1
2
(V f

n
a
+V f

n
b
), An :=C∗nCn, Bn :=CnC∗n .
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Then f is a Schur E-function for T and the following hold for all s, t ∈ S and n ∈ IN:

f (
n
s,

n
t) = g(s, t) ,

n
t= 1 =⇒ V f

n
s

V f
n
t
=V f

n
t

V f
n
s
,

s ∈ Tn−1 =⇒ V f
s Vn

t
=Vn

t
V f

s ,

An =
1
2
(V f

1 +V f
n
c
) ∈ Pr En, Bn =

1
2
(V f

1 −V f
n
c
) ∈ Pr En ,

An +Bn =V f
1 = 1E ,

so the assumptions of Axiom 5.0.3 are fulfilled.

Remark. If χ is bijective and E = IC then the corresponding projective K-theory
coincides with the usual K-theory.

PROPOSITION 6.3.1 Let F be an full E-C*-algebra and m,n ∈ IN. We define

α := α
F
m,n : (Fm)n −→ Fm+n ,

β := β
F
m,n : Fm+n −→ (Fm)n ,

by

(αX)(s,t) := (Xt)s, ((βY )t)s := Y(s,t)

for every X ∈ (Fm)n, Y ∈ Fm+n, and (s, t) ∈ Sm× Sn = Sm+n, where the identification is

given by the bijective map

Sm×Sn −→ Sm+n, (s, t) 7−→ (s1, · · · ,sm, t1, · · · , tn) .

a) α and β are E-C*-isomorphisms and α = β−1.

b) αAn = Am+n.

c) The diagram

(Fm)n−1
αF

m,n−1−−−−→ Fm+n−1

ρ̄
Fm
n

y yρ̄F
m+n

(Fm)n −−−−→
αF

m,n

Fm+n

is commutative.
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It is obvious that α and β are E-linear and α ◦β = idFm+n , β ◦α = id(Fm)n . Thus α and
β are bijective and α = β−1.

For X ,Y ∈ (Fm)n and (s, t) ∈ Sm×Sn, by [2] Theorem 2.1.9 c),g),

(αX∗)(s,t) = ((X∗)t)s = ( f̃ (t)(Xt−1)∗)s = f̃ (s) f̃ (t)((Xt−1)s−1)∗ =

= f̃ ((s, t))(αX(s,t)−1)∗ = ((αX)∗)(s,t) ,

((αX)(αY ))(s,t) =

= ∑
(u,v)∈Sm×Sn

f ((u,v),(u−1s,v−1t))(αX)(u,v)(αY )(u−1s,v−1t) =

= ∑
(u,v)∈Sm×Sn

f (u,u−1s) f (v,v−1t)(Xv)u(Yv−1t)u−1s =

= ∑
v∈Sn

f (v,v−1t)(XvYv−1t)s =

=

(
∑

v∈Sn
f (v,v−1t)XvYv−1t

)
s = ((XY )t)s = (α(XY ))(s,t)

so α is a C*-homomorphism and the assertion follows.

b) follows from the definition of An and Am+n.

c) follows from b).

PROPOSITION 6.3.2 Let F
ϕ−→ G be a morphism in CE and m,n ∈ IN. With the

notation of Proposition 6.3.1 the diagram

(Fm)n
αF

m,n−−−−→ Fm+n

(ϕm)n

y yϕm+n

(Gm)n −−−−→
αG

m,n

Gm+n

is commutative.

For X ∈ (Fm)n and (s, t) ∈ Sm×Sn = Sm+n,

(ϕm+nα
F
m,nX)(s,t) = ϕ(αF

m,nX)(s,t) = ϕ(Xt)s =
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= (ϕmXt)s = (((ϕm)nX)t)s = (αG
m,n(ϕm)nX)(s,t)

so
ϕm+n ◦α

F
m,n = α

G
m,n ◦ (ϕm)n .

THEOREM 6.3.3 (Stability for K0) If F
ϕ−→ G is a morphism in ME and n ∈ IN then

K0(Fn)≈ K0(F), K0(Gn)≈ K0(G), K0(ϕn)≈ K0(ϕ) .

Remark. If (F∞,(ρ
F
n )n∈IN) and (G∞,(ρ

G
n )n∈IN) denote the inductive limits in ME of

the corresponding inductive systems ((Fn)n∈IN,(ρ
F
n,m)n,m∈IN) and ((Gn)n∈IN,(ρ

G
n,m)n,m∈IN)

then, with obvious notation,

K0(F∞)≈ K0(F), K0(G∞)≈ K0(G), K0(ϕ∞)≈ K0(ϕ) .
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7.1 Definition of K1

PROPOSITION 7.1.1 If F is a full E-C*-algebra and n ∈ IN then

τ̄
F
n : Un Fn−1 −→Un Fn , U 7−→ AnU +Bn

is an injective group homomorphism with

τ̄
F
n (UnEn−1 Fn−1)⊂UnEn Fn .

For U,V ∈Un Fn we put U ∼1 V if UV ∗,U∗V ∈Un En. ∼1 is an equivalence relation

and ∼h implies ∼1.

For U,V ∈Un Fn−1,
τ̄

F
n U∗ = AnU∗+Bn = (τ̄F

n U)∗ ,

(τ̄F
n U)(τ̄F

n V ) = (AnU +Bn)(AnV +Bn) = AnUV +Bn = τ̄
F
n (UV ) ,

(τ̄F
n U)(τ̄F

n U)∗ = (τ̄F
n U)∗(τ̄F

n U) = An +Bn = 1Fn ,

i.e. τ̄F
n is well-defined and it is a group homomorphism. If τ̄F

n U = 1Fn then

AnU +Bn = τ̄
F
n U = 1Fn = 1E = An +Bn, AnU = An ,

so by Proposition 6.1.1 c), U = 1Fn−1 = 1E and τ̄F
n is injective.

The other assertions are obvious.

DEFINITION 7.1.2 Let F be a full E-C*-algebra. We put for all m,n ∈ IN, m < n,

τ
F
n,m := τ̄

F
n ◦ τ̄

F
n−1 ◦ · · · ◦ τ̄

F
m+1 : Un Fm −→Un Fn .

Then {(Un Fn)n∈IN, (τn,m)m,n∈IN} is an inductive system of groups with injective maps.

We denote by {unF, (τF
n )n∈IN} its inductive limit. τF

n is injective for every n ∈ IN, so

(τF
n (Un Fn))n∈IN is an increasing sequence of subgroups of unF, the union of which is

unF. We put for every n ∈ IN and U ∈Un Fn,

Un F←n := τ
F
n (Un Fn), U← :=U←n :=UF

←n := τ
F
n U ,

1←n := 1F
←n := τ

F
n 1Fn (= τ

F
n 1E) .

(τF
n (UnEn Fn))n∈IN is an increasing sequence of subgroups of unF; we denote by unE F

their union.
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We often identify Un Fn with Un F←n.

PROPOSITION 7.1.3 For m,n ∈ IN, m < n, and U ∈Un Fm,

τ
F
n,mU =

(
n

∏
i=m+1

Ai

)
U +

(
1E −

n

∏
i=m+1

Ai

)
.

We prove this identity by induction with respect to n. The identity holds for n := m+1.
Assume it holds for n−1≥ m. Then

τ
F
n,mU = τ̄

F
n τ

F
n−1,mU = Anτ

F
n−1,mU +Bn =

= An

((
n−1

∏
i=m+1

Ai

)
U +

(
1E −

n−1

∏
i=m+1

Ai

))
+Bn =

=

(
n

∏
i=m+1

Ai

)
U +

(
1E −

n

∏
i=m+1

Ai

)
.

PROPOSITION 7.1.4 Let F be a full E-C*algebra.

a) If U,V ∈Un Fn−1 for some n ∈ IN then

τ̄
F
n (UV )∼h τ̄

F
n (VU) , τ̄

F
n (UVU∗)∼h τ̄

F
n (V ) .

b) unE F is a normal subgroup of un F and un F/unE F is commutative.

c) For all U,V ∈ un F,

UV ∗ ∈ unE F ⇐⇒U∗V ∈ unE F .

We put U ∼1 V if UV ∗ ∈ unE F. ∼1 is an equivalence relation.

a) By Proposition 6.2.5 a),b),

τ̄
F
n (UV ) = AnUV +Bn = (AnU +Bn)(AnV +Bn)∼h

∼h (AnU +Bn)(An +BnV ) = AnU +BnV ∼h AnV +BnU ∼h τ̄
F
n (VU) .
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It follows

τ̄
F
n (UVU∗)∼h τ̄

F
n (U

∗UV ) = τ̄
F
n (V ) .

b) unE F is obviously a subgroup of un F . The other assertions follow from a).

c) Let q : un F → un F/unE F be the quotient map. If UV ∗ ∈ unE F then by b),

q(UV ∗) = q(U)q(V ∗) = q(V ∗)q(U) = q(V ∗U) ,

V ∗U ∈ unE F , U∗V = (V ∗U)∗ ∈ unE F .

DEFINITION 7.1.5 We denote for every E-C*-algebra F by K1(F) the additive group

obtained from the commutative group unF̌/unE F̌ (Proposition 7.1.4 b)) by replacing the

multiplication with the addition ⊕; by this the neutral element (which corresponds to 1E )

is denoted by 0. For every U ∈ unF̌ we denote by [U ]1 its equivalence class in K1(F).

Remark. Let F be a full E-C*-algebra . By Proposition 4.1.2 d), F̌ is isomorphic to
E×F , so in this case we may define K1 using F instead of F̌ (as we did for K0).

PROPOSITION 7.1.6 Let F
ϕ−→ G be a morphism in ME .

a) For m,n ∈ IN, m < n, the diagram

Un F̌m
τ F̌

n,m−−−−→ Un F̌n

ϕ̌m

y yϕ̌n

Un Ǧm −−−−→
τǦ

n,m

Un Ǧn

is commutative. Thus there is a unique group homomorphism

ϕ̌← : unF̌ −→ unǦ

such that

ϕ̌← ◦ τ
F̌
n = τ

Ǧ
n ◦ ϕ̌n

for every n ∈ IN.
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b) ϕ←(unE F̌)⊂ unE Ǧ; if ϕ is surjective then ϕ←(unE F̌) = unE Ǧ.

c) There is a unique group homomorphism

K1(ϕ) : K1(F)−→ K1(G)

such that

K1(ϕ)[U ]1 = [ϕ̌←U ]1

for every U ∈ unF̌.

d) K1(idF) = idK1(F).

e) K1({0}) = {0}.

a) It is sufficient to prove the assertion for n = m+1. For U ∈Un F̌m,

τ
Ǧ
n,mϕ̌mU = An(ϕ̌mU)+Bn = ϕ̌n(AnU +Bn) = ϕ̌nτ

F̌
n,mU .

b) Since ϕ̌n(UnEn F̌n) ⊂UnEn Ǧn for every n ∈ IN, it follows ϕ←(unE F̌) ⊂ unE Ǧ. If
ϕ is surjective then by [4] Lemma 2.1.7 (iii), we may replace the above inclusion relation
by =.

c) follows from a) and b).

d) is obvious.

e) follows from un E = unE E.

DEFINITION 7.1.7 An E-C*-algebra F is called K-null if

K0(F) = K1(F) = 0 .

Let F
ϕ→ G be a morphism in ME . We say that ϕ is K-null if

K0(ϕ) = K1(ϕ) = 0 .

We say that ϕ factorizes through null if there are morphisms F
ϕ ′→ H

ϕ ′′→ G in ME such

that ϕ = ϕ ′′ ◦ϕ ′ and His K-null.
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PROPOSITION 7.1.8

a) If F
ϕ−→ G

ψ−→ H are morphisms in ME then

ψ̌← ◦ ϕ̌← = (ψ̌ ◦ ϕ̌)← =

(
ˇ︷ ︸︸ ︷

ψ ◦ϕ

)
← , K1(ψ)◦K1(ϕ) = K1(ψ ◦ϕ) .

b) If ϕ = 0 then K1(ϕ) = 0.

c) (Homotopy invariance of K1) If ϕ,ψ : F −→ G are homotopic morphisms in ME

then

K1(ϕ) = K1(ψ) .

d) (Homotopy invariance of K1) If F
ϕ−→ G

ψ−→ F is a homotopy in ME then

K1(ϕ) : K1(F)−→ K1(G), K1(ψ) : K1(G)−→ K1(F)

are isomorphisms and K1(ψ) = K1(ϕ)
−1.

e) If the E-C*-algebra F is homotopic to {0} then F is K-null.

f) If a morphism in ME factorizes through null then it is K-null.

a) Since

ψ̌n ◦ ϕ̌n = (ψ̌ ◦ ϕ̌)n =

(
ˇ︷ ︸︸ ︷

ψ ◦ϕ

)
n

for every n ∈ IN we get

ψ̌← ◦ ϕ̌← = (ψ̌ ◦ ϕ̌)← =

(
ˇ︷ ︸︸ ︷

ψ ◦ϕ

)
← .

For U ∈ unF̌ , by Proposition 7.1.6 c),

K1(ψ)K1(ϕ)[U ]1 = K1(ψ)[ϕ̌←U ]1 = [ψ̌←ϕ̌←U ]1 =

= [(ψ̌ ◦ ϕ̌)←U ]1 =

 ˇ︷ ︸︸ ︷
ψ ◦ϕ

←U


1

= K1(ψ ◦ϕ)[U ]1 ,

so K1(ψ)◦K1(ϕ) = K1(ψ ◦ϕ).

b) If we put ϑ : F −→ {0}, ι : {0} −→ G then ϕ = ι ◦ϑ and by a) and Proposition
7.1.6 e), K1(ϕ) = 0.
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c) Let

φs : F −→ G, s ∈ [0,1]

be a pointwise continuous path of morphisms in ME with φ0 = ϕ and φ1 = ψ . Let n ∈
IN. Then

(φ̌s)n : F̌n −→ Ǧn, s ∈ [0,1]

is a pointwise continuous path of E-C*-homomorphisms with (φ̌0)n = ϕ̌n and (φ̌1)n = ψ̌n.
For every U ∈Un F̌n, the map

ϑ : [0,1]−→Un Ǧn , s 7−→ (φ̌s)nU

is continuous and ϑ(0) = ϕ̌nU , ϑ(1) = ψ̌nU , i.e. ϕ̌nU and ψ̌nU are homotopic in Un Ǧn.
It follows

K1(ϕ)[τ
F̌
n U ]1 = K1(ψ)[τ F̌

n U ]1 ,

which implies K1(ϕ) = K1(ψ).

d) follows from c) and Proposition 7.1.6 d).

e) By d) and Proposition 7.1.6 e), K1(F) = {0}. By the Homotopy invariance of K0

(Theorem 6.2.11 e)), F is K-null.

f) follows immediately from a), e), and Corollary 6.2.3 a).

PROPOSITION 7.1.9 If

0−→ F
ϕ−→ G

ψ−→ H −→ 0

is an exact sequence in ME then

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)

is also exact.

Let a ∈ Ker K1(ψ) and let U ∈ unǦ with a = [U ]1. By Proposition 7.1.6 c),

0 = K1(ψ)a = [ψ̌←U ]1 , ψ̌←U ∈ unE Ȟ .
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By Proposition 7.1.6 b), there is a V ∈ unE Ǧ with ψ̌←V = ψ̌←U . We put W :=UV ∗. By
Proposition 7.1.4 c), [W ]1 = a and so

ψ̌←W = (ψ̌←U)(ψ̌←V )∗ = 1E .

W has the form
W = ∑

t∈Tn

((αt ,Xt)⊗ idK)V Ǧ
t

for some n ∈ IN, where (αt ,Xt) ∈ E×G for every t ∈ Tn. We get

1E = ψ̌nW = ∑
t∈Tn

((αt ,ψXt)⊗ idK)V Ȟ
t

and so by [2] Theorem 2.1.9 a), ψXt = 0 for every t ∈ Tn. For every t ∈ Tn, let Yt ∈ F with
ϕYt = Xt and put

W ′ := ∑
t∈Tn

((αt ,Yt)⊗ idK)V F̌
t .

Since ϕ̌ : F̌ −→ Ǧ is an embedding, W ′ ∈Un F̌←n and by Proposition 7.1.6 c),

K1(ϕ)[W ′]1 = [ϕ̌nW ′]1 = [W ]1 = a .

Thus Ker K1(ψ)⊂ ImK1(ϕ).

Let now U ∈ unF̌←. By Proposition 7.1.8 a),b),

K1(ψ)K1(ϕ)[U ]1 = K1(ψ ◦ϕ)[U ]1 = K1(0)[U ]1 = 0

so ImK1(ϕ)⊂ Ker K1(ψ).

PROPOSITION 7.1.10 The following are equivalent for every full E-C*-algebra F.

a) K1(F) = {0}.

b) For every n ∈ IN and U ∈Un Fn there is an m ∈ IN, m > n, with τF
m,nU ∼h 1E in

Un Fm.

a⇒ b Since

(1E ,U) ∈Un En×Un Fn =Un (En×Fn) =Un (E×F)n ,
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it follows from Proposition 4.1.2 d), (1E ,U − 1E) ∈ Un F̌n. By a), there is an m ∈ IN,
m > n, with

U0 := (1E ,τ
F
m,nU−1E) = τ

F̌
m,n(1E ,U−1E) ∈UnEm F̌m .

