| Peer-Reviewed

Curative and Preventive Treatment for Cardiovascular Disease (CVD) Targeting Multiple Etiology

Received: 19 May 2021    Accepted: 31 May 2021    Published: 15 June 2021
Views:       Downloads:
Abstract

Gene deficient or knockout (KO) mice and rabbits are models of atherosclerosis focusing on cholesterol plaques, which do not reflect the complex etiology of cardiovascular disease (CVD). Inhibiting the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase or the proprotein convertase subtilisin/kexin type 9 (PCSK9) reduce cholesterol levels but not the rate of CVD. Moreover, the one-drug-one-gene paradigm particularly targeting any one of the G protein-coupled receptors (GPCRs), which represent the largest protein family encoded by the human genome, has at best produced palliative treatment. Vascular diseases including CVD are caused by extraneous (xeno) factors, which are of multifactorial etiology consisting of upstream and downstream phases. The upstream phase is the physical breach of the cells protective glycocalyx (GCX) shield by chemical and biological pollutants, resulting in a sequela of cell damages (plexic) that is manifested downstream in the form of diseases, herein called xenoplexic diseases. Xenoplexic disease is an etiologic description while chronic disease is symptom-centric. This study treated a natural mouse with extraneous agents, which produced plaques and plaque reduction was the end point to evaluate the curative and/or preventive treatment effect of the 3-component compound therapy. Histopathology monitored the presence of plaque, and a 4-panel biomarker, based on GCX disruption, was subsequently developed as a surrogate to monitor plaque formation. Of the several 3-NCE combos tested 4 combos were found to be preventive and curative of plaques indicating the effectiveness of a combo platform therapy. One combo is chosen as the lead candidate and hereby designated as Embotricin TM.

Published in Cardiology and Cardiovascular Research (Volume 5, Issue 2)
DOI 10.11648/j.ccr.20210502.18
Page(s) 97-119
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Cardiovascular Disease (CVD), Glycocalyx (GCX), Xenoplexic Disease, Combo Therapy