Thus there is a continuous map

[0,1]−→Un F̌m, s 7−→Us

with U1 ∈Un Em (⊂Un F̌m). We put

U ′s :=Us(σ
F
mUs)

∗ (∈Un F̌m)

for every s ∈ [0,1]. Then the map

[0,1]−→Un F̌m, s 7−→U ′s

is continuous and U ′0 =U0, U ′1 = 1E . Let

ϕ : F̌ −→ E×F , (α,x) 7−→ (α,x+α)

be the E-C*-isomorphism of Proposition 4.1.2 d). Then

U ′′ : [0,1]−→Un En×Un Fn , s 7−→ ϕmU ′s

is continuous and

U ′′0 = ϕmU ′0 = (1E ,τ
F
m,nU) , U ′′1 = ϕmU ′1 = (1E ,1E) .

Thus τF
m,nU ∼h 1E in Un Fm.

b ⇒ a Let a ∈ K1(F). There are n ∈ IN and U ∈ Un F̌n with a = [U ]1. Since
U(σF

n U)∗ ∼1 U , we may assume U =U(σF
n U)∗, i.e. σF

n U = 1E . Thus there is a unique
X ∈ Fn with ιF

n X =U−1E . Then

U ′ := X +1E ∈Un Fn .

By b), there is an m ∈ IN, m > n, with τF
m,nU ′ ∼h 1E . By Proposition 4.1.2 d),

U = (1E ,X) = (1E ,U ′−1E) , τ
F̌
m,nU = (1E ,τ

F
m,nU ′−1E)∼h (1E ,0) ,

i.e. a = [U ]1 = 0.

200 Science Publishing Group



7.1 Definition of K1

COROLLARY 7.1.11 If F is a finite-dimensional full E-C*-algebra then K1(F) = {0}.

For every n∈ IN, Fn is finite-dimensional and so there is a finite family (ki)i∈I in IN such
that Fn ≈ ∏

i∈I
ICki,ki . Thus every U ∈Un Fn is homotopic to 1E in Un Fn. By Proposition

7.1.10 b⇒ a, K1(F) = {0}.

COROLLARY 7.1.12 If the spectrum of E is totally disconnected (this happens e.g. if

E is a W*-algebra ([1] Corollary 4.4.1.10)) then Un En =Un0 En for every n ∈ IN and so

K1(E) = {0}.

Let Ω be the spectrum of E and let U ∈Un En. U has the form

U = ∑
t∈Tn

(Ut ⊗ idK)Vt ,

with Ut ∈ E for every t ∈ Tn. We put

U(ω) := ∑
t∈Tn

(Ut(ω)⊗ idK)Vt

for every ω ∈ Ω and denote by σ(U(ω)) its spectrum, which is finite. Let ω0 ∈ Ω and
let θ0 ∈ [0,2π[ such that eiθ0 6∈ σ(U(ω0)). By [1] Corollary 2.2.5.2, there is o clopen
neighborhood Ω0 of ω0 such that eiθ0 does not belong to the spectrum of U(ω) for all
ω ∈Ω0. Assume for a moment Ω0 = Ω and put for every s ∈ [0,1],

hs : IT\{α} −→ IT , eiϑ 7−→ eiϑs, Ws := hs(U) ,

where ϑ ∈]ϑ0−2π,ϑ0[. Then

[0,1]−→Un En, s 7−→Ws

is a continuous path in Un En ([1] Corollaries 4.1.2.13 and 4.1.3.5) with W1 = U and
W0 = 1E . Thus U ∈Un0 En.

Since Ω is the union of a finite family of pairwise disjoint clopen sets of the above form
Ω0, U ∈Un0 En.

By Proposition 7.1.10 b⇒ a, K1(E) = {0}.
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7.2 The Index Map

Throughout this section

0−→ F
ϕ−→ G

ψ−→ H −→ 0

denotes an exact sequence in ME and n ∈ IN.

PROPOSITION 7.2.1 Let U ∈Un Ȟn−1.

a) There are V ∈Un Ǧn and P ∈ Pr F̌n such that

ψ̌nV = AnU +BnU∗, ϕ̌nP =VAnV ∗ .

b) If W ∈Un Ǧn and Q ∈ Pr F̌n such that

ψ̌nW = AnU +BnU∗, ϕ̌nQ =WAnW ∗

then σF
n Q = An and P∼0 Q.

c) Let U0 ∈Un Ȟn−1, V0 ∈Un Ǧn, and P0 ∈ Pr F̌n with

U0 ∼1 U, ψ̌nV0 = AnU0 +BnU∗0 , ϕ̌nP0 =V0AnV ∗0 .

Then P0 ∼0 P.

d) If U ∈UnEn−1 Ȟn−1 then P∼0 An.

a) By Proposition 6.2.5 d), AnU +BnU∗ ∈Un0 Ȟn so by [4] Lemma 2.1.7 (i) (and [2]
Theorem 2.1.9 a)), there is a V ∈Un0 Ǧn with ψ̌nV = AnU +BnU∗. We have

ψ̌n(VAnV ∗) = (AnU +BnU∗)An(AnU∗+BnU) = An ,

σ
H
n ψ̌n(VAnV ∗) = σ

H
n An = An = ψ̌n(VAnV ∗) ,

so by Proposition 6.2.8 b2⇒ b1, there is a P ∈ Pr F̌n with ϕ̌nP =VAnV ∗.

b) Since πF = πH ◦ ψ̌ ◦ ϕ̌ , we have

π
F
n Q = π

H
n ψ̌nϕ̌nQ = π

H
n ψ̌n(WAnW ∗) =
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= π
H
n ((AnU +BnU∗)An(AnU∗+BnU)) = π

H
n An = An ,

σF
n Q = An. Since

ψ̌n(WV ∗) = (AnU +BnU∗)(AnU∗+BnU) = An +Bn = 1E = σ
H
n ψ̌n(WV ∗) ,

by Proposition 6.2.8 b2⇒ b1, there is a Z ∈Un F̌n with ϕ̌nZ =WV ∗. Then

ϕ̌n(ZPZ∗) = (WV ∗)(VAnV ∗)(VW ∗) =WAnW ∗ = ϕ̌nQ ,

ZPZ∗ = Q, P∼0 Q .

c) By Proposition 7.1.4 c), U∗U0,UU∗0 ∈ UnEn−1 Ȟn−1 so by [4] Lemma 2.1.7 (iii),
there are X ,Y ∈Un Ǧn−1 such that

ψ̌n−1X =U∗U0, ψ̌n−1Y =UU∗0 .

We put
Z :=V (AnX +BnY ) .

By Proposition 6.2.5 c), Z ∈Un Ǧn. We have

ψ̌nZ = (AnU +BnU∗)(AnU∗U0 +BnUU∗0 ) = AnU0 +BnU∗0 ,

ψ̌n(ZAnZ∗) = (AnU0 +BnU∗0 )An(AnU∗0 +BnU0) = An = σ
H
n ψ̌n(ZAnZ∗) .

By Proposition 6.2.8 b2⇒ b1, there is a Q ∈ Pr F̌n with ϕ̌nQ = ZAnZ∗. By b), Q ∼0 P0.
From

ϕ̌nQ = ZAnZ∗ =V (AnX +BnY )An(AnX∗+BnY ∗)V ∗ =VAnV ∗ = ϕ̌nP

it follows P0 ∼0 Q = P (by [2] Theorem 2.1.9 a)).

d) By c), we may take U = 1E . Further we may take W = 1E and Q = An in b), so
P∼ An.

PROPOSITION 7.2.2 For every i ∈ {1,2} let Ui ∈Un Ȟn−1, Vi ∈Un Ǧn, and Pi ∈ Pr F̌n

such that

ψ̌nVi = AnUi +BnU∗i , ϕ̌nPi =ViAnV ∗i .

Put

X := An+1An +C∗n+1Cn +Cn+1C∗n +Bn+1Bn, U := AnU1 +BnU2 ,

V := X(An+1V1 +Bn+1V2)X , P := X(An+1P1 +Bn+1P2)X ,
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a) X ∈Un0 En+1, U ∈Un Ȟn, V ∈Un Ǧn+1, P ∈ Pr F̌n+1.

b) ψ̌n+1V = An+1U +Bn+1U∗, ϕ̌n+1P =VAn+1V ∗.

a) We have
X2 = An+1An +An+1Bn +Bn+1An +Bn+1Bn = 1E .

Since X is selfadjoint it follows X ∈Un0 En+1 ([4] Lemma 2.1.3 (ii)) and so P ∈ Pr F̌n+1.
By Proposition 6.2.5 c), U ∈Un Ȟn and V ∈Un Ǧn+1.

b) We have

XAn+1X = (An+1An +Cn+1C∗n)X = An+1An +Bn+1An = An ,

XBn+1X = (C∗n+1Cn +Bn+1Bn)X = An+1Bn +Bn+1Bn = Bn ,

XAnX = An+1, XBnX = Bn+1 ,

XAn+1AnX = An+1An, XAn+1BnX = Bn+1An ,

XBn+1AnX = An+1Bn, XBn+1BnX = Bn+1Bn ,

ψ̌n+1V = X(An+1(AnU1 +BnU∗1 )+Bn+1(AnU2 +BnU∗2 ))X =

= An+1AnU1 +Bn+1AnU∗1 +An+1BnU2 +Bn+1BnU∗2 = An+1U +Bn+1U∗ ,

VAn+1V ∗ = X(An+1V1 +Bn+1V2)XAn+1X((An+1V ∗1 +Bn+1V ∗2 )X =

= X(An+1V1 +Bn+1V2)An(An+1V ∗1 +Bn+1V ∗2 )X =

= X(An+1V1AnAn+1V ∗1 +Bn+1V2AnBn+1V ∗2 )X =

= X(An+1V1AnV ∗1 +Bn+1V2AnV ∗2 )X =

= X(An+1ϕ̌nP1 +Bn+1ϕ̌nP2)X =

= ϕ̌n+1(X(An+1P1 +Bn+1P2)X) = ϕ̌n+1P .

COROLLARY 7.2.3 There is a unique group homomorphism, called the index map,

δ1 : K1(H)−→ K0(F)

such that

δ1[U ]1 = [P]0− [σF
→P]0

for every U ∈ unȞ, where P satisfies the conditions of Proposition 7.2.1 a).
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By Proposition 7.2.1 a),b), the map

νn : Un Ȟn−1 −→ K0(F) , U 7−→ [P]0− [σF
n P]0

is well-defined for every n ∈ IN, where P is associated to U as in Proposition 7.2.1 a).
By Proposition 7.2.1 c), νnU = νnU0 for all U,U0 ∈Un Ȟn−1 with U ∼1 U0. With the
notation of Proposition 7.2.2,

νn+1(AnU1 +BnU2) = νn+1U = [P]0− [σF
n+1P]0 =

= [An+1P1 +Bn+1P2]0− [σF
n+1(An+1P1 +Bn+1P2)]0 =

= [P1]0 +[P2]0− [σF
n P1]0− [σF

n P2]0 = νnU1 +νnU2 .

Thus by Proposition 7.2.1 d) (and Proposition 7.2.2), for U ∈Un Ȟn−1,

νn+1(τ̄
Ȟ
n U) = νn+1(AnU +Bn) = νnU +νn1E = νnU .

Hence the map
ν : unȞ −→ K0(F) , U 7−→ νnU

is well-defined, where U ∈Un Ȟn−1 for some n ∈ IN. By Proposition 7.2.1 d), again, ν

induces a map δ1 : K1(H)−→ K0(F), which is additive by the above considerations. The
uniqueness follows from the fact that the map [·]1 : unȞ −→ K1(H) is surjective.

PROPOSITION 7.2.4 Let

0−→ F ′
ϕ ′−→ G′

ψ ′−→ H ′ −→ 0

be an exact sequence in ME and δ ′1 its associated index map. If the diagram in ME

0 −−−−→ F
ϕ−−−−→ G

ψ−−−−→ H −−−−→ 0

γ

y α

y yβ

0 −−−−→ F ′ −−−−→
ϕ ′

G′ −−−−→
ψ ′

H ′ −−−−→ 0

is commutative then the diagram

K1(H)
δ1−−−−→ K0(F)

K1(β )

y yK0(γ)

K1(H ′) −−−−→
δ ′1

K0(F ′)

is also commutative.
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Let U ∈Un Ȟn−1, V ∈Un Ǧn, and P ∈ Pr F̌n with

ψ̌nV = AnU +BnU∗, ϕ̌nP =VAnV ∗ .

Put
V ′ := α̌nV ∈Un Ǧ′n, P′ := γ̌nP ∈ Pr F̌ ′n .

Then
ψ̌ ′nV ′ = ψ̌ ′nα̌nV = β̌nψ̌nV = Anβ̌n−1U +Bnβ̌n−1U∗ ,

ϕ̌ ′nP′ = ϕ̌ ′nγ̌nP = α̌nϕ̌nP = α̌n(VAnV ∗) =V ′AnV ′∗ .

By Corollary 7.2.3 for δ ′1, Proposition 7.1.6 c), and Proposition 6.2.2 c),

δ
′
1K1(β )[U ]1 = δ

′
1[β̌n−1U ]1 = [P′]0− [σF ′

n P′]0 = [γ̌nP]0− [σF ′
n γ̌nP]0 =

= [γ̌nP]0− [γ̌nσ
F
n P]0 = K0(γ)([P]0− [σF

n P]0) = K0(γ)δ1[U ]1 .

PROPOSITION 7.2.5

a) δ1 ◦K1(ψ) = 0.

b) K0(ϕ)◦δ1 = 0.

a) Let U ∈Un Ǧn−1 and put

V := τ̄
Ǧ
n U = AnU +Bn ∈Un Ǧn .

Then
ψ̌nV = An(ψ̌n−1U)+Bn ,

(ψ̌nV )An(ψ̌nV )∗ = (An(ψ̌n−1U)+Bn)An(An(ψ̌n−1U)∗+Bn) = An ,

so (by Proposition 7.1.6 c))

δ1K1(ψ)[U ]1 = δ1[ψ̌n−1U ]1 = [An]0− [σF
n An]0 = 0 .

b) Let U ∈Un Ȟn−1, V ∈Un Ǧn, and P ∈ Pr F̌n with

ψ̌nV = AnU +BnU∗, ϕ̌nP =VAnV ∗ .
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By Proposition 6.2.2 c) (since ϕ̌ ◦σF = σG ◦ ϕ̌),

K0(ϕ)δ1[U ]1 = K0(ϕ)([P]0− [σF
n P]0) =

= [ϕ̌nP]0− [ϕ̌nσ
F
n P]0 = [ϕ̌nP]0− [σG

n ϕ̌nP]0 =

= [VAnV ∗]0− [(σG
n V )An(σ

G
n V )∗]0 = [An]0− [An]0 = 0 .

PROPOSITION 7.2.6 Let U ∈Un Ȟn−1. There are V ∈ Ǧn and P,Q ∈ Pr F̌n such that

V ∗V ∈ Pr Ǧn, ψ̌nV = AnU ,

ϕ̌nP = 1E −V ∗V, ϕ̌nQ = 1E −VV ∗, δ1[U ]1 = [P]0− [Q]0 .

By Proposition 6.2.5 d), AnU +BnU∗ ∈Un0 Ȟn. Since ψ̌n is surjective, by [4] Lemma
2.1.7 (i), there is a V0 ∈Un Ǧn with ψ̌nV0 = AnU +BnU∗. Put V :=V0An ∈ Ǧn. Then

V ∗V = AnV ∗0 V0An = An ∈ Pr Ǧn

and
ψ̌nV = (ψ̌nV0)An = (AnU +BnU∗)An = AnU .

We have
ψ̌n(1E −V ∗V ) = 1E −An = Bn = ψ̌n(1E −VV ∗) .

By Proposition 6.2.8 b2⇒ b1, there are P,Q ∈ Pr F̌n with

ϕ̌nP = 1E −V ∗V, ϕ̌nQ = 1E −VV ∗ .

Put
W := An+1V +Cn+1(1E −V ∗V )+C∗n+1(1E −VV ∗)+Bn+1V ∗ ∈ Ǧn+1 ,

Z := An +(Cn+1 +C∗n+1)Bn ∈ En+1 .

Since VV ∗V =V , V ∗VV ∗ =V ∗, and

W ∗ = An+1V ∗+C∗n+1(1E −V ∗V )+Cn+1(1E −VV ∗)+Bn+1V ,

we get

WW ∗ = An+1VV ∗+Bn+1(1E −V ∗V )+An+1(1E −VV ∗)+Bn+1V ∗V =
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= An+1 +Bn+1 = 1E ,

W ∗W = An+1V ∗V +An+1(1E −V ∗V )+Bn+1(1E −VV ∗)+Bn+1VV ∗ =

= An+1 +Bn+1 = 1E .

By Proposition 6.2.5 a),

Z2 = An +Bn = 1E

so W ∈Un Ǧn+1, Z ∈Un En+1, and ZW ∈Un Ǧn+1. By the above and Proposition 6.2.5
a),

ψ̌n+1W = An+1AnU +(Cn+1 +C∗n+1)Bn +Bn+1AnU∗ ,

ψ̌n+1(ZW ) = Zψ̌n+1W =

= (An +(Cn+1 +C∗n+1)Bn)(An+1AnU +(Cn+1 +C∗n+1)Bn +Bn+1AnU∗) =

= An+1AnU +Bn+1AnU∗+Bn = An+1AnU +Bn+1AnU∗+(An+1 +Bn+1)Bn =

= An+1(AnU +Bn)+Bn+1(AnU∗+Bn) .

We put

R := An+1(1E −Q)+Bn+1P ∈ Pr F̌n+1 .

Using again VV ∗V =V and V ∗VV ∗ =V ∗,

ϕ̌n+1R = An+1VV ∗+Bn+1(1E −V ∗V ) ,

WAn+1 = An+1V +Cn+1(1E −V ∗V ) ,

WAn+1W ∗ = An+1VV ∗+Bn+1(1E −V ∗V ) = ϕ̌n+1R ,

ZWAn+1W ∗Z = Z(ϕ̌n+1R)Z = ϕ̌n+1(ZRZ) .

Since ZRZ ∼0 R and U ∼1 AnU +Bn, by the definition of δ1,

δ1[U ]1 = δ1[AnU +Bn]1 = [R]0− [σF
n+1R]0 .

Since πH ◦ ψ̌ ◦ ϕ̌ = πF , by the above,

π
F
n P = π

H
n ψ̌nϕ̌nP = π

H
n ψ̌n(1E −V ∗V ) = π

H
n Bn = Bn = π

F
n Q .

Thus by Proposition 6.1.3 (and Proposition 7.2.1 b)),

σ
F
n+1R = An+1(1E −Bn)+Bn+1Bn ∼0 An+1Bn +An+1An =
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= An+1 = ρ̄
F̌
n+11E ∼0 1E

and we get
[R]0 = [1E −Q]0 +[P]0 = [1E ]0 +[P]0− [Q]0 ,

δ1[U ]1 = [1E ]0 +[P]0− [Q]0− [1E ]0 = [P]0− [Q]0 .

PROPOSITION 7.2.7 Ker δ1 ⊂ Im K1(ψ).

Let a ∈ Ker δ1 and let U ∈ Un Ȟn−1 with a = [U ]1. By Proposition 7.2.6, there are
V ∈ Ǧn and P,Q ∈ Pr F̌n such that V ∗V ∈ Pr Ǧn, ψ̌nV = AnU ,

ϕ̌nP = 1E −V ∗V, ϕ̌nQ = 1E −VV ∗, δ1[U ]1 = [P]0− [Q]0 .

Then [P]0 = [Q]0. By Corollary 6.1.6 a⇒c, there is an m ∈ IN, m > n+1, and an X ∈ F̌m

such that

X∗X =

(
m

∏
i=n+1

Ai

)
P+

(
1E −

m

∏
i=n+1

Ai

)
,

XX∗ =

(
m

∏
i=n+1

Ai

)
Q+

(
1E −

m

∏
i=n+1

Ai

)
.

Put W := ϕ̌mX . Then

W ∗W = ϕ̌m(X∗X) =

(
m

∏
i=n+1

Ai

)
(1E −V ∗V )+

(
1E −

m

∏
i=n+1

Ai

)
=

= 1E −

(
m

∏
i=n+1

Ai

)
V ∗V ,

WW ∗ = 1E −

(
m

∏
i=n+1

Ai

)
VV ∗ ,

(
m

∏
i=n+1

Ai

)
VV ∗WW ∗ =

(
m

∏
i=n+1

Ai

)
V ∗VW ∗W = 0 ,

(
m

∏
i=n+1

Ai

)
V ∗W =

(
m

∏
i=n+1

Ai

)
VW ∗ = 0 ,

((
m

∏
i=n+1

Ai

)
V +W

)∗(( m

∏
i=n+1

Ai

)
V +W

)
=
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=

(
m

∏
i=n+1

Ai

)
V ∗V +W ∗W = 1E ,

((
m

∏
i=n+1

Ai

)
V +W

)((
m

∏
i=n+1

Ai

)
V +W

)∗
=

=

(
m

∏
i=n+1

Ai

)
VV ∗+WW ∗ = 1E ,

(
m

∏
i=n+1

Ai

)
V +W ∈Un Ǧm .

From

ψ̌m(W ∗W ) = 1E −

(
m

∏
i=n+1

Ai

)
ψ̌m(V ∗V ) =

= 1E −

(
m

∏
i=n+1

Ai

)
An = ψ̌m(WW ∗) ,

since ψ̌mW = ψ̌mϕ̌mX ∈ Em, it follows

ψ̌mW +

(
m

∏
i=n

Ai

)
∈Un Em .

By the above, (
m

∏
i=n

Ai

)
Uψ̌mW ∗ =

(
m

∏
i=n+1

Ai

)
(ψ̌mV )(ψ̌mW ∗) =

= ψ̌m

((
m

∏
i=n+1

Ai

)
VW ∗

)
= 0 ,

(ψ̌mW )∗(ψ̌mW )

(
m

∏
i=n

Ai

)
= 0 , (ψ̌mW )

(
m

∏
i=n

Ai

)
= 0 ,

ψ̌m

((
m

∏
i=n+1

Ai

)
V +W

)
=

(
m

∏
i=n

Ai

)
U + ψ̌mW ∼1

∼1

((
m

∏
i=n

Ai

)
U + ψ̌mW

)((
m

∏
i=n

Ai

)
+ ψ̌mW ∗

)
=

=

((
m

∏
i=n

Ai

)
U +

(
1E −

m

∏
i=n

Ai

))
.
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By Proposition 7.1.3 and Proposition 7.1.6 c),

a = [U ]1 =

[(
m

∏
i=n

Ai

)
U +

(
1E −

m

∏
i=n

Ai

)]
1

=

=

[
ψ̌m

((
m

∏
i=n+1

Ai

)
V +W

)]
1

=

= K1(ψ)

[(
m

∏
i=n+1

Ai

)
V +W

]
1

∈ Im K1(ψ) .

PROPOSITION 7.2.8 Ker K0(ϕ)⊂ Im δ1.

Let a ∈ Ker K0(ϕ). By Proposition 6.2.4, there is a P ∈ Pr F̌→ with

a = [P]0− [σF
→P]0 .

By Proposition 6.2.2 c),

0 = K0(ϕ)a = [ϕ̌→P]0− [ϕ̌→σ
F
→P]0 .

Let n ∈ IN such that P ∈ Pr F̌→n. Then [ϕ̌→nP]0 = [ϕ̌→nσF
→nP]0. By Corollary 6.1.6

a⇒c, there is an m ∈ IN, m > n+1, such that

ϕ̌→nP+(Bm)→ ∼0 ϕ̌→nσ
F
→nP+(Bm)→ .

Put

Q := P+(Bm)→ ∈ Pr F̌→m .

Then

a = [Q]0− [σF
→Q]0, ϕ̌→mQ∼0 ϕ̌→mσ

F
→mQ = σ

F
→mQ .

By Proposition 6.2.6, there are k ∈ IN, k ≥ m+2, and W ∈Un Ǧ→k with

W (ϕ̌→mQ)W ∗ = σ
F
→mQ .

It follows

(σF
→mQ)W =W (ϕ̌→mQ)W ∗W =W (ϕ̌→mQ) ,

(ψ̌→kW )(σF
→kQ) = (ψ̌→kW )(ψ̌→kϕ̌→kQ) = ψ̌→k(W ϕ̌→kQ) =
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= ψ̌→k((σ
F
→kQ)W ) = (σF

→kQ)(ψ̌→kW ) .

Put

U := (ψ̌→kW )(1E −σ
F
→kQ)+σ

F
→kQ ∈ Ȟ→k .

Then

UU∗ =U∗U = 1E , U ∈Un Ȟ→k .

Put

V1 := (Ak+1)→(1E −σ
F
→kQ)W +(Bk+1)→σ

F
→kQ ∈ Ǧk+1 .

Then

V ∗1 = (Ak+1)→W ∗(1E −σ
F
→kQ)+(Bk+1)→σ

F
→kQ ,

V1V ∗1 = (Ak+1)→(1E −σ
F
→kQ)+(Bk+1)→σ

F
→kQ ∈ Pr Ek+1 ,

V ∗1 V1 = (Ak+1)→W ∗(1E −σ
F
→kQ)W +(Bk+1)→σ

F
→kQ =

= (Ak+1)→(1E −W ∗(σF
→kQ)W )+(Bk+1)→σ

F
→kQ .

Put

Z := (1E −σ
F
→kQ)+((Ck+1)→+(C∗k+1)→)σ

F
→kQ ∈ Ek+1 .

By Proposition 6.2.5 a),

Z2 = (1E −σ
F
→kQ)+σ

F
→kQ = 1E , Z ∈Un Ek+1 ,

ZV1 = (Ak+1)→(1E −σ
F
→kQ)W +(C∗k+1)→σ

F
→kQ ,

V := ZV1Z = (Ak+1)→(1E −σ
F
→kQ)W (1E −σ

F
→kQ)+

+(C∗k+1)→(1E −σ
F
→kQ)Wσ

F
→kQ+(Ak+1)→σ

F
→kQ ∈ Ǧ→k+1 ,

ψ̌→V = (Ak+1)→(1E −σ
F
→kQ)ψ̌→kW +(Ak+1)→σ

F
→kQ = (Ak+1)→U ,

VV ∗ = ZV1V ∗1 Z ∈ Pr Ek+1, V ∗V = ZV ∗1 V1Z ,

1E −VV ∗ = Z(1E −V1V ∗1 )Z =

= Z((Ak+1)→σ
F
→kQ+(Bk+1)→(1E −σ

F
→kQ))Z ,

1E −V ∗V = Z(1E −V ∗1 V1)Z =

= Z((Ak+1)→W ∗(σF
→kQ)W +(Bk+1)→(1E −σ

F
→kQ))Z =

= Z((Ak+1)→ϕ̌→kQ+(Bk+1)→(1E −σ
F
→kQ))Z ,
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ϕ̌→,k+1(Z((Ak+1)→Q+(Bk+1)→(1E −σ
F
→kQ))Z) =

= Z((Ak+1)→ϕ̌kQ+(Bk+1)→(1E −σ
F
→kQ))Z = 1E −V ∗V ,

ϕ̌→,k+1(Z((Ak+1)→σ
F
→kQ+(Bk+1)→(1E −σ

F
→kQ))Z)) = 1E −VV ∗ .

By Proposition 7.2.6,

δ1[U ]1 = [Z((Ak+1)→Q+(Bk+1)→(1E −σ
F
→kQ))Z]0−

−[Z((Ak+1)→σ
F
→kQ+(Bk+1)→(1E −σ

F
→k)Q)Z]0 = [Q]0− [σF

→Q]0 = a .

Thus a ∈ Im δ1.

THEOREM 7.2.9 The sequence

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)
K0(ψ)−→ K0(H)

is exact.

The exactness was proved: for K1(G) in Proposition 7.1.9, for K1(H) in Proposition
7.2.7 and Proposition 7.2.5 a), for K0(F) in Proposition 7.2.8 and Proposition 7.2.5 b),
and for K0(G) in Proposition 6.2.8 c).

7.3 K1(F)≈ K0(SF)

DEFINITION 7.3.1 Let F be an E-C*-algebra . We denote by CF the E-C*-algebra of

continuous maps x : [0,1] −→ F with x(0) = 0 and by SF its E-C*-subalgebra

{ x ∈CF | x(1) = 0} (Definition 2.1.1 or [2] Corollary 1.2.5 a),d)). Moreover we denote

by θF : K1(F)−→ K0(SF) the index map associated to the exact sequence

0−→ SF
iF−→CF

jF−→ F −→ 0 ,

in ME , where iF is the inclusion map and

jF : CF −→ F , x 7−→ x(1) .

If F
ϕ−→ G is a morphism in ME then we put

Sϕ : SF −→ SG , x 7−→ ϕ ◦ x ,

Cϕ : CF −→CG , x 7−→ ϕ ◦ x .
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If F
ϕ−→ G

ψ−→ H are morphisms in ME then S(ψ)◦S(ϕ) = S(ψ ◦ϕ).

THEOREM 7.3.2 θF is a group isomorphism for every E-C*-algebra F.

CF is null-homotopic ([4] Example 4.1.5 or Proposition 2.4.1), so by the Homotopy
invariance (Theorem 6.2.11 e), Proposition 7.1.8 e)), it is K-null. By Theorem 7.2.9, the
sequence

K1(CF)
K1( jF )−→ K1(F)

θF−→ K0(SF)
K0(iF )−→ K0(CF)

is exact, so θF is a group isomorphism.

PROPOSITION 7.3.3 Let F and G be E-C*-algebras.

a) For all (x,y) ∈ (SF)× (SG) put

︷︸︸︷
(x,y) : [0,1]−→ F×G , s 7−→ (x(s),y(s)) .

Then the map

(SF)× (SG)−→ S(F×G), (x,y) 7−→
︷︸︸︷
(x,y)

is an isomorphism in ME (Definition 1.1.2).

b) K1(F)×K1(G)≈ K1(F×G) (Product Theorem).

a) is easy to see.

b) By Theorem 7.3.2, the maps

K1(F)×K1(G)
θF×θG−→ K0(SF)×K0(SG), K1(F×G)

θF×G−→ K0(S(F×G))

are group isomorphisms. By a), K0((SF)× (SG)) ≈ K0(S(F ×G)) and by Corollary
6.2.10 b), K0((SF)× (SG))≈ K0(SF)×K0(SG). Thus

K1(F)×K1(G)≈ K1(F×G) .
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COROLLARY 7.3.4 Let F
ϕ→ F ′, G

ψ→ G′ be morphisms in ME and

ϕ×ψ : F×G−→ F ′×G′ , (x,y) 7−→ (ϕx,ψy) .

Then ϕ×ψ is a morphism in ME and

Ki(ϕ×ψ) = Ki(ϕ)×Ki(ψ)

for all i ∈ {0,1}.

The assertion follows easily from Corollary 6.2.10 b) and Proposition 7.3.3 b).

PROPOSITION 7.3.5 (Product Theorem) Let (Fj) j∈J be a finite family of

E-C*-algebras, F := ∏
j∈J

Fj (Definition 1.1.2), and for every j ∈ J let ϕ j : Fj −→ F be the

canonical inclusion and ψ j : F −→ Fj the projection. Then for every i ∈ {0,1},

Φ : ∏
j∈J

Ki(Fj)−→ Ki(F) , (a j) j∈J 7−→∑
j∈J

Ki(ϕ j)a j

is a group isomorphism and

Ψ : Ki(F)−→∏
j∈J

Ki(Fj) , a 7−→ (Ki(ψ j)a) j∈J

is its inverse.

Φ and Ψ are obviously group homomorphisms. For j,k ∈ J, ψ j ◦ϕk = 0 if j 6= k and
ψ j ◦ϕ j = idFj . Thus for (a j) j∈J ∈ ∏

j∈J
Ki(Fj) and k ∈ J,

(ΨΦ(a j) j∈J)k = Ki(ψk)∑
j∈J

Ki(ϕ j)a j = ak

i.e. Ψ◦Φ is the identity map of ∏
j∈J

Ki(Fj). Since ∑
j∈J

ϕ j ◦ψ j = idF , for a ∈ Ki(F),

ΦΨa = Φ(Ki(ψ j)a) j∈J = ∑
j∈J

Ki(ϕ j)Ki(ψ j)a = Ki

(
∑
j∈J

ϕ j ◦ψ j

)
a = a

i.e. Φ◦Ψ = idKi(F).
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THEOREM 7.3.6 (Continuity of K1) Let {(Fi)i∈I , (ϕi j)i, j∈I} be an inductive system in

ME and let {F, (ϕi)i∈I} be its limit in ME . By Proposition 7.1.8 a),

{(K1(Fi))i∈I , (K1(ϕi j))i, j∈I}

is an inductive system in the category of additive groups. Let {G , (ψi)i∈I} be its limit in

this category and let ψ : G −→ K1(F) be the group homomorphism such that ψ ◦ψi =

K1(ϕi) for every i ∈ I. Then ψ is a group isomorphism.

By [4] Exercise 10.2, {SF,(Sϕi)i∈I} is the limit in ME of the inductive system
{(SFi)i∈I ,(Sϕi j)i, j∈I}. By Theorem 6.2.12, {K0(SF),(K0(Sϕi))i∈I} may be identified
with the inductive limit in the category of additive groups of the inductive system
{K0(SFi)i∈I ,(K0(Sϕi j))i, j∈I} and the assertion follows from Theorem 7.3.2.

PROPOSITION 7.3.7 Let F be an E-C*-algebra , n∈ IN, U ∈Un F̌n−1, V ∈Un (
ˇ︷︸︸︷

CF )n,

and P ∈ Pr (
ˇ︷︸︸︷

SF )n such that

ǰFV = AnU +BnU∗, ǐF P =VAnV ∗ .

Then

θF [U ]1 = [P]0− [σSF
n P]0.

The assertion follows from Corollary 7.2.3 and Definition 7.3.1.

PROPOSITION 7.3.8 If F
ϕ−→ G is a morphism in ME then the diagram

K1(F)
K1(ϕ)−−−−→ K1(G)

θF

y yθG

K0(SF) −−−−→
K0(Sϕ)

K0(SG)

is commutative.