References
[1] Institute of Medicine (US) Committee on a National Surveillance System for Cardiovascular and Select Chronic Diseases. A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases (2011) Washington (DC): National Academies Press.
[2] Dhami, N. "Trends in Pharmacognosy: A modern science of natural medicines". Journal of Herbal Medicine (2013) 3 (4): 123–131.
[3] Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. (2015) 14 (7): 475-86.
[4] Gould K. Antibiotics: from prehistory to the present day, J Antimicrob Chemother (2016) 71 (3): 572–575.
[5] Tunac, J. B. Microorganisms, Strategic sources of novel anti-tumor agents. In Anticancer Drug Discovery and Development: Natural Products and New Molecular Models, eds F. Valeriote, T. Corbett, & L. Baker. Kluwer Acad. Publishers. Boston/Dordrecht/London. [http://www.wkap.nl/prod/b/0-7923-2928-7?a=1.
[6] Dan VM, Sanawar R. Anticancer Agents from Microbes. In: Sugathan S., Pradeep N., Abdulhameed S. (eds) Bioresources and Bioprocess in Biotechnology. Springer, Singapore (2017) 171-184. https://doi.org/10.1007/978-981-10-4284-3.
[7] Horowitz NH. "The sixtieth anniversary of biochemical genetics". Genetics (1996) 143 (1): 1–4.
[8] Endo A, Kuroda M, Tsujita Y. "ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium". J Antibiotics (1976) 29 (12): 1346–8.
[9] Hopkins AL, Groom CR. The Druggable Genome. Nature Reviews Drug Discovery (2002) 1 (9): 727-30.
[10] Shadyab AH, LaCroix AZ. Genetic Factors associated with longevity: a review of recent findings, Ageing Research Reviews (2015) 19: 1–7.
[11] Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. (2000) 343: 78-85.
[12] Willett WC. Balancing lifestyle and genomics research for disease prevention. Science (2002) 296 (5568): 695-8.
[13] Legoff L, D’Cruz SC, Tevosian S, Primig M, Smagulova F. Transgenerational inheritance of environmentally induced epigenetic alterations during mammalian development. Cells. (2019) 8 (12): 1559.
[14] Waddington CH. Epigenetics and Evolution. Symp. Soc. Exp. Biol. (1953) 7: 186-199.
[15] Deans C, Maggert KA. What do you mean, "epigenetic”? Genetics (2015) 199: 887–896.
[16] Bachman M, Uribe-Lewis S, Yang X, Burgess HE, Iurlaro M, Reik W, Murrell A, Balasubramanian S. 25-Formylcytosine can be a stable DNA modification in mammals. Nature Chemical Biology (2015) 11: 555–557.
[17] Wu X, Zhang Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nature Reviews Genetics (2017) 18: 517–534.
[18] Kitsera N., Allgayer J., Parsa E., Geier N., Rossa M., Carell T., Khobta A. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Nucleic Acids Res (2017) 45: 11033–11042.
[19] Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. (2016) 118: 620–636.
[20] Hu Y, Bajorath J. Monitoring drug promiscuity over time. F1000Research (2014) 3: 218. doi: 10.12688/f1000research.5250.2.
[21] Melchiorre C, Andrisano V, Bolognesi ML, Budriesi R, Cavalli A, Cavrini V, Rosini M, Tumiatti V, Recanatini M. Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer’s disease. J Med Chem (1998) 41: 4186–4189.
[22] Merino A, Bronowska AK, Jackson DB, Cahill DJ. Drug profiling: knowing where it hits. Drug Discov. Today (2010) 15 (17-18): 749–756.
[23] Anighoro, A., Bajorath, J, Rastelli, G. Polypharmacology: Challenges and Opportunities in Drug Discovery. J Med Chem (2014) 57: 7874-7887.
[24] Danhof M, Klein K, Stolk P, Aitken M, Leufkens H. The future of drug development: the paradigm shifts towards systems therapeutics, Drug Discovery Today (2018) 23 (12): 1990-1995.
[25] Birtwistle MR, Hansen J, Gallo JM, Sreeharish Muppirisetty S, Ung PM, Iyengar R, Schlessinger A. Systems Pharmacology: An Overview. In: Mager D., Kimko H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series. 23, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44534-24.
[26] Yensen J, Naylor S. The Complementary Iceberg Tips of Diabetes and Precision Medicine. J. Precision Med (2016) 3: 39-57.
[27] Christensen, CM, Grossman MD, Hwang J. The Innovator’s Prescription: A Disruptive Solution for Health Care. McGraw-Hill, New York, NY, USA (2009).
[28] Yau T. "Precision treatment in colorectal cancer: Now and the future". JGH Open (2019) 3 (5): 361–369.
[29] Lu YF, Goldstein DB, Angrist M, Cavalleri G. "Personalized medicine and human genetic diversity". Cold Spring Harbor Perspectives in Medicine (2014) 4 (9): a008581. doi: 10.1101/cshperspect. a008581.
[30] Jones DT, Banito A, Grünewald TG, Haber M, Jäger N, Kool M, Milde T, Molenaar JJ, Nabbi A, Pugh TJ, Schleiermacher G, Smith MA, Frank Westermann F, Pfister SM. "Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours". Nature Reviews Cancer (2019) 19 (8): 420–438.
[31] Dowling HF. Present status of therapy with combinations of antibiotics. American Journal of Medicine1 (1965) 39 (5): 796-803.
[32] English AR, Mcbride TJ, Van Halsema G, Caklozzi M. Biologic Studies on PA 775, a Combination of Tetracycline and Oleandomycin with Synergistic Activity. Antibiotics Chemotherapy (1956) 6 (8): 511-22.
[33] Morton Mintz M. FDA and Panalba: A Conflict of Commercial, Therapeutic Goals? Science (1969) 165 (3896): 875-881.
[34] Peltzman S. An Evaluation of Consumer Protection Legislation: The 1962 Drug Amendments. J Political Economy (1973) 81 (5): 1051.
[35] Torok E, Moran E, Cooke F. Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press (2009) 56. ISBN 9780191039621.
[36] Böhni E. "Chemotherapeutic activity of the combination of trimethoprim and sulfamethoxazole in infections of mice". Postgrad Med J (1969) 45 Suppl: 18–21.
[37] Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev (2006) 58: 621–81.
[38] Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. DrugDiscov Today (2007) 12: 34–4.
[39] Oberleithner H. Vascular endothelium leaves fingerprints on the surface of erythrocytes. Pflugers Arch (2013) 465 (10): 1451-8.