The diagram

0 −−−−→ SF
iF−−−−→ CF

jF−−−−→ F −−−−→ 0

Sϕ

y Cϕ

y yϕ

0 −−−−→ SG −−−−→
iG

CG −−−−→
jG

G −−−−→ 0
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is commutative and the assertion follows from Proposition 7.2.4.

Remark. By Theorem 7.3.2 and Proposition 7.3.8, the functor K1 is determined by the
functor K0.

COROLLARY 7.3.9 (Split Exact Theorem) If

0−→ F
ϕ−→ G

ψ
−→

γ
←−H −→ 0

is a split exact sequence in ME then

0−→ K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)
−→

K1(γ)←−
K1(H)−→ 0

is also split exact. In particular the map

K1(F)×K1(H)−→ K1(G), (a,b) 7−→ K1(ϕ)a+K1(λ )b

is a group isomorphism and K1
(
F̌
)
≈ K1 (E)×K1 (F).

By Theorem 7.2.9, the sequence

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)
K0(ψ)−→ K0(H)

is exact and by Proposition 7.1.8 a) and Proposition 7.1.6 d),

K1(ψ)◦K1(γ) = K1(ψ ◦ γ) = K1(idH) = idK1(H) .

It remains only to prove that K1(ϕ) is injective.

It is easy to see that

0−→ SF
Sϕ−→ SG

Sψ
−→
Sγ
←−

SH −→ 0

is split exact. By Proposition 6.2.9, K0(Sϕ) is injective and by Proposition 7.3.8, the
diagram

K1(F)
K1(ϕ)−−−−→ K1(G)

θF

y yθG

K0(SF) −−−−→
K0(Sϕ)

K0(SG)

is commutative. Since θF is injective (Theorem 7.3.2), K1(ϕ) is also injective.

Science Publishing Group 217



Chapter 7 The Functor K1

The last assertion follows from the fact that

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

is split exact.

COROLLARY 7.3.10 Let

0−→ F
ϕ−→ G

ψ
−→

γ
←−H −→ 0 , 0−→ F ′

ϕ ′−→ G′
ψ ′
−→
γ ′
←−

H ′ −→ 0

be split exact sequences in ME and

F λ−→ F ′, G
µ−→ G′, H ν−→ H ′

morphisms in ME such that the corresponding diagram is commutative and let i∈ {0,1}.

a) If we denote by

φ : Ki(F)×Ki(H)−→ Ki(G) , (a,b) 7−→ Ki(ϕ)a+Ki(γ)b ,

φ
′ : Ki(F ′)×Ki(H ′)−→ Ki(G′) , (a′,b′) 7−→ Ki(ϕ

′)a′+Ki(γ
′)b′

the group isomorphisms (Proposition 6.2.9, Corollary 7.3.9) then

Ki(µ)◦Ki(φ) = Ki(φ
′)◦ (Ki(λ )×Ki(ν)) .

b) If we identify Ki(G) with Ki(F)×Ki(H) using φ and Ki(G′) with Ki(F ′)×Ki(H ′)

using φ ′ then

Ki(µ) : Ki(G)−→ Ki(G′) , (a,b) 7−→ (Ki(λ )a,Ki(ν)b) .

a) For (a,b) ∈ Ki(F)×Ki(H),

Ki(µ)Ki(φ)(a,b) = Ki(µ)(Ki(ϕ)a+Ki(γ)b) =

= Ki(ϕ
′)Ki(λ )a+Ki(γ

′)Ki(ν)b = Ki(φ
′)(Ki(λ )×Ki(ν))(a,b) .

b) follows from a).
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8.1 The Bott Map

LEMMA 8.1.1 Let F be a full E-C*-algebra and n ∈ IN. We identify SF with

C0 ( IT\{1},F) in an obvious way.

a) FIT := { X ∈ C ( IT,F) | X(1) ∈ E } is a full E-C*-subalgebra of C ( IT,F).

b) If we put for every (α,x) ∈
ˇ︷︸︸︷

SF︷ ︸︸ ︷
(α,x) : IT−→ F , z 7−→ α + x(z)

then the map

ψ :
ˇ︷︸︸︷

SF −→ FIT , (α,x) 7−→
︷ ︸︸ ︷
(α,x)

is an E-C*-isomorphism. Thus the map

ψn :

(
ˇ︷︸︸︷

SF

)
n −→ (FIT)n

is also an E-C*-isomorphism.

c) For every Y ∈ (FIT)n put

Ÿ : IT−→ Fn , z 7−→ ∑
t∈Tn

(Yt(z)⊗ idK)Vt .

Then Ÿ ∈ { X ∈ C ( IT,Fn) | X(1) ∈ En } for every Y ∈ (FIT)n and the map

φ
n : (FIT)n −→ { X ∈ C ( IT,Fn) | X(1) ∈ En } , Y 7−→ Ÿ

is an E-C*-isomorphism.

d) The map

φ
n ◦ψn :

(
ˇ︷︸︸︷

SF

)
n −→ { X ∈ C ( IT,Fn) | X(1) ∈ En }

is an E-C*-isomorphism. We identify these two full E-C*-algebras by using this

isomorphism.The map

Un

(
ˇ︷︸︸︷

SF

)
n −→ { X ∈ C ( IT,Un Fn) | X(1) ∈Un En }

defined by φ n ◦ψn is a homeomorphism.

Science Publishing Group 221



Chapter 8 Bott Periodicity

e) For every

X := ∑
t∈Tn

((αt ,Xt)⊗ idK)Vt ∈

(
ˇ︷︸︸︷

SF

)
n

and z ∈ IT,

(φ n
ψnX)(z) = ∑

t∈Tn

((αt +Xt(z))⊗ idK)Vt ∈ Fn ,

(φ n
ψnX)(1) = ∑

t∈Tn

(αt ⊗ idK)Vt ∈ En .

f) Consider the split exact sequence in ME (Definition 4.1.4)

0−→ SF ιSF
−→

ˇ︷︸︸︷
SF

πSF
−→

λSF
←−

E −→ 0 .

Then (
π

SF)
nX = (φ n

ψnX)(1)

for every X ∈

(
ˇ︷︸︸︷

SF

)
n.

g) If F
ϕ→G is a morphism in CE then, by the identification of d), for every X ∈C ( IT,Fn)

with X(1) ∈ En and for every z ∈ IT, ˇ︷︸︸︷
Sϕ

nX

(z) = ϕnX(z) .

a) is obvious.

b) For (α,x),(β ,y) ∈
ˇ︷︸︸︷

SF , γ ∈ E, and z ∈ IT,

(
︷ ︸︸ ︷
(α,x))∗(z) = α

∗+ x(z)∗ =
︷ ︸︸ ︷
(α,x)∗(z) ,

(
︷ ︸︸ ︷
(α,x)(z))(

︷ ︸︸ ︷
(β ,y)(z)) = (α + x(z))(β + y(z)) = αβ +αy(z)+ x(z)β + x(z)y(z) =

=
︷ ︸︸ ︷
(αβ ,αy+βx+ xy)(z) =

︷ ︸︸ ︷
(α,x)(β ,y)(z) ,︷ ︸︸ ︷

(γ,0)(z) = γ ,

so ψ is an E-C*-homomorphism. If
︷ ︸︸ ︷
(α,x) = 0 then for all z ∈ IT

α = α + x(1) = 0 , x(z) = α + x(z) = 0 , x = 0 ,
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so ψ is injective.

Let X ∈ FIT and put α := X(1) ∈ E and

x : IT−→ F , z 7−→ X(z)−X(1) .

Then (α,x) ∈
ˇ︷︸︸︷

SF and for z ∈ IT,︷ ︸︸ ︷
(α,x)(z) = α + x(z) = X(1)+X(z)−X(1) = X(z) .

Thus
︷ ︸︸ ︷
(α,x) = X and ψ is surjective.

By [2] Corollary 2.2.5 and [2] Theorem 2.1.9 a), ψn is an isomorphism.

c) follows from [2] Proposition 2.3.7 and [2] Theorem 2.1.9 a).

d) follows from b) and c).

e) We have

ψnX = ∑
t∈Tn

(
︷ ︸︸ ︷
(αt ,Xt)⊗idK)Vt ,

(φ n
ψnX)(z) = ∑

t∈Tn

((αt +Xt(z))⊗ idK)Vt ∈ Fn ,

(φ n
ψnX)(1) = ∑

t∈Tn

(αt ⊗ idK)Vt ∈ En .

f) and g) follow from e).

DEFINITION 8.1.2 We put for every full E-C*-algebra F, n ∈ IN, and P ∈ Fn,

P̃ : IT−→ Fn , z 7−→ zP+(1E −P) .

By the identification of Lemma 8.1.1 d),

P̃ ∈ { X ∈ C ( IT,Un Fn) | X(1) ∈ En }=Un

(
ˇ︷︸︸︷

SF

)
n

for every P ∈ Pr Fn. Obviously, 0̃ = 1E and 1̃E = z1E .
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PROPOSITION 8.1.3 If F is a full E-C*-algebra, n ∈ IN, and P ∈ Pr Fn−1 then

τ̄

ˇ︷︸︸︷
SF

n P̃ = ˜̄ρF
n P ,

(with the identification of Lemma 8.1.1 d)). Thus we get a well-defined map

νF : Pr F→ −→ un
ˇ︷︸︸︷

SF

with νF P = P̃ for every P ∈ Pr F→ =
⋃

n∈IN
Pr F→n.

For z ∈ IT,

(τ̄

ˇ︷︸︸︷
SF

n P̃)(z) = (AnP̃+Bn)(z) = An(zP+(1E −P))+Bn =

= zAnP+(1E −AnP) = ˜̄ρF
n P(z) .

PROPOSITION 8.1.4 For every full E-C*-algebra F there is a unique group

homomorphism

βF : K0(F)−→ K1(SF) (the Bott map)

such that for every P ∈ Pr F→,

βF [P]0 = (νF P)/∼1=
[
P̃
]

1 .

Let P,Q ∈ Pr F→ with P ∼0 Q. By Proposition 6.2.6, there are m,n ∈ IN, m ≥ n+ 2,
and U ∈Un0 Fm with P,Q ∈ Pr Fn and UPU∗ = Q and so

(UP̃U∗)(z) =UP̃(z)U∗ = zUPU∗+(1E −UPU∗) = Q̃(z)

for every z ∈ IT. Thus UP̃U∗ = Q̃, P̃∼h Q̃, and P̃∼1 Q̃.

Let P,Q ∈ Pr F→ with PQ = 0. We may assume P,Q ∈ Pr Fn−1 with P = PAn and
Q = QBn for some n ∈ IN (Proposition 6.1.3). For every z ∈ IT,

P̃(z) = zPAn +(1E −PAn), Q̃(z) = zQBn +(1E −QBn) ,

(P̃Q̃)(z) = P̃(z)Q̃(z) = zPAn + zQBn +1E −QBn−PAn =
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= z(P+Q)+(1E − (P+Q)) = ˜(P+Q)(z), P̃Q̃ = P̃+Q .

By Proposition 6.1.9, there is a unique group homomorphism

βF : K0(F)−→ K1(SF)

with the required property.

PROPOSITION 8.1.5 Let F be an E-C*-algebra .

a) There is a unique map βF : K0(F)−→ K1(SF) (called the Bott map) such that the

diagram

K0(F)
K0(ι

F )−−−−→ K0(F̌)

βF

y yβF̌

K1(SF) −−−−→
K1(SιF )

K1(SF̌)

is commutative. βF is a group homomorphism.

b) If F is a full E-C*-algebra then the above map βF coincides with the map βF

defined in Proposition 8.1.4.

c) If F
ϕ−→ G is a morphism in ME then the diagram

K0(F)
K0(ϕ)−−−−→ K0(G)

βF

y yβG

K1(SF) −−−−→
K1(Sϕ)

K1(SG)

is commutative.

c) for CE with F
ϕ−→ G unital. For n ∈ IN, P ∈ Pr Fn, and z ∈ IT, by Lemma 8.1.1 g),((

ˇ︷︸︸︷
Sϕ

)
nP̃

)
(z) = zϕnP+(1E −ϕnP) =

(
ϕ̃nP

)
(z) ,

(
ˇ︷︸︸︷

Sϕ

)
nP̃ = ϕ̃nP .
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By Proposition 6.1.10 c), Proposition 8.1.4, and Proposition 7.1.6 c),

K1(Sϕ)βF [P]0 = K1(Sϕ)
[
P̃
]

1
=

=

[(
ˇ︷︸︸︷

Sϕ

)
nP̃

]
1

=
[
ϕ̃nP

]
1
= βG[ϕnP]0 = βGK0(ϕ)[P]0 ,

K1(Sϕ)◦βF = βG ◦K0(ϕ) .

a) By c) for CE , the diagram

K0(F̌)
K0(π

F )−−−−→ K0(E)

βF̌

y yβE

K1(SF̌) −−−−→
K1(SπF )

K1(SE)

is commutative. By Proposition 6.1.12 c) and Corollary 7.3.9 the sequences

0−→ K0(F)
K0(ι

F )−→ K0(F̌)
K0(π

F )−→ K0(E)−→ 0 ,

0−→ K1(SF)
K1(SιF )−→ K1(SF̌)

K1(SπF )−→ K1(SE)−→ 0

are exact, since the sequence

0−→ SF SιF
−→ SF̌

SπF
−→

SλF
←−

SE −→ 0

is split exact. By the above c) for CE , Corollary 6.2.3 a), and Proposition 6.2.2 e),

K1(Sπ
F)◦βF̌ ◦K0(ι

F) = βE ◦K0(π
F)◦K0(ι

F) =

= βE ◦K0(π
F ◦ ι

F) = βE ◦K0(0) = 0 .

Thus
Im(βF̌ ◦K0(ι

F))⊂ Ker K1(Sπ
F) = ImK1(Sι

F) .

The assertion follows now from the fact that K1(SιF) is injective.

b) By c) for CE , the diagram

K0(F)
K0(ι

F )−−−−→ K0(F̌)

βF

y yβF̌

K1(SF) −−−−→
K1(SιF )

K1(SF̌)
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is commutative, with βF defined in Proposition 8.1.4. By a), this βF coincides with βF

defined in a).

c) The following diagrams

F
ϕ−−−−→ G

ιF

y yιG

F̌ −−−−→
ϕ̌

Ǧ

SF
Sϕ−−−−→ SG

SιF

y ySιG

SF̌ −−−−→
Sϕ̌

SǦ

K1(SF)
K1(Sϕ)−−−−→ K1(SG)

K1(SιF )

y yK1(SιG)

K1(SF̌) −−−−→
K1(Sϕ̌)

K1(SĜ)

are obviously commutative (Proposition 7.1.8 a)). So by a) and c) for CE (and Corollary
6.2.3 a), Proposition 7.1.8 a)),

K1(Sι
G)◦βG ◦K0(ϕ) = βǦ ◦K0(ι

G)◦K0(ϕ) = βǦ ◦K0(ϕ̌)◦K0(ι
F) =

= K1(Sϕ̌)◦βF̌ ◦K0(ι
F) = K1(Sϕ̌)◦K1(Sι

F)◦βF = K1(Sι
G)◦K1(Sϕ)◦βF .

The assertion follows now from the fact that K1(SιG) is injective.

8.2 Higman’s Linearization Trick

Throughout this section F denotes a full E-C*-algebra, m,n ∈ IN, and l := 2m−1.

DEFINITION 8.2.1 We shall use the following notation ([4] 11.2):

Trig(n) :=

{
X ∈ C ( IT,GLEn(Fn)) | X(z) =

m

∑
p=−m

apzp, ap ∈ Fn

}
,

Pol(n,m) :=

{
X ∈ C ( IT,GLEn(Fn)) | X(z) =

m

∑
p=0

apzp, ap ∈ Fn

}
,

Pol(n) :=
⋃

m∈IN

Pol(n,m), Lin(n) := Pol(n,1) ,

Pro j(n) :=
{

P̃
∣∣∣ P ∈ Pr Fn

}
.
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LEMMA 8.2.2

a) If X ∈ C ( IT,GLEn(Fn)) then there are k ∈ IN and Y ∈ Pol(n) such that zkX is

homotopic to Y in C ( IT,GLEn(Fn)).

b) If P,Q ∈ Pr Fn such that P̃ and Q̃ are homotopic in C ( IT,GLEn(Fn)) then there are

k,m ∈ IN such that zkP̃ is homotopic to zkQ̃ in Pol(n, l).

a) It is possible to adapt [4] Lemma 11.2.3 to the present situation in order to find a
Z ∈ Trig(n) such that

‖X−Z‖<
∥∥X−1∥∥−1

.

By [4] Proposition 2.1.11, X and Z are homotopic in C ( IT,GLEn(Fn)). There is a k ∈ IN
such that Y := zkZ ∈ Pol(n). Then zkX and Y are homotopic in C ( IT,GLEn(Fn)).

b) The proof of [4] Lemma 11.2.4 (ii) works in this case too.

DEFINITION 8.2.3 The map

{0,1}m −→ INl∪{0}, j 7−→
m

∑
i=1

ji 2i−1

is bijective. We denote by

INl∪{0} −→ {0,1}m, p 7−→ |p|

its inverse. For every i ∈ INm and p,q ∈ INl∪{0} we put

(p,q)i :=


An+i if |p|i = |q|i = 0
C∗n+i if |p|i = 0, |q|i = 1
Cn+i if |p|i = 1, |q|i = 0
Bn+i if |p|i = |q|i = 1

.