[40] Halcox JPJ. Endothelial Dysfunction, Editor (s): David Robertson, Italo Biaggioni, Geoffrey Burnstock, Phillip A. Low, Julian F. R. Paton, Primer on the Autonomic Nervous System (Third Edition), Academic Press (2012) 319-324.
[41] Yaroustovsky M, Abramyan M, Krotenko N, Popov D, Plyushch M, Rogalskaya E. A pilot study of selective lipopolysaccharide adsorption and coupled plasma filtration and adsorption in adult patients with severe sepsis. Blood Purif (2015) 39 (1-3): 210-7.
[42] Lang F. Stiff Endothelial Cell Syndrome in Vascular Inflammation and Mineralocorticoid Excess. Hypertension (2011) 57: 146–147.
[43] Oberleithner H, Wälte M, Kusche-Vihrog K. Sodium renders endothelial cells sticky for red blood cells. Front Physiol (2015) 6: 188. https://doi.org/10.3389/fphys.2015.00188.
[44] Goldberg IJ. Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis. J Lipid Res (1996) 37: 693–707.
[45] Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care (2019) 23 (1): 16. doi: 10.1186/s13054-018-2292-6.
[46] Cancel LM, Ebong EE, Mensah S, Hirschberg C, Tarbell JM. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis (2016) 252: 136–146.
[47] Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med (2006) 259 (4): 339-50.
[48] Bertram A, Stahl K, Hegermann J, Haller H. The glycocalyx layer. In R. Hahn (Ed.), Clinical Fluid Therapy in the Perioperative Setting (2016) 73-81. Cambridge: Cambridge University Press.
[49] Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med (2019) 44: 3-15.
[50] Schieber M, Chandel NS. ROS Function in Redox Signaling and Oxidative Stress. Curr Biol (2014) 9; 24 (10): R453–R462.
[51] Robertson AP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes,” J. Biol. Chem (2004) 279 (41): 42351–42354.
[52] Brookheart RT, Michel CI, Listenberger LL, D. Ory DS, Schaffer JE. The non-coding RNA gadd7 is a regulator of lipid-induced oxidative and endoplasmic reticulum stress,” J. Biol. Chem (2009) 284 (12): 7446–7454.
[53] Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol (2018) 23: 72 (17): 2054-2070.
[54] McMurray F, Patten DA, Harper ME. Reactive Oxygen Species and Oxidative Stress in Obesity-Recent Findings and Empirical Approaches. Obesity (Silver Spring) (2016) 24 (11): 2301-2310.
[55] Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longevity. Article ID (2017) 8416763. https://doi.org/10.1155/2017/84167631.
[56] Zeliger HI. Causes, Mechanisms and Prevention of Environmental Diseases. Dual Diagn Open Acc (2015) 1: 1. doi: 10.21767/2472-5048.100001.
[57] Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3rd, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study Lancet (2017) 13; 389 (10082): 1907-1918.
[58] Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, Church MK, Saluja R. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front Immunol (2018) 13; 9: 1873. doi: 10.3389/fimmu.2018.01873.
[59] Benly P. Role of Histamine in Acute Inflammation J. Pharm. Sci. & Res (2015) 7 (6): 373-376.
[60] Fulda F, Gorman AM, Hori O, Samali A. Cellular Stress Responses: Cell Survival and Cell Death. Inter. J. Cell Biol. Article ID (2010) 214074. https://doi.org/10.1155/2010/214074.
[61] Xu L, Cheng D, Huang Z, Ding S, Zhang W, Tan H, Shi H, Chen R, Zou Y, Wang TC, Yang X, Ge J. Histamine promotes the differentiation of macrophages from CD11b+ myeloid cells and formation of foam cells through a Stat6-dependent pathway. Atherosclerosis (2017) 263: 42-52.
[62] McFarlane SI (ed). Dyslipidemia. IntechOpen (2019) DOI: 10.5772/intechopen.76825.
[63] Brown MS, Goldstein JL. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc Natl Acad Sci U S A (1974) 71 (3): 788-92.
[64] Sigurdsson G, Nicoll A, Lewis B. Conversion of very low-density lipoprotein to low density lipoprotein. A metabolic study of apolipoprotein B kinetics in human subjects J Clin Invest (1976) 56 (6): 1481-90.
[65] Le Goff W, Guerin M, Chapman MJ. Pharmacological modulation of cholesterol ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol Ther (2004) 101: 17–38.
[66] Nettleton JA, Brouwer IA, Geleijnse JM, Hornstra G. Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Ann. Nut. Metab (2017) 70 (1): 26-33.
[67] Prenner SB, Mulvey CK, Ferguson JF, Rickels MR, Bhatt AB, Reilly MP. Very low-density lipoprotein cholesterol associates with coronary artery calcification in type 2 diabetes beyond circulating levels of triglycerides Atherosclerosis (2014) 236 (2): 244-250.
[68] Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res (2016) 118: 547-563.
[69] Praagman J, de Jonge EA, Kiefte-de Jong JC, Beulens JW, Sluijs I, Schoufour JD, Hofman A, van der Schouw YT, Franco OH. Dietary Saturated Fatty Acids and Coronary Heart Disease Risk in a Dutch Middle-Aged and Elderly Population. Arterioscler Thromb Vasc Biol (2016) 36 (9): 2011-8.
[70] Hozumi T, Eisenberg M, Sugioka K, Kokkirala AR, Watanabe H, Teragaki M, Yoshikawa J, Homma S. Change in coronary flow reserve on transthoracic Doppler echocardiography after a single high-fat meal in young healthy men. Ann Intern Med (2002) 136 (7): 523-8.
[71] Hikmat F, Appel LJ. Effects of the DASH diet on blood pressure in patients with and without metabolic syndrome: Results from the DASH trial. J Human Hypertension (2014) 28: 170–175.
[72] Widmer RJ, Flammer AJ, Lerman LO, and Lerman A. “The Mediterranean Diet, its Components, and Cardiovascular Disease. Am J Med (2015) 128 (3): 229–238.
[73] Paul AA, Southgate DAT. McCance and Widdowson's The Composition of Foods, Fourth revised and extended edition of MRC Special Report No 297 (1985) London Amsterdam Her Majesty's Stationery Office Elsevier North Holland Biomedical Press.
[74] Liu H, Pathak P, Boehme S, Chiang JY. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis. J Lipid Res (2016) 57 (10) 1831-1844.
[75] Lecerf JM, de Lorgeril M. "Dietary cholesterol: from physiology to cardiovascular risk". The British Journal of Nutrition (2011) 106 (1): 6–14.
[76] Soliman GA. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients (2018) 10 (6): 780. doi: 10.3390/nu10060780.