LEMMA 8.2.4

a) For p,q,r,s ∈ INl∪{0} and i ∈ INm,

(p,q)i(r,s)i =

{
0 if |q|i 6= |r|i

(p,s)i if |q|i = |r|i
.
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In particular
m

∏
i=1

((p,q)i(r,s)i) =

 0 if q 6= r
m
∏
i=1

(p,s)i if q = r
.

b) For p,q ∈ INl∪{0} and i ∈ INm,

An+i(p,q)i =

{
(p,q)i if |p|i = 0

0 if |p|i = 1
,

(p,q)iAn+i =

{
(p,q)i if |q|i = 0

0 if |q|i = 1
.

In particular

p 6= 0 =⇒
m

∏
i=1

(An+i(p,q)i) = 0 ,

q 6= 0 =⇒
m

∏
i=1

((p,q)iAn+i) = 0 ,

l

∑
r=q

m

∏
i=1

(An+i(r,r−q)i) =

 0 if q 6= 0
m
∏
i=1

An+i if q = 0
.

c)
l
∑

p=0

m
∏
i=1

(p, p)i = 1E .

a) and b) is a long verification.

c) For every p ∈ INl∪{0} put

Jp := { i ∈ INm | |p|i = 0} , Kp := { i ∈ INm | |p|i = 1} .

Then

1E =
m

∏
i=1

(An+i +Bn+i) =
l

∑
p=0

(
∏
i∈Jp

An+i

)(
∏

i∈Kp

Bn+i

)
=

l

∑
p=0

m

∏
i=1

(p, p)i .

LEMMA 8.2.5 Let a ∈ (Fn)
l and

X :=
l

∑
p=1

ap

l

∑
q=p

m

∏
i=1

(q,q− p)i (X ∈ Fm+n) .
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a) X2m
= 0.

b) 1E −X is invertible.

a) We put D := INl and for every k ∈ IN and p ∈ Dk,

p(k) :=
k

∑
j=1

p j, a(k)p :=
k

∏
j=1

ap j .

We want to prove by induction that for every k ∈ IN,

Xk = ∑
p∈Dk

a(k)p

l

∑
q=p(k)

m

∏
i=1

(q,q− p(k))i .

The assertion holds for k = 1. Assume the assertion holds for k ∈ IN. Then

Xk+1 = ∑
p∈Dk

∑
p′∈D

a(k)p ap′
l

∑
q=p(k)

l

∑
q′=p′

m

∏
i=1

((q,q− p(k))i(q′,q′− p′)i) .

By Lemma 8.2.4 a),

Xk+1 = ∑
p∈Dk

∑
p′∈D

a(k)p ap′
l

∑
q=p(k)+p′

m

∏
i=1

(q,q− p(k)− p′)i =

= ∑
p∈Dk+1

a(k+1)
p

l

∑
q=p(k+1)

m

∏
i=1

(q,q− p(k+1))i ,

which finishes the inductive proof. Since p(k) ≥ k for every k ∈ IN we get X2m
= 0.

b) By a), 1E +
l
∑

k=1
Xk is the inverse of 1E −X .

PROPOSITION 8.2.6 (Higman’s linearization trick) There is a continuous map

µ : Pol(n, l)−→ Lin(n+m)

such that µX is homotopic to X
(

m
∏
i=1

An+i

)
+

(
1E −

m
∏
i=1

An+i

)
in Pol(n+m,2l + 1) for

every X ∈ Pol(n, l). If X ∈ Pro j(n) then the above homotopy takes place in Lin(n+1).
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Assume X ∈ Pol(n, l) is given by

X =
l

∑
p=0

apzp ,

where ap ∈ Fn for every p ∈ INl ∪{0}. Put

Xp :=
l

∑
q=p

aqzq−p (∈ C ( IT,Fn))

for all p ∈ INl ∪{0} and for all s ∈ [0,1],

Ys := 1E − s
l

∑
p=1

Xp

m

∏
i=1

(0, p)i (∈ C ( IT,Fn+m)) ,

Zs := 1E + s
l

∑
q=1

zq
l

∑
r=q

m

∏
i=1

(r,r−q)i (∈ C ( IT,Fn+m)) .

By Lemma 8.2.4 a),

Ys(1E + s
l

∑
p=1

Xp

m

∏
i=1

(0, p)i) = (1E + s
l

∑
p=1

Xp

m

∏
i=1

(0, p)i)Ys =

= 1E + s2
l

∑
p,q=1

XpXq

m

∏
i=1

((0, p)i(0,q)i) = 1E ,

so Ys is invertible. By Lemma 8.2.5 b), Zs is also invertible. Thus for every s ∈ [0,1], Ys

and Zs are homotopic to 1E in C ( IT,GL(Fn+m)) and belong therefore to Pol(n+m, l). By
Lemma 8.2.4 c),

Z1 =
l

∑
q=0

zq
l

∑
r=q

m

∏
i=1

(r,r−q)i .

Put

µX := 1E −
m

∏
i=1

An+i +
l

∑
p=0

ap

m

∏
i=1

(0, p)i− z
l

∑
p=1

m

∏
i=1

(p, p−1)i (∈ C ( IT,Fn+m)) .

For z ∈ IT,

((µX)Z1)(z) =
l

∑
p=0

zp
l

∑
q=p

m

∏
i=1

(q,q− p)i−
l

∑
p=0

zp
l

∑
q=p

m

∏
i=1

(An+i(q,q− p)i)+
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+
l

∑
p,q=0

apzq
l

∑
r=q

m

∏
i=1

((0, p)i(r,r−q)i)−
l

∑
q=0

zq+1
l

∑
p=1

l

∑
r=q

m

∏
i=1

((p, p−1)i(r,r−q)i) .

By Lemma 8.2.4 b),

l

∑
p=0

zp
l

∑
q=p

m

∏
i=1

(An+i(q,q− p)i) =
m

∏
i=1

An+i

and by Lemma 8.2.4 a),

l

∑
p,q=0

apzq
l

∑
r=q

m

∏
i=1

((0, p)i(r,r−q)i) =
l

∑
q=0

zq
l

∑
p=q

ap

m

∏
i=1

(0, p−q)i =

=
l

∑
q=0

zq
l−q

∑
r=0

aq+r

m

∏
i=1

(0,r)i =
l

∑
r=0

l−r

∑
q=0

zqaq+r

m

∏
i=1

(0,r)i =

=
l

∑
r=0

l

∑
s=r

zs−ras

m

∏
i=1

(0,r)i =
l

∑
r=0

Xr

m

∏
i=1

(0,r)i ,

l

∑
q=0

zq+1
l

∑
p=1

l

∑
r=q

m

∏
i=1

((p, p−1)i(r,r−q)i) =

=
l

∑
q=0

zq+1
l

∑
p=q+1

m

∏
i=1

(p, p−q−1)i =
l

∑
q=1

zq
l

∑
p=q

m

∏
i=1

(p, p−q)i .

Thus by Lemma 8.2.4 c),

((µX)Z1)(z) =
l

∑
q=0

zq
l

∑
p=q

m

∏
i=1

(p, p−q)i−
m

∏
i=1

An+i+

+
l

∑
r=0

Xr

m

∏
i=1

(0,r)i−
l

∑
q=1

zq
l

∑
p=q

m

∏
i=1

(p, p−q)i =

=
l

∑
p=0

m

∏
i=1

(p, p)i−
m

∏
i=1

An+i +
l

∑
r=0

Xr

m

∏
i=1

(0,r)i = 1E −
m

∏
i=1

An+i +
l

∑
p=0

Xp

m

∏
i=1

(0, p)i .

By Lemma 8.2.4 a),b), for z ∈ IT,

(Y1(µX)Z1)(z) = 1E −
m

∏
i=1

An+i +
l

∑
p=0

Xp

m

∏
i=1

(0, p)i−
l

∑
p=1

Xp

m

∏
i=1

(0, p)i+

+
l

∑
p=1

Xp

m

∏
i=1

((0, p)iAn+i)−
l

∑
p=1

l

∑
q=0

XpXq

m

∏
i=1

((0, p)i(0,q)i) =
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= 1E −
m

∏
i=1

An+i +X0

m

∏
i=1

(0,0)i = 1E −
m

∏
i=1

An+i +X
m

∏
i=1

An+i .

Since 1E −
m
∏
i=1

An+i +X−1
m
∏
i=1

An+i is the inverse of Y1(µX)Z1 it follows that Y1(µX)Z1

and µX are invertible, i.e. they belong to C ( IT,GL(Fn+m)). Thus for every s ∈ [0,1],
Ys(µX)Zs ∈ C ( IT,GL(Fn+m)). Let z ∈ IT and let

[0,1]−→ GL(Fn), s 7−→ xs

be a continuous map with x0 = X(z) and x1 = 1E . Since 1E−
m
∏
i=1

An+i +x−1
s

m
∏
i=1

An+i is the

inverse of 1E −
m
∏
i=1

An+i + xs
m
∏
i=1

An+i for every s ∈ [0,1] it follows that the map

[0,1]−→ GL(Fn+m), s 7−→ 1E −
m

∏
i=1

An+i + xs

m

∏
i=1

An+i

is well-defined and it is a homotopy from (Y1(µX)Z1)(z) to 1E i.e.
Y1(µX)Z1 ∈ C ( IT,GL0(Fn+m)) and Y1(µX)Z1 ∈ Pol(n+m, l). By the above, for every
s ∈ [0,1], Ys(µX)Zs ∈ C ( IT,GL0(Fn+m)), so Ys(µX)Zs ∈ Pol(n+m,2l +1). Hence µX is

homotopic to X
(

m
∏
i=1

An+i

)
+

(
1E −

m
∏
i=1

An+i

)
in Pol(n + m,2l + 1) and

µX ∈ Lin(n+m).

In order to prove the last assertion remark that there is a P ∈ Pr Fn with X = P̃ =

(1E −P)+ zP. Then m = l = 1, a0 = 1E −P, a1 = P, X1 = a0 = P,

µX = 1E −PAn+1 +PC∗n+1− zCn+1 ,

and for every s ∈ [0,1],

Ys = 1E − sPC∗n+1 , Zs := 1E + szCn+1 , Ys(µX)Zs ∈ Lin(n+1) .

Thus µX is homotopic to Y1(µX)Z1 in Lin(n+1).

8.3 The Periodicity

Throughout this section F denotes a full E-C*-algebra, m,n ∈ IN, and l := 2m−1.
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LEMMA 8.3.1 If X ∈ C ( IT,GL(Fn)) and X(1) ∈ GLEn(Fn) then

X ∈ C ( IT,GLEn(Fn)) .

Let θ ∈ [0,2π[ and for every s ∈ [0,1] put

Ys : IT−→ GL(Fn) , z 7−→ X(e−isz) .

Then Y0(eiθ ) = X(eiθ ) and Yθ (eiθ ) = X(1) so X(eiθ ) is homotopic to X(1) in GL(Fn).
Thus X(eiθ ) ∈ GLEn(Fn) and X ∈ C ( IT,GLEn(Fn)).

PROPOSITION 8.3.2 The following are equivalent for every X ∈ Fn.

a) X̃ ∈ Lin(n).

b) z ∈ IT\{1}=⇒ X̃(z) ∈ GL(Fn).

c) X̃ is a generalized idempotent of Fn ([4] Definition 11.2.8).

a⇒ b is trivial.

b⇒ a. By Lemma 8.3.1, since X̃(1) = 1E , X̃ ∈ C ( IT,GLEn(Fn)) so X̃ ∈ Lin(n).

b⇔ c. For z ∈ IT\{1},

X̃(z) = (z−1)X +1E = (z−1)
(

X− 1
1− z

1E

)
.

Since {
1

1− z

∣∣∣∣ z ∈ IT\{1}
}
=

{
α ∈ IC | real(α) =

1
2

}
,

b) holds iff X −α1E is invertible for every α ∈ IC with real(α) = 1
2 , which is equivalent

to c).

LEMMA 8.3.3 For z ∈ IT,

zAn +Bn ∼h An + zBn in Un En .
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We have

(Cn +C∗n)(zAn +Bn)(Cn +C∗n) = (zCn +C∗n)(Cn +C∗n) = zBn +An

and the assertion follows from Proposition 6.2.5 a).

LEMMA 8.3.4 For z ∈ IT,

zl
m

∏
i=1

An+i +
l

∑
p=1

m

∏
i=1

(p, p)i ∼h

m

∏
i=1

An+i + z
l

∑
p=1

m

∏
i=1

(p, p)i in Un En+m .

Let k ∈ INl and let j ∈ INm with |k| j = 1. By Lemma 8.3.3,

zl−k+1
m

∏
i=1

An+i + z
k−1

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k

m

∏
i=1

(p, p)i =

=

(
zl−k

m

∏
i=1

An+i +
m

∏
i=1

(k,k)i

)
(zAn+ j +(k,k) j)+

+z
k−1

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k+1

m

∏
i=1

(p, p)i ∼h

∼h

(
zl−k

m

∏
i=1

An+i +
m

∏
i=1

(k,k)i

)
(An+ j + z(k,k) j)+

+z
k−1

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k+1

m

∏
i=1

(p, p)i =

= zl−k
m

∏
i=1

An+i + z
k

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k+1

m

∏
i=1

(p, p)i

in Un En+m. The assertion follows now by induction on k ∈ INl .

LEMMA 8.3.5 Let P,Q ∈ Pr Fn.

a) For every z ∈ IT, ˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) =
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= P̃(z)

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
.

b) If (with the identification of Lemma 8.1.1 d))

P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m ,

then ˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m .

a) We have ˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) =

= zP

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
+

m

∏
i=1

An+i+

+

(
1E −

m

∏
i=1

An+i

)
−P

(
m

∏
i=1

An+i

)
−

(
1E −

m

∏
i=1

An+i

)
=

= P̃(z)

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
.

b) Let

[0,1]−→Un

(
ˇ︷︸︸︷

SF

)
n+m, s 7−→Us

be a continuous map with

U0 = P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
,

236 Science Publishing Group



8.3 The Periodicity

U1 = Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
.

Put U ′s := Us

(
m
∏
i=1

An+i

)
+ z
(

1E −
m
∏
i=1

An+i

)
for every s ∈ [0,1]. Then s 7→ U ′s is a

continuous path in Un

(
ˇ︷︸︸︷

SF

)
n+m and by a),

U ′0 =U0

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
=

= P̃

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
=

=

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) ,

U ′1 =

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) .

PROPOSITION 8.3.6

a) If U ∈Un

(
ˇ︷︸︸︷

SF

)
n then there are k,m ∈ IN and P ∈ Pr Fn+m such that (with the

identification of Lemma 8.1.1 d))

(zkU)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h P̃ in Un

(
ˇ︷︸︸︷

SF

)
n+m .

b) Let P,Q ∈ Pr Fn with P̃∼h Q̃ in Un

(
ˇ︷︸︸︷

SF

)
n. Then there is an m ∈ IN such that

P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Pr Fn+m .
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a) By Proposition 8.2.2 a), there are k,m ∈ IN, k < 2m, and X ∈ Pol(n, l) such that zkU

is homotopic to X in C ( IT,GLE(Fn)). By Proposition 8.2.6, there is a Y ∈ Lin(n+m) with

X

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h Y in Pol(n+m,2l +1) .

By [4] Lemma 11.2.12 (i), there is a P ∈ Pr Fn+m with Y ∼h P̃ in Lin(n+m). Thus

(zkU)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h X

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h Y ∼h P̃

in C ( IT,GLE(Fn+m)). By [4] Proposition 2.1.8 (iii) and the identification of Lemma 8.1.1
d),

(zkU)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h P̃ in Un

(
ˇ︷︸︸︷

SF

)
n+m .

b) By Proposition 8.2.2 b), there are k,m∈ IN, k < 2m, such that zkP̃∼h zkQ̃ in Pol(n, l).
By Lemma 8.3.4 and Lemma 8.2.4 c),

zl

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)

in Un En+m. By Lemma 8.3.5 a),

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) =

=

((
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

))
×

×

(
P̃(z)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

))
∼h

∼h

(
zl

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

))(
P̃(z)+

(
1E −

m

∏
i=1

An+i

))
=
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= zlP̃(z)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h zlQ̃(z)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z)

in Pol(n+m, l). By Proposition 8.2.6,

P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
=

=

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h µ


˜︷ ︸︸ ︷

P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)∼h

∼h µ


˜︷ ︸︸ ︷

Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)∼h

∼h Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Lin(n+m). By Lemma 8.3.5 a),

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
= P̃

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
∼h

∼h Q̃

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
=

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Lin(n+m). The assertion follows now from [4] Lemma 11.2.12 (ii).
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THEOREM 8.3.7 The Bott map is bijective.

Step 1 Surjectivity

Let a ∈ K1(SF). There are n ∈ IN and U ∈Un

(
ˇ︷︸︸︷

SF

)
n with a = [U ]1. By Proposition

8.3.6 a), there are m, p ∈ IN, p≥ n, and P ∈ Pr Fp+m such that

(zlU)

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

)
∼h P̃ in Un

(
ˇ︷︸︸︷

SF

)
p+m .

By Lemma 8.3.4 and Lemma 8.2.4 c),

˜︷ ︸︸ ︷
1E −

m

∏
i=1

Ap+i = z

(
1E −

m

∏
i=1

Ap+i

)
+

(
m

∏
i=1

Ap+i

)
∼h

∼h

(
1E −

m

∏
i=1

Ap+i

)
+ zl

(
m

∏
i=1

Ap+i

)
in Un Ep+m

so by Proposition 7.1.3 and Proposition 8.1.4,

βF

(
[P]0−

[
1E −

m

∏
i=1

Ap+i

]
0

)
= [P̃]1−


˜︷ ︸︸ ︷

1E −
m

∏
i=1

Ap+i


1

=

=

[
(zlU)

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

)]
1

−

−

[(
1E −

m

∏
i=1

Ap+i

)
+ zl

(
m

∏
i=1

Ap+i

)]
1

=

=

[(
(zlU)

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

))
×

×

((
1E −

m

∏
i=1

Ap+i

)
+ zl

(
m

∏
i=1

Ap+i

))∗]
1

=

=

[
U

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

)]
1

= [U ]1 = a .
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Step 2 Injectivity

Let a ∈ K0(F) with βF a = 0. By Proposition 6.1.5 d), there are P,Q ∈ Pr Fn, PQ = 0,

such that a = [P]0− [Q]0. Then [P̃]1 = [Q̃]1, so U := P̃Q̃∗ ∈ unEn

ˇ︷︸︸︷
SF . Then

U = ((z−1)P+1E)((z̄−1)Q+1E)) = (z−1)P+(z̄−1)Q+1E , U(1) = 1E .

By Proposition 7.1.3, there is an m ∈ IN such that

V :=U

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
= τ

F
n+m,nU ∈UnEn+m

(
ˇ︷︸︸︷

SF

)
n+m .

Then there is a W ∈Un En+m with V ∼h W in Un

(
ˇ︷︸︸︷

SF

)
n+m. By the above,

W =W (1)∼h V (1) = 1E , V ∼h 1E in Un

(
ˇ︷︸︸︷

SF

)
n+m .

By Proposition 7.1.3,

P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
= τ

F
n+m,nP̃ = (τF

n+m,nU)(τF
n+m,nQ̃) =

=V (τF
n+m,nQ̃)∼h Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m ,

so by Proposition 8.3.5 b),

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m .

Put

P′ := P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
,
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Q′ := Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
.

By Proposition 8.3.6 b), there are m′, p′ ∈ IN such that

P′
(

m′

∏
j=1

Ap′+ j

)
+

(
1E −

m′

∏
j=1

Ap′+i

)
∼h

∼h Q′
(

m′

∏
j=1

Ap′+i

)
+

(
1E −

m′

∏
j=1

Ap′+i

)
in Pr Fp′+m′ .

It follows successively [
P′

m′

∏
j=1

Ap′+ j

]
0

=

[
Q′

m′

∏
j=1

Ap′+ j

]
0

,

[
P

(
m

∏
i=1

An+i

)(
m′

∏
j=1

Ap′+ j

)]
0

=

[
Q

(
m

∏
i=1

An+i

)(
m′

∏
j=1

Ap′+ j

)]
0

,

[P]0 = [Q]0 , a = [P]0− [Q]0 = 0 .

Remark. By Theorem 8.3.7 and Proposition 8.1.5 c), the functor K0 is determined by
the functor K1.

COROLLARY 8.3.8 (The six-term sequence) Let

0−→ F
ϕ−→ G

ψ−→ H −→ 0

be an exact sequence in ME .

a) The sequence

0−→ SF
Sϕ−→ SG

Sψ−→ SH −→ 0

is exact. Let

δ2 : K1(SH)−→ K0(SF)

be its associated index map (Corollary 7.2.3) and put (Proposition 8.1.5, Theorem
7.3.2)

δ0 := θ
−1
F ◦δ2 ◦βH : K0(H)−→ K1(F) .
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We call δ0 and δ1 the six-term index maps. If we denote by δ̄0 the corresponding

six-term index map associated to the exact sequence in ME (with obvious notation)

0−→ SF
ϕ−→CF

ψ−→ F −→ 0

then δ̄0 = βF .

b) The six-term sequence

K0(F)
K0(ϕ)−−−−→ K0(G)

K0(ψ)−−−−→ K0(H)

δ1

x yδ0

K1(H) ←−−−−
K1(ψ)

K1(G) ←−−−−
K1(ϕ)

K1(F)

is exact.

c) If F (resp. H) is K-null (e.g. homotopic to {0}) then Ki(G)
Ki(ψ)−→ Ki(H) (resp.

Ki(F)
Ki(ϕ)−→ Ki(G)) is a group isomorphism for every i ∈ {0,1}.

d) If G is K-null (e.g. homotopic to {0}) then

K0(H)
δ0−→ K1(F) , K1(H)

δ1−→ K0(F)

are group isomorphisms.

e) If ϕ is K-null (e.g. factorizes through null) then the sequences

0−→ K0(G)
K0(ψ)−→ K0(H)

δ0−→ K1(F)−→ 0 ,

0−→ K1(G)
K1(ψ)−→ K1(H)

δ1−→ K0(F)−→ 0

are exact.

f) If ψ is K-null (e.g. factorizes through null) then the sequences

0−→ K0(H)
δ0−→ K1(F)

K1(ϕ)−→ K1(G)−→ 0 ,

0−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)−→ 0

are exact.

g) The six-term index maps of a split exact sequence are equal to 0.
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a) is easy to see.

b) By Theorem 8.3.7, βH is an isomorphism. By Theorem 7.2.9, the sequences

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)
K0(ψ)−→ K0(H) ,

K1(SG)
K1(Sψ)−→ K1(SH)

δ2−→ K0(SF)
K0(Sϕ)−→ K0(SG)

are exact. By Proposition 8.1.5 c) and Proposition 7.3.8, the diagrams

K0(G)
K0(ψ)−−−−→ K0(H)

βG

y yβH

K1(SG) −−−−→
K1(Sψ)

K1(SH)

K1(F)
K1(ϕ)−−−−→ K1(G)

θF

y yθG

K0(SF) −−−−→
K0(Sϕ)

K0(SG)

are commutative. It follows

δ0 ◦K0 (ψ) = θ
−1
F ◦δ2 ◦βH ◦K0 (ψ) = θ

−1
F ◦δ2 ◦K1 (Sψ)◦βG = 0 ,

ImK0 (ψ)⊂ Ker δ0. Let a ∈ Ker δ0. Then δ2βHa = θF δ0a = 0, so there is a b ∈ K1 (SG)

with K1 (Sψ)b = βHa. It follows

a = β
−1
H K1 (Sψ)b = K0 (ψ)β

−1
G b ∈ ImK0 (ψ) , Ker δ0 ⊂ ImK0 (ψ) .

c) The assertion follows immediately from b). By Proposition 7.1.8 e), a
null-homotopic E-C*-algebra is K-null.

d) The proof is similar to the proof of c).

e) and f) follow from b) and Proposition 7.1.8 f).

g) By Proposition 6.2.9 and Corollary 7.3.9 (with the notation of b)) K0 (ϕ) and K1 (ϕ)

are injective and K0 (ψ) and K1 (ψ) are surjective and the assertion follows from b).

COROLLARY 8.3.9 Let us consider the following commutative diagram in ME

0 −−−−→ F
ϕ−−−−→ G

ψ−−−−→ H −−−−→ 0

γ

y α

y yβ

0 −−−−→ F ′ −−−−→
ϕ ′

G′ −−−−→
ψ ′

H ′ −−−−→ 0 ,
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where the horizontal lines are exact.

a) (Commutativity of the six-term index maps) The diagrams (with obvious

notation)

K1(H)
δ1−−−−→ K0(F)

K1(β )

y yK0(γ)

K1(H ′) −−−−→
δ ′1

K0(F ′)

K0(H)
δ0−−−−→ K1(F)

K0(β )

y yK1(γ)

K0(H ′) −−−−→
δ ′0

K1(F ′)

are commutative. If Ki (F) = Ki (F ′), Ki (H) = Ki (H ′), and Ki (β ) and Ki (γ) are

the identity maps for all i ∈ {0,1} then δi = δ ′i for all i ∈ {0,1}.

b) The diagram (with obvious notation)

K0(F) K0(F)
K0(ϕ)−−−−→ K0(G)

K0(ψ)−−−−→ K0(H) K0(H)

=

y K0(γ)

y K0(α)

y yK0(β )

y=

K0(F)
K0(γ)−−−−→ K0(F ′)

K0(ϕ
′)−−−−→ K0(G′)

K0(ψ
′)−−−−→ K0(H ′)

K0(β )←−−−− K0(H)

δ1

x δ ′1

x yδ ′0

yδ0

K1(H) −−−−→
K1(β )

K1(H ′) ←−−−−
K1(ψ ′)

K1(G′) ←−−−−
K1(ϕ ′)

K1(F ′) ←−−−−
K1(γ)

K1(F)

=

x K1(β )

x K1(α)

x xK1(γ)

x=

K1(H) K1(H) ←−−−−
K1(ψ)

K1(G) ←−−−−
K1(ϕ)

K1(F) K1(F)

is commutative.

a) The commutativity of the first diagram was proved in Proposition 7.2.4. By
Proposition 7.3.8, the diagram

K1(F)
K1(γ)−−−−→ K1(F ′)

θF

y yθF ′

K0(SF) −−−−→
K0(Sγ)

K0(SF ′)
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is commutative. By Proposition 7.2.4, the diagram

K1(SH)
δ2−−−−→ K0(SF)

K1(Sβ )

y yK0(Sγ)

K1(SH ′) −−−−→
δ ′2

K0(SF ′)

is commutative, where δ2 and δ ′2 are defined in Corollary 8.3.8 a). By Proposition 8.1.5
c), the diagram

K0(H)
K0(β )−−−−→ K0(H ′)

βH

y yβH′

K1(SH) −−−−→
K1(Sβ )

K1(SH ′)

is commutative. It follows, by the definition of δ0 (Corollary 8.3.8 a)),

K1(γ)◦δ0 = K1(γ)◦θ
−1
F ◦δ2 ◦βH = θ

−1
F ′ ◦K0(Sγ)◦δ2 ◦βH =

= θ
−1
F ′ ◦δ

′
2 ◦K1(Sβ )◦βH = θ

−1
F ′ ◦δ

′
2 ◦βH ′ ◦K0(β ) = δ

′
0 ◦K0(β ) .

b) follows from a) and Corollary 8.3.8 b).
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Variation of the Parameters

Throughout this chapter we endow {0,1} with the structure of o group by identifying
it with ZZ2 .





9.1 Changing E

9.1 Changing E

Let E ′ be a commutative unital C*-algebra, φ : E −→ E ′ a unital C*-homomorphism,
and

f ′ : T ×T −→Un E ′ , (s, t) 7−→ φ f (s, t) .

Then f ′ ∈ F (T,E ′) and we may define E ′n with respect to f ′ for every n ∈ IN like in
Definition 5.0.2.

Let n ∈ IN and put

C′n := ∑
t∈Tn

((φCn,t)⊗ idK)V
f ′

t (∈ E ′n) .

For every s ∈ Tn−1,

∑
t∈Tn

(( f (s−1t, t)Cn,ts−1)⊗ idK)V
f

t =V f
s Cn =

=CnV f
s = ∑

t∈Tn

(( f (ts−1,s)Cn,ts−1)⊗ idK)V
f

t

so by [2] Theorem 2.1.9 a),

f (s−1t, t)Cn,s−1t = f (ts−1,s)Cn,ts−1

for every t ∈ Tn. It follows

f ′(s−1t, t)C′n,s−1t = f ′(ts−1,s)C′n,ts−1 , V f ′
s C′n =C′nV f ′

s , C′n ∈ (E ′n−1)
c .

Thus (C′n)n∈IN satisfies the conditions of Axiom 5.0.3 and we may construct a K-theory
with respect to T, E ′, f ′, and (C′n)n∈IN, which we shall denote by K′.

Let F be an E ′-C*-algebra. We denote by F̄ or by Φ(F) the E-C*-algebra obtained by
endowing the C*-algebra F with the exterior multiplication

E×F −→ F, (α,x) 7−→ (φα)x .

If F
ϕ−→ G is a morphism in ME ′ , then F̄

ϕ̄−→ Ḡ is a morphism in ME , in a natural way.

Let F be an E ′-C*-algebra and n ∈ IN. We put for every

X = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f

t ∈ ˇ̄Fn ,
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X ′ := ∑
t∈Tn

((φαt ,xt)⊗ idK)V
f ′

t (∈ F̌n)

and set
φF,n : ˇ̄Fn −→ F̌n , X 7−→ X ′ .

Then φF,n is a unital C*-homomorphism (surjective or injective if φ is so ([2] Theorem
2.1.9 a))) such that φF,n(UnEn

ˇ̄Fn) ⊂UnE ′n F̌n and φF,n ◦σ F̄
n = σF

n ◦φF,n. Thus we get for
every i ∈ {0,1} an associated group homomorphism Φi,F : Ki(F̄)−→ K′i (F).

Let E ′′ be a unital commutative C*-algebra, φ ′ : E ′ −→ E ′′ a unital C*-homomorphism,
and φ ′′ := φ ′ ◦φ . Then we may do similar constructions for φ ′ and φ ′′ as we have done
for φ . If F is an E ′′-C*-algebra, Φ′(F) and Φ′′(F) the corresponding E ′-C*-algebra and
E-C*-algebra, respectively, then Φ′′(F) = Φ(Φ′(F)). If Φ′i and Φ′′i are the equivalents of
Φi with respect to φ ′ and φ ′′, respectively, then Φ′′i,F = Φ′i,F ◦Φi,Φ′(F) for every i ∈ {0,1}.
If E ′′ = E and φ ′′ = idE then C′′n = Cn for every n ∈ IN and for every E-C*-algebra F ,
Φ′′(F) = F and Φ′′i,F = idKi(F) for every i ∈ {0,1}. If in addition φ ′′′ := φ ◦φ ′ = idE ′ then
C′′′n = C′n for every n ∈ IN and for every E ′-C*-algebra F , Φ′(Φ(F)) = F and Φ′i,Φ(F) ◦
Φi,F = idK′i (F) for every i ∈ {0,1}, i.e. the K-theory and the K′-theory ”coincide”.

Remark. Let P ∈ Pr E, 0 < P < 1E , and put

P f : T ×T −→Un PE , (s, t) 7−→ P f (s, t) .

Then P f ∈F (T,PE) and we denote by PK the K-theory with respect to T, PE, P f , and
(PCn)n∈IN. Then for every E-C*-algebra F and i ∈ {0,1}

Ki(F)≈ ((PK)i(PF))× (((1E −P)K)i((1E −P)F)) .

If F
ϕ−→ G is a morphism in ME then

Pϕ : PF −→ PG , Px 7−→ Pϕx

is a morphism in MPE and

Ki(ϕ) = (PK)i(Pϕ)× ((1E −P)K)i((1E −P)ϕ)

for every i ∈ {0,1}.

PROPOSITION 9.1.1 We use the above notation and assume i ∈ {0,1}.
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a) If F
ϕ−→ G is a morphism in ME ′ then the diagram

Ki(F̄)
Ki(ϕ̄)−−−−→ Ki(Ḡ)

Φi,F

y yΦi,G

K′i (F) −−−−→
K′i (ϕ)

K′i (G)

is commutative.

b) For every E ′-C*-algebra F the diagram

K0(F̄)
βF̄−−−−→ K1(SF)

Φ0,F

y yΦ1,SF

K′0(F) −−−−→
β ′F

K′1(SF) ,

is commutative, where β ′F denotes the Bott map in the K′-theory.

c) If

0−→ F
ϕ−→ G

ψ−→ H −→ 0

is an exact sequence in ME ′ then the diagram

K1(H̄)
δ1−−−−→ K0(F̄)

Φ1,H

y yΦ0,F

K′1(H) −−−−→
δ ′1

K′0(F)

is commutative, where δ ′1 denotes the index maps associated to the above exact

sequences in the K′-theory.

a) For every n ∈ IN and

X = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f

t ∈ ˇ̄Fn ,

ϕ̌nφF,nX = ∑
t∈Tn

(((φαt),ϕxt)⊗ idK)V
f ′

t = φG,n ˇ̄ϕnX .

b) For every n ∈ IN and P ∈ Pr ˇ̄Fn,

φSF,nP̃ = (P̃)′ = P̃′ = φ̃F,nP .
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c) Let n ∈ IN and U ∈ Un ˇ̄Hn−1. By Proposition 7.2.1 a), there are V ∈ Un ˇ̄Gn and
P ∈ Pr ˇ̄Fn such that

ˇ̄ψnV = AnU +BnU∗ , ˇ̄ϕnP =VAnV ∗ .

Then
ψ̌nφG,nV = φH,n ˇ̄ψnV = A′n(φH,n−1U)+B′n(φH,n−1U)∗ ,

ϕ̌nφF,nP = φG,n ˇ̄ϕnP = (φG,nV )A′n(φG,nV )∗

so by Corollary 7.2.3,

δ
′
1Φ1,H [U ]1 = δ

′
1[φH,n−1U ]1 = [φF,nP]0 = Φ0,F [P]0 = Φ0,F δ1[U ]1

δ
′
1 ◦Φ1,H = Φ0,F ◦δ1 .