[77] Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb (1993) 13 (2): 310-5.
[78] VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol (2004) 24 (1): 12-22.
[79] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev (2011) 91 (1): 327-87.
[80] Giddens DP, Zarins CK, Glagov S. The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis. J Biomech Eng (1993) 115 (4B): 588–594.
[81] Slager C, Wentzel J. The Role of Shear Stress in the Generation of Rupture-Prone Vulnerable Plaques, Nat. Clin. Pract. Cardiovasc. Med (2005) 2: 401–407.
[82] Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandstrom T, Blomberg A, Newby DE. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med (2009) 6: 36–44.
[83] Hansson GK, Libby P, Tabas I. Inflammation, and plaque vulnerability. J Intern Med (2015) 278 (5): 483-93.
[84] Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation (2015) 131 (4): e29-322l.
[85] Solinas C, Saba L, Sganzerla P, Petrelli F. Venous and arterial thromboembolic events with immune checkpoint inhibitors: A systematic review. Thrombosis Research (2020) 196: 444-453.
[86] Kent KC. "Clinical practice. Abdominal aortic aneurysms". New England J Med (2014) 371 (22): 2101–8.
[87] Wendelboe AM, Raskob GE. Global Burden of Thrombosis Epidemiologic Aspects. Circulation Research (2016) 118: 1340–1347.
[88] Song P, Rudan D, Zhu Y, Fowkes FJ, Rahimi K, Fowkes FG, Rudan I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health (2019) 7: e1020–30.
[89] Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine (2020) 29–30.
[90] Anitschkow N. Uber die veranderungen der kaninchenaorta bei experimenteller cholesterinsteatose. Beitr Pathol Anat (1913) 56: 379–404.
[91] Bortx WM. Reversibility of Atherosclerosis in Cholesterol-Fed Rabbits. Circulation Res (1968) 22: 135-139.
[92] Wissler RW, Vesselinovitch D. Studies of regression of advanced atherosclerosis in experimental animals and man. Ann N Y Acad Sci (1976) 275: 363-378.
[93] Keys A (ed). Coronary heart disease in seven countries. Circulation (1970) 41 (4S1): 1-198.
[94] Liu SK, Tilley LP, Tappe JP, Fox PR. Clinical and pathologic findings in dogs with atherosclerosis: 21 cases (1970-1983). J Am Vet Med Assoc (1986) 189: 227–32.
[95] Barrie J, Watson TDG, Stear MJ, Nash AS. Plasma cholesterol and lipoprotein concentrations in the dog: the effects of age, breed, gender, and endocrine disease. J Small Anim Pract (1993) 34: 507–12.
[96] Cave, NJ, Allan, FJ, Schokkenbroek SL, Metekohy CA, Pfeiffer DU. A cross-sectional study to compare changes in the prevalence and risk factors for feline obesity between 1993 and 2007 in New Zealand. Prev. Vet. Med (2012) 107: 121–133.
[97] Kienzle E. Blood sugar levels and renal sugar excretion after the intake of high carbohydrate diets in cats. J. Nutrition (2004) 124: 2563S-2567S.
[98] Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest (1993) 92 (2): 883-93.
[99] Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell (1992) 71 (2): 343-53, 1992.
[100] Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science (1992) 258 (5081): 468-71.
[101] Libby P, Ridker P, Hansson G. Progress, and challenges in translating the biology of atherosclerosis. Nature (2011) 473: 317–325.
[102] Krauss RM. Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol (2010) 21 (4): 305-11.
[103] Schwartz SM, Galis Z, Rosenfeld ME, Falk E. Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol (2007) 27: 705–713.
[104] Wang Y, Johnson JA, Fulp A, Sutton MA, Lessner SM. Adhesive strength of atherosclerotic plaque in a mouse model depends on local collagen content and elastin fragmentation. J. Biomech (2013) 46 (4): 716-22.
[105] Rosenfeld ME, Averill MM, Bennett BJ, Schwartz SM. Progression, and disruption of advanced atherosclerotic plaques in murine models. Curr Drug Targets (2008) 9 (3): 210-6.
[106] Adams LD, Geary RL, Li J, Rossini A, Schwartz SM. Expression profiling identifies smooth muscle cell diversity within human intima and plaque fibrous cap: loss of RGS5 distinguishes the cap. Arterioscler Thromb Vasc Biol (2006) 26: 319–325.
[107] Cheruvu PK, Finn AV, Gardner C, Caplan J, Goldstein J, Stone GW, Virmani R, Muller JE. Frequency and distribution of thin cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol (2007) 4: 50 (10): 940-9.
[108] Gore I, Tejada C. The Quantitative Appraisal of Atherosclerosis. Am J Pathol (1957) 33 (5): 875–885.
[109] World Health Organization Study Group. Classification of atherosclerotic lesions: report of a study group. WHO Tech Rep Ser (1958) 143: 1–20.
[110] Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis: A Report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation (1995) 92: 1355–1374.
[111] Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb (1992) 12 (1): 120-34.
[112] Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer A, Schwartz CJ, Wagner WD, Wissler RW. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. Arterioscler Thromb (1994) 14: 840–856.
[113] Stary HC. Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young children. Atherosclerosis (1987) 64: 91–108.
[114] Gerrity RG. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am J Pathol (1981) 103 (2): 191–200.
[115] Lewis JC, Taylor RG, Jerome WG. Foam cell characteristics in coronary arteries and aortas of White Carneau pigeons with moderate hypercholesterolemia. Ann N Y Acad Sci (1985) 454: 91-100.
[116] Rosenfeld ME, Tsukada T, Gown AM, Ross R. Fatty streak initiation in Watanabe Heritable Hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis (1987) 7: 9–23.
[117] Faggioto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate, I: changes that lead to fatty streak formation. Arteriosclerosis (1984) 4: 323–340.
[118] Uemura K, Sternby N, Vanecek R, Vihert A, Kagan A. Grading atherosclerosis in aorta and coronary arteries obtained at autopsy application of a tested method. Bull World Health Organ (1964) 31 (3): 297-320.