LEMMA 9.1.2 Let F,G be C*-algebras, ϕ : F −→ G a surjective C*-homomorphism,

and

ψ : C ([0,1],F)−→ C ([0,1],G) , x 7−→ ϕ ◦ x .

a) ψ is surjective.

b) Assume F unital and let v ∈Un C ([0,1],G) such that there is an x ∈Un F with

ϕx = v(0). Then there is a u ∈Un C ([0,1],F) with ψu = v and u(0) = x.

a) Let y be an element of C ([0,1],G) which is piecewise linear, i.e. there is a family

0 = s1 < s2 < · · ·< sn−1 < sn = 1

such that for every i ∈ INn−1 and t ∈ [0,1],

y((1− t)si + tsi+1) = (1− t)y(si)+ ty(si+1) .

Since ϕ is surjective, there is a family (xi)i∈INn in F with ϕxi = y(si) for every i ∈ INn.
Define x : [0,1]−→ F by putting

x((1− t)si + tsi+1) := (1− t)xi + txi+1

for every i ∈ INn−1 and t ∈ [0,1]. For i ∈ INn−1 and t ∈ [0,1],

(ψx)((1− t)si + tsi+1) = ϕ((1− t)xi + txi+1) =
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= (1− t)y(si)+ ty(si+1) = y((1− t)si + tsi+1) ,

so ψx = y, y∈ Imψ . Since the set of elements of C ([0,1],G), which are piecewise linear,
is dense in C ([0,1],G) and Imψ is closed (as C*-homomorphism), ψ is surjective.

b) Let

w : [0,1]−→UnG , s 7−→ v(0)∗v(s) .

Then w ∈Un C ([0,1],G) and w(0) = 1G. Put

wt : [0,1]−→UnG , s 7−→ w(st)

for every t ∈ [0,1]. Then

[0,1]−→Un C ([0,1],G) , t 7−→ wt

is a continuous path with w1 = w and w0 = 1C ([0,1],G). Thus

w ∈Un0 C ([0,1],G) .

By a), ψ is surjective, so by [4] Lemma 2.1.7 (i), there is a u′ ∈ Un C ([0,1],F) with
ψu′ = w. Put

u : [0,1]−→UnF , s 7−→ xu′(0)∗u′(s) .

Then u ∈Un C ([0,1],F), u(0) = x, and

(ψu)(s) = ϕ(u(s)) = ϕ(xu′(0)∗u′(s)) = ϕ(x)((ψu′)(0))∗((ψu′)(s)) =

= v(0)w(0)∗w(s) = v(0)1Gv(0)∗v(s) = v(s)

for every s ∈ [0,1], i.e. ψu = v.

THEOREM 9.1.3 Φi,F is a group isomorphism for every i ∈ {0,1} and for every E ′-C*-

algebra F.

By Proposition 9.1.1 b), Φ0,F = (β ′F)
−1 ◦Φ1,SF ◦βF̄ , so it suffices to prove the assertion

for Φ1,F only. Let n ∈ IN and U ∈Un F̌n. Put V :=U(σF
n U)∗ ∼1 U . Since σF

n V = 1E ′ , V

has the form

V = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f ′

t
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with αt = δ1,t1E ′ and xt ∈ F for every t ∈ Tn. If we put

W := ∑
t∈Tn

((δ1,t1E ,xt)⊗ idK)V
f

t

then φF,nW =V and we get Φ1,F [W ]1 = [V ]1 = [U ]1, so Φ1,F is surjective. Thus we have
to prove the injectivity of Φ1,F only.

Let a ∈ Ker Φ1,F . We have to prove a = 0. There are n ∈ IN and

U := ∑
t∈Tn

((αt ,xt)⊗ idK)V
f

t ∈Un ˇ̄Fn

with a = [U ]1, where (αt ,xt) ∈ F̌ for every t ∈ Tn. Since [U ′]1 = Φ1,F [U ]1 = 0, by
Proposition 7.1.3, there is an m ∈ IN such that

U ′0 :=

(
m

∏
i=1

A′n+i

)
U ′+

(
1E ′ −

m

∏
i=1

A′n+i

)

is homotopic in Un F̌n+m to a U ′1 ∈Un E ′n+m (⊂Un F̌n+m). Thus there is a continuous
path

U ′ : [0,1]−→Un F̌n+m , s 7−→U ′s .

Case 1 φ is injective

Put
W ′s :=U ′sσ

F
n+m(U

′∗
s U ′0) (∈Un F̌n+m)

for every s ∈ [0,1]. Then

σ
F
n+mW ′s = σ

F
n+mU ′0 = φF,n+m

((
m

∏
i=1

An+i

)
(σ F̄

n U)+

(
1E −

m

∏
i=1

An+i

))

for every s ∈ [0,1]. If we put

W ′s =: ∑
t∈Tn+m

((βs,t ,ys,t)⊗ idK)V
f ′

t ,

where (βs,t ,ys,t) ∈ F̌ for all s ∈ [0,1] and t ∈ Tn, then

∑
t∈Tn+m

((βs,t ,0)⊗ idK)V
f ′

t = σ
F
n+mW ′s =
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= φF,n+m

((
m

∏
i=1

An+i

)
∑

t∈Tn

((αt ,0)⊗ idK)V
f

t +

(
1E −

m

∏
i=1

An+i

))
and so by [2] Theorem 2.1.9 a), there is a (unique) family (γt)t∈Tn+m in E with βs,t = φγt for
every s ∈ [0,1] and t ∈ Tn+m. Since φ is injective, φn+m is also injective and φn+m( ˇ̄Fn+m)

may be identified with a unital C*-subalgebra of F̌n+m. Thus

W : [0,1]−→Un ˇ̄Fn+m , s 7−→ ∑
t∈Tn+m

((γt ,ys,t)⊗ idK)V
f

t

is a continuous path in Un ˇ̄Fn+m with φF,n+mWs =W ′s for every s ∈ [0,1]. It follows

φF,n+mW0 =W ′0 =U ′0 = φF.,n+m

((
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

))
,

φF,n+mW1 =W ′1 =U ′1σ
F
n+m(U

′∗
1 U ′0) = σ

F
n+mU ′0 ∈ φF,n+m(Un E ′n+m) .

Since φ is injective, φF,n+m is also injective and we get(
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

)
=W0 ,

(
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

)
∈UnEn+m

ˇ̄Fn+m , g = [U ]1 = 0 .

Case 2 φ is surjective

We put

Ū0 :=

(
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

)
(∈Un ˇ̄Fn+m) .

Since φ is surjective, φF,n+m is also surjective ([2] Theorem 2.1.9 a)). Since

φF,n+mŪ0 =U ′0

it follows from Lemma 9.1.2 b), that there is a continuous path

[0,1]−→Un ˇ̄Fn+m, s 7−→Us

with φF,n+mUs = U ′s for every s ∈ [0,1] and U0 = Ū0 . Since φF,n+mU1 = U ′1 ∈Un E ′n+m,
we have Ū0 ∈UnEn+m

ˇ̄Fn+m and g = [U ]1 = [Ū0]1 = 0.
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Case 3 φ is arbitrary

There are a unital commutative C*-algebra E ′′ and a unital C*-homomor-phisms φ ′ :
E −→ E ′′ and φ ′′ : E ′′ −→ E ′ such that φ ′ is surjective, φ ′′ is injective, and φ = φ ′′ ◦ φ ′

and the assertion follows from the first two cases and the considerations from the begin
of the section.

COROLLARY 9.1.4 Let E ′,E ′′ be unital commutative C*-algebras such that E = E ′×
E ′′ and

φ
′ : E −→ E ′ , (x′,x′′) 7−→ x′ ,

φ
′′ : E −→ E ′′ , (x′,x′′) 7−→ x′′ .

If F ′ is an E ′-C*-algebra and F ′′ is an E ′′-C*-algebra then the map (with obvious

notation)

Ki(Φ
′(F ′)×Φ

′′(F ′′))−→ K′i (F
′)×K′′i (F

′′), a 7−→ (Φ′i,F ′ ×Φ
′′
i,F ′′)(ϕia)

is a group isomorphism for every i ∈ {0,1}, where

ϕi : Ki(Φ
′(F ′)×Φ

′′(F ′′))−→ Ki(Φ
′(F ′))×Ki(Φ

′′(F ′′))

is the canonical group isomorphism (Product Theorem (Corollary 6.2.10 b), Proposition
7.3.3 b)).

COROLLARY 9.1.5 If f (s, t) ∈ IC for all s, t ∈ T and Cn ∈ ICn for all n ∈ INand if KIC

denotes the K-theory with respect to T , IC, f , and (Cn)n∈IN then Ki(E) = KIC
i (C (Ω, IC))

for all i ∈ {0,1}, where Ω denotes the spectrum of E.

PROPOSITION 9.1.6 If F is an E ′-C*-algebra then the map

ϕ : E×Φ(F)−→
ˇ︷ ︸︸ ︷

Φ(F) , (α,x) 7−→ (α,x−φα)

is an E-C*-isomorphism.

For (α,x),(β ,y) ∈ E×Φ(F) and γ ∈ E,

ϕ(γ(α,x)) = ϕ(γα,(φγ)x) = (γα,(φγ)x−φ(γα)) =
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= (γ,0)(α,x−φα) = (γ,0)ϕ(α,x) ,

ϕ(α,x)∗ = ϕ(α∗,x∗) = (α∗,x∗−φα
∗) = (ϕ(α,x))∗ ,

ϕ(α,x)ϕ(β ,y) = (α,x−φα)(β ,y−φβ ) =

= (αβ ,(φα)y−φ(αβ )+(φβ )x−φ(αβ )+ xy− (φβ )x− (φα)y+φ(αβ )) =

= (αβ ,xy−φ(αβ )) = ϕ(αβ ,xy) = ϕ((α,x)(β ,y)) ,

so ϕ is an E-C*-homomorphism. The other assertions are easy to see.

9.2 Changing f

In all Propositions and Corollaries of this section we use the notation and assumptions
of Example 5.0.4 and F denotes a C*-algebra.

LEMMA 9.2.1 For every n ∈ IN there is an εn > 0 such that for every m ∈ IN, m ≤ n,

and α ∈Un IC, |α − 1| < εn, there is a unique βα ∈Un IC, |βα − 1| < 1
n , with β m

α = α;

moreover the map α 7→ βα is continuous.

If β ,γ are distinct elements of Un IC and β m = γm then

|β − γ| ≥ |1− e
2πi
m |> 1

m
≥ 1

n

and the assertion follows from the continuity of the corresponding branch of the map
α 7→ m

√
α .

DEFINITION 9.2.2 For every finite group S we endow F (S, IC) with the metric

dS(g,h) := sup{ |g(s, t)−h(s, t)| | s, t ∈ S}

for all g,h ∈F (S, IC).

Remark. F (S, IC) endowed with the above metric is compact.
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DEFINITION 9.2.3 We put

Λ(T,E) := { λ : T −→Un E | λ (1) = 1E }

and

δλ : T ×T −→Un E , (s, t) 7−→ λ (s)λ (t)λ (st)∗

for every λ ∈ Λ(T,E).

LEMMA 9.2.4 Let S be a finite group and Ω a compact space.

a) { δλ | λ ∈ Λ(S, IC)} is an open set of F (S, IC).

b) For every ε ′ > 0 there is an ε > 0 such that for all g,h ∈F (S,C (Ω, IC)), if

‖g(s, t)−h(s, t)‖< ε

for all s, t ∈ S then there is a λ ∈ Λ(S, IC) such that h = gδλ and |λ (s)−1|< ε ′ for

all s ∈ S.

c) Let g∈F (S,C (Ω, IC)) and φ : [0,1]×Ω−→Ω a continuous map. We put for every

u ∈ [0,1],
φu := φ(u, ·) : Ω−→Ω ,

gu : S×S−→Un IC , (s, t) 7−→ g(s, t)◦φu .

Then gu ∈F (S,C (Ω, IC)) for every u ∈ [0,1] and there is a λ ∈ Λ(S, IC) with g1 =

g0δλ .

a) By [3] Theorem 2.3.2 (iii),

{S (g) | g ∈F (S, IC)}/≈S

is finite. { δλ | λ ∈ Λ(S, IC)} is obviously a closed subgroup of F (S, IC). By the above
and [2] Proposition 2.2.2 c), F (S, IC) is the union of a finite family of closed pairwise
disjoint sets homeomorphic to { δλ | λ ∈ Λ(S, IC)}, so { δλ | λ ∈ Λ(S, IC)} is open.

b) By a), there is an ε > 0 such that for all g′,h′ ∈F (S, IC) with dS(g′,h′)< ε there is
a λ ∈ Λ(S, IC) with h′ = g′δλ . We may assume that

(1+ ε)Card S−1 < εCard S ,
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where εCard S was defined in Lemma 9.2.1.

We put for every ω ∈Ω

gω : S×S−→Un IC , (s, t) 7−→ (g(s, t))(ω) ,

hω : S×S−→Un IC , (s, t) 7−→ (h(s, t))(ω) .

Let ω ∈Ω. By the above, there is a λω ∈ Λ(S, IC) with gω = hω δλω . Let s ∈ S and let
n ∈ IN be the least natural number with sn = 1S. By [2] Proposition 3.4.1 c),

λω(s)n =
n−1

∏
j=1

(gω(s j,s)∗hω(s j,s)) .

For every j ∈ INn−1,∥∥1E −g(s j,s)∗h(s j,s)
∥∥= ∥∥g(s j,s)−h(s j,s)

∥∥< ε ,∥∥∥∥∥n−1

∏
j=1

(g(s j,s)∗h(s j,s))

∥∥∥∥∥=
∥∥∥∥∥n−1

∏
j=1

(1E − (1E −g(s j,s)∗h(s j,s)))

∥∥∥∥∥< (1+ ε)n ,

∥∥∥∥∥1E −
n−1

∏
j=1

(g(s j,s)∗h(s j,s))

∥∥∥∥∥< (1+ ε)n−1−1 < εCard S .

By Lemma 9.2.1, there is a unique γ ∈Un IC with

γ
n =

n−1

∏
j=1

(g(s j,s)∗h(s j,s)) , |γ−1|< 1
Card S

.

For ω ∈Ω, since |1−λω(s)|< εCard S, we get λω(s) = γ(s). So if we put

λ (s) : Ω−→ IC , ω 7−→ γ(s)

we have λ ∈Λ(S, IC) and g = hδλ . By Lemma 9.2.1, we may choose ε in such a way that
the inequality |λ (s)−1|< ε ′ holds for all s ∈ S.

c) By b), there is a family (λi)i∈INn in Λ(S, IC) and

0 = u0 < u1 < · · ·< un−1 < un = 1

such that gui = gui−1δλi for every i ∈ INn. By induction g0δ

(
j

∏
i=1

λi

)
= gu j for every

j ∈ INn. Thus if we put λ :=
n
∏
i=1

λi then g0δλ = g1
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Remark. Let λ ∈ Λ(T,E) and f ′ = f δλ (∈F (T,E)). For every full E-C*-algebra F

and n ∈ IN we denote by F ′n the equivalent of Fn constructed with respect to f ′ instead of
f (Definition 5.0.2). By [2] Proposition 2.2.2 a1⇒ a2, there is for every n ∈ IN a unique
E-C*-isomorphism ϕF

n : Fn −→ F ′n such that for all m,n ∈ IN, m < n, the diagram

Fm
ϕF

m−−−−→ F ′my y
Fn −−−−→

ϕF
n

F ′n

is commutative, where the vertical arrows are the canonical inclusions. We put C′n :=
ϕE

n Cn for evrey n ∈ IN. (C′n)n∈IN satisfies the conditions of Axiom 5.0.3 with respect to
f ′, so we can construct a K-theory with respect to T , E, f ′, and (C′n)n∈IN, which we shall
denote by K f ′ . If m,n ∈ IN, m < n, then the diagrams

Fm
ρF

n,m−−−−→ Fn

ϕF
m

y yϕF
n

F ′m −−−−→
ρF ′

n,m

F ′n

Un Fm
τF

n,m−−−−→ Un Fn

ϕF
m

y yϕF
n

Un F ′m −−−−→
τF ′

n,m

Un F ′n

are commutative and so we get the isomorphisms

Pr F→ −→ Pr F ′→ , un F← −→ un F ′← .

By these considerations it can be followed that K and K f ′ coincide.

DEFINITION 9.2.5 Let Ω be the spectrum of E, Γ a closed set of Ω, and F a

C*-algebra. We denote by C (E; Γ,F) the E-C*-algebra obtained by endowing the

C*-algebra C (Γ,F) with the structure of an E-C*-algebra by putting

αx : Γ−→ F , ω 7−→ α(ω)x(ω)

for all (α,x)∈ E×C (Γ,F). If Ω′ is an open set of Ω then the ideal and E-C*-subalgebra{
x ∈ C (E;Ω,F) | x|(Ω\Ω

′) = 0
}

of C (E; Ω,F) will be denoted C0 (E; Ω′,F).
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By Tietze’s theorem

0−→ C0
(
E; Ω

′,F
) ϕ−→ C (E; Ω,F)

ψ−→ C
(
E; Ω\Ω

′,F
)
−→ 0

is an exact sequence in ME , where ϕ denotes the inclusion map and

ψ : C (E; Ω,F)−→ C
(
E; Ω\Ω

′,F
)
, x 7−→ x|(Ω\Ω

′) .