[119] Constantinides P. Production of experimental atherosclerosis in animals. J. Atheroscler Res (1961) 1: 374-385.
[120] Michael E. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced Atherosclerotic Lesions in the Innominate Artery of the ApoE Knockout Mouse. Arterioscler Thromb Vasc Biol (2000) 20: 2587-2592.
[121] Van Herck JL, De Meyer GRY, Martinet W, Van Hove CE, Foubert K, Theunis MH, Apers S, Bult H, Vrints CJ, Herman AG. Impaired Fibrillin-1 Function Promotes Features of Plaque Instability in Apolipoprotein E–Deficient Mice. Circulation (2009) 120: 2478–2487.
[122] Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther (2001) 69: 89–95.
[123] Parsanathan R, Jain SK. (. Metabolic Syndrome and Related Disorders. Mary Ann Liebert’s publishers (2020) 18 (1): 10–30.
[124] Kok WE. Biomarker panels for prognosis prediction in heart failure on a CHARM basis. J Lab Precis Med (2017) 2: 25-28.
[125] Wooley P, Tunac J. A novel model of atherosclerosis in mice. Joint Conference on 17th European Heart Disease and Heart Failure Congress and 2nd International Conference on Cardiovascular Medicine and Cardiac Surgery (2017) London, UK. (Scientific Tracks Abstracts).
[126] Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IMS, Abildgaard N, Waage A, Børset M. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood (2000) 95 (2): 388–392.
[127] Joensuu H, Anttonen A, Eriksson M, Mäkitaro R, Alfthan H, Kinnula V, Leppä S. Soluble Syndecan-1 and Serum Basic Fibroblast Growth Factor Are New Prognostic Factors in Lung Cancer. Cancer Res (2002) 62: 5210–5217.
[128] Bielecka-Dabrowa A, Michalska-Kasiczak M, Gluba A, Ahmed A, Gerdts E, von Haehling S, Rysz J, Banach M. Biomarkers and Echocardiographic Predictors of Myocardial Dysfunction in Patients with Hypertension. Sci Rep (2015) 5, 8916. https://doi.org/10.1038/srep08916.
[129] Yablecovitch D, Stein A, Shabat-Simon M, Naftali T, Gabay G, Laish I, Oren A, Konikoff FM. Soluble Syndecan-1 Levels Are Elevated in Patients with Inflammatory Bowel Disease. Dig Dis Sci (2015) 60: 2419–2426.
[130] de Oliveira Neves FM, Meneses GC, Sousa NEA, Menezes RR, Parahyba MC, Martins AMC, Libório AB. Syndecan-1 in Acute Decompensated Heart Failure – Association with Renal Function and Mortality. Circulation (2015) 79 (7): 1511-1519.
[131] Takahashi R, Negishi K, Watanabe A, Arai M, Naganuma F, Ohyama Y, Kurabayashi M, Serum syndecan-4 is a novel biomarker for patients with chronic heart failure, J Cardiol (2011) 57 (11): 325-332.
[132] Miranda CH, de Carvalho Borges M, Schmidt A, Marin-Neto JA, Pazin-Filho A. Evaluation of the endothelial glycocalyx damage in patients with acute coronary syndrome. Atherosclerosis (2016) 247: 184–188.
[133] Rehm M, Bruegger D, Christ, Conzen P, Thiel M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Reichart B, Peter K, Becker BF. Shedding of the Endothelial Glycocalyx in Patients Undergoing Major Vascular Surgery with Global and Regional Ischemia Circulation (2007) 116: 1896-1906.
[134] Gandley RE, Althouse A, Jeyabalan A, Bregand-White JM, McGonigal S, Myerski AC, Gallaher M, Powers RW, Hubel CA. Low Soluble Syndecan-1 Precedes Preeclampsia. PLOS One (2016) https://doi.org/10.1371/journal.pone.0157608.
[135] Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the Endothelial Glycocalyx in Dialysis Patients. J Am Soc Nephrology (2012) 23 (11): 1900-1908.
[136] Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Reichart B, Peter K, Becker BF. Shedding of the Endothelial Glycocalyx in Patients Undergoing Major Vascular Surgery with Global and Regional Ischemia. Circulation (2007) 116: 1896–1906.
[137] Haywood-Watson RJ, Holcomb JB, Gonzalez EA, Peng Z, Pati S, Park PW, Wang WW, Zaske AM, Menge T, Kozar RA. Modulation of Syndecan-1 Shedding after Hemorrhagic Shock and Resuscitation. PLOS One (2011) https://doi.org/10.1371/journal.pone.0023530.
[138] Tang TH, Alonso S, Ng LF, Thein TL, Pang VJ, Leo YS, Lye DC, Yeo TW. Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever: Association with Plasma Leakage and Disease Severity. Scientific Reports (2017) 7: 46191 DOI: 10.1038/srep46191.
[139] Nemme J, Hahn RG, Krizhanovskii C, Ntika S, Sabelnikovs O, Vanags I. Minimal shedding of the glycocalyx layer during abdominal hysterectomy. BMC Anesthesiol (2017) 17 (1): 107. doi: 10.1186/s12871-017-0391-6.
[140] Tomatsui S, Gutierrez MA, Ishimaru T, Pena OM, Montano AM, Maeda H, Velez-Castrilloni S, Nishioka T, Fachel AA, Cooper A, Thornley M, Wraith E, Barrera A, Laybauer LS, Giuglani R, Schwartz IV, Schulze G, Beck M, Kircher SG, Paschke E, Yamaguchi S, Ullrich K, Isogai K, Suzuki Y, Orii T, Noguchi. Heparan sulfate levels in mucopolysaccharidoses and mucolipidoses. J. Inherit. Metab. Dis (2005) 28: 743–757.
[141] Khedun SM, Naicker T, Moodley J, Gathiram P. Urinary heparan sulfate proteoglycan excretion in black African women with pre-eclampsia. Acta Obstet Gynecol Scand (2002) 81 (4): 308-12.
[142] Majeed M, McQueen F, Yeoman S, McLean L. Relationship between serum hyaluronic acid level and disease activity in early rheumatoid arthritis. Ann Rheum Dis (2004) 63 (9): 1166-8.
[143] Gudowska M, Gruszewska E, Panasiuk A, Cylwik B, Flisiak R, Świderska M, Szmitkowski M, Chrostek L. Hyaluronic acid concentration in liver diseases. Clin Exp Med (2016) 16 (4): 523–528.
[144] Plevris JN, Haydon GH, Simpson KJ, Dawkes R, Ludlum CA, Harrison DJ, Hayes PC. Serum hyaluronan--a non-invasive test for diagnosing liver cirrhosis. Eur J Gastroenterol Hepatol (2000) 12 (10): 1121-7.
[145] Tangkijvanich P, Kongtawelert P, Pothacharoen P, Mahachai V, Suwangool P, Poovorawan Y. Serum hyaluronan: a marker of liver fibrosis in patients with chronic liver disease. Asian Pac J Allergy Immunol (2003) 21 (2): 115-20.