PROPOSITION 9.2.6 We denote by Ω the spectrum of E, by Γ a closed set of Ω, and by

ϑ : [0,1]×Ω−→Ω a continuous map such that

ω ∈Ω =⇒ ϑ(0,ω) = ω , ϑ(1,ω) ∈ Γ

and ϑ(s,ω) =ω for all s∈ [0,1] and ω ∈ Γ. We put E ′ :=C (Γ, IC), E ′′ := E, ϑs :=ϑ(s, ·)
for every s ∈ [0,1], and

φ : E −→ E ′ , x 7−→ x|Γ , φ
′ : E ′ −→ E ′′ = E , x′ 7−→ x′ ◦ϑ1 ,

f ′ : T ×T −→Un E ′ , (s, t) 7−→ φ f (s, t) = f (s, t)|Γ ,

f ′′ : T ×T −→Un E ′′ , (s, t) 7−→ φ
′ f ′(s, t) = f (s, t)◦ϑ1 .

a) There is a λ ∈ Λ(T,E) such that f ′′ = f δλ and the K-theories associated to f and

f ′′ coincide (as formulated in the above Remark). If Γ is a one-point set (i.e. Ω is

contractible) then f ′′(s, t) ∈Un IC (⊂Un E) for all s, t ∈ T .

b) If we put

ψ : C (E; Ω,F)−→ C (E; Γ,F) , x 7−→ x|Γ

then Ki(C0 (E; Ω\Γ,F)) = {0} and

Ki(ψ) : Ki(C (E;Ω,F))−→ Ki(C (E;Γ,F))

is a group isomorphism for every i ∈ {0,1}.

c) If Γ′ is a compact subspace of Ω\Γ then

Ki(C0
(
E; Ω\ (Γ∪Γ

′),F
)
)≈ Ki+1(C

(
E; Γ

′,F
)
)

for all i ∈ {0,1}.
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d) Let Γ̄ be a closed set of Ω, ϕ̄ : C0
(
E; Ω\ (Γ∪ Γ̄),F

)
−→ C (E; Ω,F) the inclusion

map,

ψ̄ : C0 (E; Ω,F)−→ C
(
E; Γ∪ Γ̄,F

)
, x 7−→ x|(Γ∪ Γ̄) ,

and δ0,δ1 the corresponding maps from the six-term sequence associated to the

exact sequence in ME

0−→ C0
(
E; Ω\ (Γ∪ Γ̄),F

) ϕ̄−→ C (E; Ω,F)
ψ̄−→ C

(
E; Γ∪ Γ̄,F

)
−→ 0

then the sequence

0−→ Ki(C (E; Ω,F))
Ki(ψ)−→ Ki(C

(
E; Γ∪ Γ̄,F

)
)

δi−→

δi−→ Ki+1(C0
(
E; Ω\ (Γ∪ Γ̄),F

)
)−→ 0

is exact for every i ∈ {0,1}.

a) By Lemma 9.2.4 c), for every m ∈ IN there is a λm ∈ Λ(Sm,E) with f ′′|(Sm×Sm) =

gmδλm. We put

λ : T −→Un E , t 7−→ λm(t) if t ∈ Sm .

Then

f ′′(s, t) = ∏
m∈IN

(gmδλ )(sm, tm) = ( f δλ )(s, t)

for all s, t ∈ T , i.e. f ′′ = f δλ .

b) Let n ∈ IN and X ∈

( ˇ︷ ︸︸ ︷
C0
(
E ′′; Ω\Γ,F

))
n

. Then X has the form

X = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f ′′

t ,

where αt ∈ E ′′ and xt ∈ C0 (E ′′; Ω\Γ,F) for all t ∈ Tn. We put

Xs := ∑
t∈Tn

((αt ◦ϑs,xt ◦ϑs)⊗ idK)V
f ′′

t

for every s ∈ [0,1]. Then

[0,1]−→

( ˇ︷ ︸︸ ︷
C0
(
E ′′; Ω\Γ,F

))
n

, s 7−→ Xs
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is a continuous map, X0 = X ,

X1 = ∑
t∈T

((αt ◦ϑ1,0)⊗ idK)V
f ′′

t ,

and ( ˇ︷ ︸︸ ︷
C0
(
E ′′ : Ω\Γ,F

))
n

−→

( ˇ︷ ︸︸ ︷
C0
(
E ′′; Ω\Γ,F

))
n

, X 7−→ Xs

is an E ′′-C*-homomorphism for every s ∈ [0,1]. Thus K f ′′
i (C0 (E ′′; Ω\Γ,F)) = {0}. By

a), Ki(C0 (E; Ω\Γ,F)) = {0}.

If ϕ : C0 (E;Ω\Γ, f )−→ C (E;Ω,F) denotes the inclusion map then

0−→ C0 (E; Ω\Γ,F)
ϕ−→ C (E; Ω,F)

ψ−→ C (E; Γ,F)−→ 0

is an exact sequence in ME and the assertion follows from the six-term sequence
(Corollary 8.3.8 c)).

c) If we put

F1 := C0
(
E; Ω\ (Γ∪Γ

′),F
)
, F2 := C0 (E; Ω\Γ,F) , F3 := C

(
E; Γ

′,F
)
,

ϕ : F1 −→ F2 , x 7−→ x ,

ψ : F2 −→ F3 , x 7−→ x|Γ′

then
0−→ F1

ϕ−→ F2
ψ−→ F3 −→ 0

is an exact sequence in ME and the assertion follows from b) and from the six-term
sequence (Corollary 8.3.8 d)).

d) ϕ̄ factorizes through C0 (E; Ω\Γ, f ) so by b), Ki(ϕ̄) = 0 and the assertion follows
from the six-term sequence Corollary 8.3.8 b).

COROLLARY 9.2.7 We use the notation of Proposition 9.2.6. Let Ω̄ be a compact

space and ϑ̄ : Ω −→ Ω̄ a continuous map such that the induced maps Ω \ (Γ∪Γ′)→
Ω̄\ ϑ̄(Γ∪Γ′), Γ→ ϑ̄(Γ), and Γ′→ ϑ̄(Γ′) are homeomorphisms. If we put Ē :=C

(
Ω̄, IC

)
and

φ̄ : Ē −→ E , x 7−→ x◦ ϑ̄
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and take an f̄ ∈F (T, Ē) such that f (s, t) = φ̄ f̄ (s, t) for all s, t ∈ T and a corresponding

(C̄n)n∈IN ∈ ∏
n∈IN

Ēn then with the notation from the beginning of section 9.1 (with E and Ē

interchanged)

K̄i
(
C0
(
Ē; Ω̄\ ϑ̄(Γ∪Γ

′),F
))
≈ K̄i+1

(
C
(
Ē; ϑ̄(Γ′),F

))
,

for all i ∈ {0,1}, where K̄ denotes the K-theory associated to T , Ē, f̄ , and (C̄n)n∈IN. If in

addition Γ′ has the same property as Γ then

K̄i
(
C
(
Ē; ϑ̄(Γ),F

))
≈ K̄i

(
C
(
Ē; ϑ̄(Γ′),F

))
.

By our hypotheses,

Φ̄
(
C0
(
E; Ω\ (Γ∪Γ

′),F
))
≈ C0

(
Ē; Ω̄\ ϑ̄(Γ∪Γ

′),F
)
,

Φ̄(C (E; Γ,F))≈ C
(
Ē; ϑ̄(Γ),F

)
, Φ̄

(
C
(
E; Γ

′,F
))
≈ C

(
Ē; ϑ̄(Γ′),F

)
,

so by Proposition 9.2.6 b) and Theorem 9.1.3,

K̄i
(
C0
(
Ē; Ω̄\ ϑ̄(Γ∪Γ

′),F
))
≈ Ki

(
C0
(
E; Ω\ (Γ∪Γ

′),F
))
≈

≈ Ki+1
(
C
(
E; Γ

′,F
)
)≈ K̄i+1(C

(
Ē; ϑ̄(Γ′),F

))
.

If the supplementary hypothesis is fulfilled then by Proposition 9.2.6 c) and Theorem
9.1.3,

K̄i
(
C
(
Ē; ϑ̄(Γ),F

))
≈ Ki(C (E; Γ,F))≈

≈ Ki
(
C
(
E; Γ

′),F
))
≈ K̄i

(
C
(
Ē; ϑ̄(Γ′),F

))
.

COROLLARY 9.2.8 Assume E = C ( IT, IC).

a) If θ1, θ2, θ3, θ4 ∈ IR such that θ1 ≤ θ2 < θ1 +2π , θ3 ≤ θ4 < θ3 +2π then

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ1 ≤ θ ≤ θ2

}
,F
))
≈

≈ Ki

(
C
(

E;
{

eiθ
∣∣∣ θ3 ≤ θ ≤ θ4

}
,F
))

for every i ∈ {0,1}.
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b) Let θ1,θ2 ∈ IR, θ1 ≤ θ2 < θ1 +2π and let Γ be a closed set of

IT\
{

eiθ
∣∣∣ θ2 < θ < θ1 +2π

}
such that eiθ1 ∈ Γ and eiθ2 6∈ Γ if eiθ1 6= eiθ2 . Then

Ki(C0 (E; IT\Γ,F))≈ Ki+1(C (E; Γ,F))

for every i ∈ {0,1}. Moreover

Ki(C0 (E; IT\Γ,F))≈

 Ki+1(C (E; {1},F))Γ if F is finite

∑
n∈IN

Ki+1(C (E; {1},F)) if F is infinite .

c) If Γ1, Γ2 are closed sets of IT, not equal to IT and such that their cardinal numbers

are equal if they are finite then

Ki(C (E; Γ1,F))≈ Ki(C (E; Γ2,F))

for all i ∈ {0,1}.

a) We may assume θ1 ≤ θ3 < θ1 +2π . Put Ω′ := [θ1,sup(θ2,θ3)], E ′ := C (Ω′, IC),

ϑ : Ω
′ −→ IT , α 7−→ eiα ,

φ : E −→ E ′ , x 7−→ x◦ϑ .

Since it is possible to find an f ′ ∈ F (T,E ′) and a (C′n)n∈IN ∈ ∏
n∈IN

E ′n with the desired

properties, we get

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ1 ≤ θ ≤ θ2

}
,F
))
≈ Ki

(
C
(

E; {eiθ3},F
))

.

by Corollary 9.2.7. Thus

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ3 ≤ θ ≤ θ4

}
,F
))
≈ Ki

(
C
(

E; {eiθ3},F
))

,

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ1 ≤ θ ≤ θ2

}
,F
))
≈

≈ Ki

(
C
(

E;
{

eiθ
∣∣∣ θ3 ≤ θ ≤ θ4

}
,F
))

.

b) If we put Ω′ := [θ1,θ1 +2π], E ′ := C (Ω′, IC),

ϑ : Ω
′ −→ IT , α 7−→ eiα ,
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φ : E −→ E ′ , x 7−→ x◦ϑ ,

then the first assertion follows from Corollary 9.2.7. If Γ is finite then the last assertion
follows now from a) (and Corollary 6.2.10 b) and Proposition 7.3.1 b)).

Assume now Γ infinite. Then Ω0 := IT \ Γ is the union of a countable set of open
intervals. Let Ξ be the set of finite such intervals ordered by inclusion and for every
Θ ∈ Ξ let ΩΘ be the union of the intervals of Θ and ΓΘ := IT\ΩΘ. By the above,

Ki(C0 (E; IT\ΓΘ,F))≈ Ki+1(C (E; {1},F))Θ

for every Θ ∈ Ξ. We get an inductive system of E-modules with C0 (E; IT\Γ,F) as
inductive limit. By Theorem 6.2.12 and Theorem 7.3.6, Ki(C0 (E; IT\Γ,F)) is the
inductive limit of Ki(C0 (E; IT\ΓΘ,F)) for Θ running through Ξ, which proves the
assertion.

c) follows from b).

Remark. Let δ0 and δ1 be the group homomorphisms from the six-term sequence
associated to the exact sequence in ME

0−→ C0 (E; IT\Γ,F)−→ C (E; IT,F)−→ C (E; Γ,F)−→ 0 .

Then δ0 and δ1 do not coincide with the group isomorphism

Ki(C0 (E; IT\Γ,F))≈ Ki+1(C (E; Γ,F))

from Corollary 9.2.8 b).

COROLLARY 9.2.9 If Ω is a compact space such that E = C (Ω× IT, IC) then

Ki(C0 (E; Ω× ( IT\{1}),F))≈ Ki+1(C (E; Ω×{1},F))

for every i ∈ {0,1}.

COROLLARY 9.2.10 If the spectrum of E is IBn for some n ∈ IN then

Ki(C0 (E; IBn \{0},F)) = {0} and

Ki(C0 (E; { α ∈ IRn | 0 < ‖α‖< 1} ,F))≈ Ki+1(C (E; SS n−1,F))

for every i ∈ {0,1}.
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COROLLARY 9.2.11 Let (k j) j∈J be a finite family in IN, Ω′ the topological sum of the

family of balls (IBk j) j∈J , and Ω the compact space obtained from Ω′ by identifying the

centers of theses balls. If ω denotes the point of Ω obtained by this identification and S

denotes the union of (SS k j−1) j∈J in Ω and if E = C (Ω, IC) then

Ki (C0 (E; Ω\{ω},F)) = {0} ,

Ki(C0 (E; (Ω\ ({ω}∪S),F))≈ Ki+1(C (E; S,F))

for every i ∈ {0,1}.

If we denote by ϑ : Ω′ −→ Ω the quotient map, by Γ the subset of Ω′ formed by
the centers of the balls (IBk j) j∈J , and by Γ′ the union of (SS k j−1) j∈J (Γ′ ⊂ Ω′) then the
assertions follow from Proposition 9.2.6 b), c) and Corollary 9.2.7.

LEMMA 9.2.12 Let S be a finite group, g ∈F (S,E), and Ω the spectrum of E.

a) If there is an ω0 ∈ Ω and a family (θ(s, t))s,t∈S of selfadjoint elements of E such

that

θ(r,s)+θ(rs, t) = θ(r,st)+θ(s, t) , g(s, t) = eiθ(s,t)(g(s, t)(ω0))

for all r,s, t ∈ S then there is a λ ∈ Λ(S, IC) with (gδλ )(s, t) = g(s, t)(ω0) for all

s, t ∈ S.

b) If Ω is totally disconnected then there is a λ ∈ Λ(S,E) such that

((gδλ )(s, t))(Ω)

is finite for all s, t ∈ S.

a) For every u ∈ [0,1] put

gu : S×S−→Un E , (s, t) 7−→ eiuθ(s,t)(g(s, t)(ω0)) .

Then

[0,1]−→F (S,E), u 7−→ gu
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is a continuous map with g1 = g and g0(s, t) = g(s, t)(ω0) for all s, t ∈ S. By Lemma 9.2.4
a),b), there are

0 = u0 < u1 < · · ·< uk−1 < uk = 1

and a family (λ j) j∈INk in Λ(S, IC) such that gu j−1 = gu j δλ j for every j ∈ INk. We prove by
induction that

gul−1 = g
k

∏
j=l

δλ j

for all l ∈ INk. This is obvious for l = k. Assume the identity holds for l ∈ INk, l > 1.
Then

g
k

∏
j=l−1

δλ j =

(
g

k

∏
j=l

δλ j

)
δλl−1 = gul−1δλl−1 = gul−2 ,

which finishes the proof by induction. If we put

λ :=
k

∏
j=1

λ j ∈ Λ(S, IC)

then by the above

gδλ = g
k

∏
j=1

δλ j = g0 .

b) Let ω0 ∈ Ω. Since Ω is totally disconnected and S is finite, by continuity, there is a
clopen neighborhood Ω0 of ω0 and a family (θ(s, t))s,t∈S in ReC (Ω0, IC) such that

θ(r,s)+θ(rs, t) = θ(r,st)+θ(s, t) , g(s, t)|Ω0 = eiθ(s,t)(g(s, t)(ω0))

for all r,s, t ∈ S. By a), there is a λ ∈ Λ(S, IC) with

((g|Ω0)δλ )(s, t) = g(s, t)(ω0)

for all s, t ∈ S.

The assertion follows now from the fact that there is a finite partition (Ω j) j∈J of Ω with
clopen sets such that Ω j possesses the property of the above Ω0 for every j ∈ J.

PROPOSITION 9.2.13 If the spectrum of E is totally disconnected then there is a λ ∈
Λ(T,E) such that (( f δλ )(s, t))(Ω) is finite for all s, t ∈ T .
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By Lemma 9.2.12 b), for every m ∈ IN there is a λm ∈ Λ(Sm,E) such that
((gmδλm)(s, t))(Ω) is finite for all s, t ∈ Sm. If we put

λ : T −→Un E , t 7−→ λm(t) if t ∈ Sm

then λ has the desired properties.

PROPOSITION 9.2.14 Assume that T , f , and (Cn)n∈IN satisfy the conditions of

Example 5.0.4 and of its Remark 1 and that the spectrum Ω of E is simply connected.

a) There is a λ ∈ Λ(T,E) such that ( f δλ )(s, t) ∈ IC for all s, t ∈ T .

b) If K1 (C (Ω, IC)) = {0} for the classical K1 then K1 (E) = {0} for the present theory.

a) follows from Lemma 9.2.12 a).

b) follows from a), Remark 1 of Example 5.0.4, and Proposition 7.1.10.
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