[146] Halfon P, Bourlière M, Pénaranda G, Deydier R, Renou C, Botta-Fridlund D, Tran A, Portal I, Allemand I, Rosenthal-Allieri A, Ouzan D. Accuracy of hyaluronic acid level for predicting liver fibrosis stages in patients with hepatitis C virus. Comp Hepatol (2000) 11; 4: 6. doi: 10.1186/1476-5926-4-6.
[147] Fujimoto N, Gemba K, Asano M, Fuchimoto Y, Wada S, Ono K, Ozaki S, Kishimoto T. Hyaluronic acid in the pleural fluid of patients with malignant pleural mesothelioma. Respir Investig (2013) 51 (2): 92-7.
[148] Raimondi F, Ferrara T, Maffucci R, Milite P, Del Buono D, Santoro P, Capasso L, Grimaldi E. Neonatal sepsis: a difficult diagnostic challenge. Clin Biochem (2011) 44 (7): 463-464.
[149] Jhan, MK., Tsai, TT., Chen, CL. Tsai CC, Cheng YL, Lee YC, Ko CY, Lin YS, Chang CP, Lin LT, Lin CF. Dengue virus infection increases microglial cell migration. Sci Rep (2017) 7, 91. https://doi.org/10.1038/s41598-017-00182-z.
[150] Haapaniemi E, Tatlisumak T, Soinne L, Syrjälä M, Kaste M. Plasminogen activator inhibitor-1 in patients with ischemic stroke. Acta Neurochir Suppl (2000) 76: 277-8.
[151] Kim SH, Han SW, Kim EH, Kim DJ, Lee KY, Kim D, Heo JH. Plasma Fibrinolysis Inhibitor Levels in Acute Stroke Patients with Thrombolysis Failure. J Clin Neurol (2005) 1 (2): 142-147.
[152] Huber K, Resch I, Stefenelli T, Lang I, Probst P, Kaindl F, Binder BR. Plasminogen activator inhibitor-1 levels in patients with chronic angina pectoris with or without angiographic evidence of coronary sclerosis. Thrombosis and Haemostasis (1990) 63 (3): 336-339.
[153] Islam S, Yakout SM, Daghri NM, Alhomida AS, Khan HA. Serum levels of thrombotic markers in patients with acute myocardial infarction. Int J Clin Exp Med (2014) 7 (4): 1059-1063.
[154] Gyöngyösi M, Glogar D, Weidinger F, Domanovits H, Laggner A, Wojta J, Zorn G, Iordanova N, Huber K. Association between plasmin activation system and intravascular ultrasound signs of plaque instability in patients with unstable angina and non-st-segment elevation myocardial infarction. Am Heart J (2004) 147 (1): 158-64.
[155] Daví G, Violi F, Catalano I, Giammarresi C, Putignano E, Nicolosi G, Barbagallo M, Notarbartolo A. Increased plasminogen activator inhibitor antigen levels in diabetic patients with stable angina. Blood Coagul Fibrinolysis (1991) 2 (1): 41-5.
[156] Habib SS, Gader AGM, Kurdi MI, Suriya MO, Aseri ZA. Tissue plasminogen activator and plasminogen activator inhibitor-1 levels in patients with acute myocardial infarction and unstable angina. J Pak Med Assoc (2012) 62 (7): 681-684.
[157] Nadarajah Srikumar, Nancy J. Brown, Paul N. Hopkins, Xavier Jeunemaitre, Steven C. Hunt, Douglas E. Vaughan, Gordon H. Williams, PAI-1 in human hypertension: relation to hypertensive groups, American Journal of Hypertension (2002) 15 (8): 683–690.
[158] Forood A, Malekpour-Afshar R, Mahdavi A. Serum level of plasminogen activator inhibitor type-1 in addicted patients with coronary artery disease. Addiction & Health. Summer-Autumn (2014) 6 (3-4): 119-126.
[159] Knudsen EC, Seljeflot I, Abdelnoor M, Eritsland J, Mangschau A, Muller C, Arnesen H, Andersen GO. Elevated levels of PAI-1 activity and t-PA antigen are associated with newly diagnosed abnormal glucose regulation in patients with ST-elevation myocardial infarction. J Thromb Haemost (2011) 9 (8): 1468-74. (164) (166) Iwadate Y, Hayama M, Adaxchi A, Matsutani T, Nagai Y, Hiwasa T, Saeki N. High Serum Level of Plasminogen Activator Inhibitor-1 Predicts Histological Grade of Intracerebral Gliomas. Anticancer Res (2008) 28: 415-418.
[160] Iwadate Y, Hayama M, Adaxchi A, Matsutani T, Nagai Y, Hiwasa T, Saeki N. High Serum Level of Plasminogen Activator Inhibitor-1 Predicts Histological Grade of Intracerebral Gliomas. Anticancer Res (2008) 28: 415-418.
[161] Thögersen AM, Jansson JH, Boman K, Nilsson TK, Weinehall L, Huhtasaari F, Hallmans G. High Plasminogen Activator Inhibitor and Tissue Plasminogen Activator Levels in Plasma Precede a First Acute Myocardial Infarction in Both Men and Women Evidence for the Fibrinolytic System as an Independent Primary Risk Factor. Circulation (1998) 98: 2241–2247.
[162] Cao RN, Tang L, Xia ZY, Xia R. Endothelial glycocalyx as a potential therapeutic target in organ injuries. Chin Med J (Engl) (2019) 132 (8): 963-975.
[163] Leonhard Möckl, Kayvon Pedram, Anish R. Roy, Venkatesh Krishnan, Anna-Karin Gustavsson, Oliver Dorigo, Carolyn R. Bertozzi, W. E. Moerner. Quantitative Super-Resolution Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx, Developmental Cell (2019) 50 (1): 57-72.
[164] Milbrath MO, Wenger Y, Chang CW, Emond C, Garabrant D, Gillespie BW, Jolliet O. Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect (2009) 117 (3): 417-25.
[165] Hue O, Marcotte J, Berrigan F, Simoneau M, Doré J, Marceau P, Marceau S, Tremblay A, Teasdale N. Plasma concentration of organochlorine compounds is associated with age and not obesity. Chemosphere (2007) 67 (7): 1463-1467.
[166] Gottesman MM, Collins FS. The role of the human genome project in disease prevention. Preventive Medicine (1994) 23 (5): 591-594.
[167] Terry C, Lesser N. Unlocking R&D productivity: Measuring the return from pharmaceutical innovation (2018). London: Deloitte Centre for Health Solutions.
[168] Frank SA, Rosner MR. “Nonheritable cellular variability accelerates the evolutionary processes of cancer,” PLoS Biology (2012) 10 (4), Article ID e1001296.
[169] Sun H, Guo Y, Lan X, Jia J, Cai X, Zhang G, Xie J, Liang Q, Li Y, Yu G. PhenoModifier: a genetic modifier database for elucidating the genetic basis of human phenotypic variation. Nucleic Acids Res (2020) 48: D977–D982.
[170] Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med (2000) 343, 78.
[171] Muka T, Koromani F, Portilla E, O'Connor A, Bramer WM, Troup J, Chowdhury R, Dehghan A, Franco OH. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int. J. Cardiol (2016) 212: 174-183.
[172] Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP. A comprehensive map of molecular drug targets. Nat Rev Drug Discov (2017) 16 (1): 19-34.
[173] Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, Gershoni M, Morrey CP, Safran M, and Lancet D. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res (2017) 45: D877–D887.
[174] Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacology & Therapeutics (2004) 104 (3): 173-206.
[175] Insel PA, Sriram K, Gorr MW, Wiley SZ, Michkov A, Salmerón C, Chinn AM. GPCRomics: An Approach to Discover GPCR Drug Targets. Trends Pharmacol Sci (2019) 40 (6): 378-387.
[176] Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets, and indications. Nat Rev Drug Discov (2017) 16 (12): 829-842.
[177] Al Aboud NM, Tupper C, Jialal I. Genetics, Epigenetic Mechanism. In: StatPearls Publishing (2020). PMID: 30422591.
[178] Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders, Int. J. Biochem. Cell Biol (2016) 77 (Part B): 226-239.
[179] Reeskamp LF, Venem A, Pereira JPB, Levin E, Nieuwdorp M, Groen AK, Defesch JC, Grefhorst A, Henneman P, Hovingh GK. Differential DNA methylation in familial hypercholesterolemia. EBioMedicine (2020) 61.103079.0 https://doi.org/10.1016/j.ebiom.2020.103079.
[180] González-Becerra K, Ramos-Lopez O, Barrón-Cabrera E, Riezu-Boj JI, F. I. Milagro FI, Martínez-López E, Martínez JA. Fatty acids, epigenetic mechanisms, and chronic diseases: a systematic review. Lipids Health Dis (2019) 18, 178. https://doi.org/10.1186/s12944-019-1120-6.
[181] Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol (2018) 837: 8–24.
[182] Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Frontiers Oncology (2020) 10: 2461. https://www.frontiersin.org/article/10.3389/fonc.2020.605386).
[183] Fior Markets: Epigenetics Drugs & Diagnostic Technologies Market by Product (Services, Enzymes, Instruments, Kits, Reagents), Technology (Chromatin Structures, Micro RNA Modification, Large Non-Coding RNA, Histone Acetylation, Histone Methylation, DNA Methylation), Region, Global Industry Analysis, Market Size, Share, Growth, Trends, and Forecast 2020 to 2027. https://www.fiormarkets.com/report/epigenetics-drugs-diagnostic-technologies-market-by-product-418825.html.
[184] Sriram K, Insel PA. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharmacol (2018) 93 (4): 251-258.
[185] Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A, Gomez SM, Guha R, Hersey A, Holmes J, Jadhav A, Jensen LJ, Johnson GL, Karlson A, Leach AR, Ma'ayan A, Malovannaya A, Mani S, Mathias SL, McManus MT, Meehan TF, von Mering C, Muthas D, Nguyen DT, Overington JP, Papadatos G, Qin J, Reich C, Roth BL, Schürer SC, Simeonov A, Sklar LA, Southall N, Tomita S, Tudose I, Ursu O, Vidovic D, Waller A, Westergaard D, Yang JJ, Zahoránszky-Köhalmi G. Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov (2018) 17 (5): 317-332.
[186] Hopkins Al. Drug discovery: Predicting promiscuity. Nature (2009) 462 (7270): 167–168.
[187] Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, Fulton RS, Graves TA, Hillier LW, Mardis ER, McPherson JD, Miner TL, Nash WE, Nelson JO, Nhan MN, Pepin KH, Pohl CS, Ponce TC, Schultz B, Thompson J, Trevaskis E, Waterston RH, Wendl MC, Wilson RK, Yang S-P. Initial sequencing, and comparative analysis of the mouse genome. Nature (2002) 420, 520–562.
[188] Paigen B, Mitchell D, Reue K, Morrow A, Lusis AJ, LeBoeuf RC. Ath-1, a gene determining atherosclerosis susceptibility and high-density lipoprotein levels in mice. Proc. Natl. Acad. Sci. USA (1987) 84: 3763-3767.
[189] Getz GS, Reardon CA. Diet and Murine Atherosclerosis. Arterioscler Thromb Vasc Biol (2006) 26: 242-249.
[190] Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med (2009) 169 (7): 659–69.
[191] Zethelius B, Berglund L, Sundström J, Ingelsson E, Basu S, Larsson A, Venge P, Johan Ärnlöv J. Use of Multiple Biomarkers to Improve the Prediction of Death from Cardiovascular Causes. N Engl J Med (2008) 358: 2107-2116.
[192] Arbab-Zadeh Nakano AM, Virmani R, V. Fuster V. Acute coronary events Circulation (2012) 125: 1147-1156.
[193] Arrey-Mbi TB, Klusewitz SM, Villines TC. Long-Term Prognostic Value of Coronary Computed Tomography Angiography. Curr Treat Options Cardiovasc Med (2017) 12; 19 (12): 90. doi: 10.1007/s11936-017-0588-5.
[194] Budoff MJ, Shaw LL, Liu ST, Weinstein SR, Tseng PH, Flores FR, Callister TQ, Raggi P, Berman DS, Mosler TP. Long-Term Prognosis Associated with Coronary Calcification: Observations from a Registry of 25,253 Patients, J. Am. Coll. Cardiol (2007) 49 (18): 1860-1870.
[195] Arbab-Zadeh A, Fuster V. From Detecting the Vulnerable Plaque to Managing the Vulnerable Patient: JACC State-of-the-Art Review, J. Am. Coll. Cardiol (2019) 74 (12): 1582-1593.
[196] Hillegass JM, Murphy KA, Villano CM, White LA. The impact of aryl hydrocarbon receptor signaling on matrix metabolism: Implications for development and disease. Biol Chem (2006) 387 (9): 1159–1173.
[197] Hu P, Herrmann R, Bednar A, Saloupis P, Dwyer MA, Yang P. Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proc Natl Acad Sci U S A (2013) 110: E4069–78.
[198] Golbidi S, Badran M, Laher I. Diabetes, and alpha lipoic Acid. Front Pharmacol (2011) 2: 69. doi: 10.3389/fphar.2011.00069. PMID: 22125537.
[199] Bouzid MA, Filaire E, McCall A, Fabre C. Radical Oxygen Species, Exercise and Aging: An Update. Sports Med (2015) 45, 1245–1261.
[200] Zhang WJ, Frei B. α-Lipoic acid inhibits TNF-a-induced NF-κB activation and adhesion molecule expression in human aortic endothelial cells FASEB J (2001) 15 (13): 2423-2432.
[201] Lingappan K. NF-κB in oxidative stress. Current Opinion Toxicology (2018) 7: 81-86.
[202] Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest (2001) 107: 7-11.
[203] Oh BK, Ho JM, Shi WS, Young YR, Byung SK, Oh HLKS. Euonymus alatus extract attenuates LPS-induced NF-κB activation via IKKβ inhibition in RAW 264.7 cells. J Ethnopharmacol (2011) 134: 288–293.
[204] Baldwin AS. The transcription factor NF-kB and human disease. J Clin. Invest (2001) 107: 3–6.
Cite This Article
  • APA Style

    Josefino Ballesteros Tunac. (2021). Curative and Preventive Treatment for Cardiovascular Disease (CVD) Targeting Multiple Etiology. Cardiology and Cardiovascular Research, 5(2), 97-119. https://doi.org/10.11648/j.ccr.20210502.18

    Copy | Download

    ACS Style

    Josefino Ballesteros Tunac. Curative and Preventive Treatment for Cardiovascular Disease (CVD) Targeting Multiple Etiology. Cardiol. Cardiovasc. Res. 2021, 5(2), 97-119. doi: 10.11648/j.ccr.20210502.18

    Copy | Download

    AMA Style

    Josefino Ballesteros Tunac. Curative and Preventive Treatment for Cardiovascular Disease (CVD) Targeting Multiple Etiology. Cardiol Cardiovasc Res. 2021;5(2):97-119. doi: 10.11648/j.ccr.20210502.18

    Copy | Download

  • @article{10.11648/j.ccr.20210502.18,
      author = {Josefino Ballesteros Tunac},
      title = {Curative and Preventive Treatment for Cardiovascular Disease (CVD) Targeting Multiple Etiology},
      journal = {Cardiology and Cardiovascular Research},
      volume = {5},
      number = {2},
      pages = {97-119},
      doi = {10.11648/j.ccr.20210502.18},
      url = {https://doi.org/10.11648/j.ccr.20210502.18},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ccr.20210502.18},
      abstract = {Gene deficient or knockout (KO) mice and rabbits are models of atherosclerosis focusing on cholesterol plaques, which do not reflect the complex etiology of cardiovascular disease (CVD). Inhibiting the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase or the proprotein convertase subtilisin/kexin type 9 (PCSK9) reduce cholesterol levels but not the rate of CVD. Moreover, the one-drug-one-gene paradigm particularly targeting any one of the G protein-coupled receptors (GPCRs), which represent the largest protein family encoded by the human genome, has at best produced palliative treatment. Vascular diseases including CVD are caused by extraneous (xeno) factors, which are of multifactorial etiology consisting of upstream and downstream phases. The upstream phase is the physical breach of the cells protective glycocalyx (GCX) shield by chemical and biological pollutants, resulting in a sequela of cell damages (plexic) that is manifested downstream in the form of diseases, herein called xenoplexic diseases. Xenoplexic disease is an etiologic description while chronic disease is symptom-centric. This study treated a natural mouse with extraneous agents, which produced plaques and plaque reduction was the end point to evaluate the curative and/or preventive treatment effect of the 3-component compound therapy. Histopathology monitored the presence of plaque, and a 4-panel biomarker, based on GCX disruption, was subsequently developed as a surrogate to monitor plaque formation. Of the several 3-NCE combos tested 4 combos were found to be preventive and curative of plaques indicating the effectiveness of a combo platform therapy. One combo is chosen as the lead candidate and hereby designated as Embotricin TM.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Curative and Preventive Treatment for Cardiovascular Disease (CVD) Targeting Multiple Etiology
    AU  - Josefino Ballesteros Tunac
    Y1  - 2021/06/15
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ccr.20210502.18
    DO  - 10.11648/j.ccr.20210502.18
    T2  - Cardiology and Cardiovascular Research
    JF  - Cardiology and Cardiovascular Research
    JO  - Cardiology and Cardiovascular Research
    SP  - 97
    EP  - 119
    PB  - Science Publishing Group
    SN  - 2578-8914
    UR  - https://doi.org/10.11648/j.ccr.20210502.18
    AB  - Gene deficient or knockout (KO) mice and rabbits are models of atherosclerosis focusing on cholesterol plaques, which do not reflect the complex etiology of cardiovascular disease (CVD). Inhibiting the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase or the proprotein convertase subtilisin/kexin type 9 (PCSK9) reduce cholesterol levels but not the rate of CVD. Moreover, the one-drug-one-gene paradigm particularly targeting any one of the G protein-coupled receptors (GPCRs), which represent the largest protein family encoded by the human genome, has at best produced palliative treatment. Vascular diseases including CVD are caused by extraneous (xeno) factors, which are of multifactorial etiology consisting of upstream and downstream phases. The upstream phase is the physical breach of the cells protective glycocalyx (GCX) shield by chemical and biological pollutants, resulting in a sequela of cell damages (plexic) that is manifested downstream in the form of diseases, herein called xenoplexic diseases. Xenoplexic disease is an etiologic description while chronic disease is symptom-centric. This study treated a natural mouse with extraneous agents, which produced plaques and plaque reduction was the end point to evaluate the curative and/or preventive treatment effect of the 3-component compound therapy. Histopathology monitored the presence of plaque, and a 4-panel biomarker, based on GCX disruption, was subsequently developed as a surrogate to monitor plaque formation. Of the several 3-NCE combos tested 4 combos were found to be preventive and curative of plaques indicating the effectiveness of a combo platform therapy. One combo is chosen as the lead candidate and hereby designated as Embotricin TM.
    VL  - 5
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Arterez, Inc., White Lake, Michigan, the United States

  • Sections