| Peer-Reviewed

Assessment of Right Ventricular Function by Speckle Tracking Echocardiography in Patients with Metabolic Syndrome

Received: 21 September 2021    Accepted: 18 October 2021    Published: 28 October 2021
Views:       Downloads:
Abstract

Metabolic syndrome (MetS) and visceral adiposity are crucial cardio metabolic risk factors. There is evidence of subclinical left ventricular myocardial dysfunction in individuals with metabolic syndrome (MetS). However, the effect of MetS on the right ventricle (RV) is yet unknown. By using 2D Speckle Tracking Echocardiography, we investigated the link between MetS and right ventricle function. This study was conducted on 50 MetS patients and 25 age and gender matched individuals (control group). The MetS is diagnosed when presence of ≥3 American Heart Association/National Heart, Lung, and Blood Institute criteria. All individuals had sufficient laboratory assays as well as a thorough 2D examination including tissue Doppler imaging (TDI) and R. V global longitudinal strain (GLS) during the period between November 2019 and December 2020. The metabolic group had a statistically significant lower RV- GLS (-18.27±2.16 in MetS subjects vs. - 26.64±3.05 in control subjects, P<0.001), a significantly lower E/A ratio (0.95±0.12 in MetS subjects vs. 1.14±0.15 in controls, P<0.001), and a statistically significant increase in the E/Em ratio (5.66±1.03 in MetS subjects vs. 4.24±0.46 in controls, P<0.001). Other echocardiographic or functional capacity tests revealed no significant differences between the two groups. We concluded that MetS was associated with preclinical right ventricle systolic dysfunction detected by 2D-STE observed with Normal RV by TAPSE and FAC and Normal left ventricular ejection fraction (LVEF) in addition to RV diastolic dysfunction.

Published in Cardiology and Cardiovascular Research (Volume 5, Issue 4)
DOI 10.11648/j.ccr.20210504.11
Page(s) 157-165
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Echocardiography, Metabolic Syndrome, Right Ventricle, Lipid Profile and Speckle Tracking Echocardiograph

References
[1] Zafar, U., Khaliq, S., Ahmad, H. U., Manzoor, S., & Lone, K. P. (2018). Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens, Greece), 17 (3), 299–313. https://doi.org/10.1007/s42000-018-0051-3.
[2] Kaur J. (2014). A comprehensive review on metabolic syndrome. Cardiology research and practice, 2014, 943162. https://doi.org/10.1155/2014/943162 (Retraction published Cardiol Res Pract. 2019 Jan 31; 2019: 4301528).
[3] Comunale, G., Peruzzo, P., Castaldi, B., Razzolini, R., Di Salvo, G., Padalino, M. A., & Susin, F. M. (2021). Understanding and recognition of the right ventricular function and dysfunction via a numerical study. Scientific reports, 11 (1), 3709. https://doi.org/10.1038/s41598-021-82567-9.
[4] Kossaify A. (2015). Echocardiographic Assessment of the Right Ventricle, from the Conventional Approach to Speckle Tracking and Three-Dimensional Imaging, and Insights into the "Right Way" to Explore the Forgotten Chamber. Clinical Medicine Insights. Cardiology, 9, 65–75. https://doi.org/10.4137/CMC.S27462.
[5] Yang, W. I., & Ha, J. W. (2015). Non-invasive assessment of vascular alteration using ultrasound. Clinical hypertension, 21, 25. https://doi.org/10.1186/s40885-015-0035-4.
[6] Morris, D. A., Krisper, M., Nakatani, S., Köhncke, C., Otsuji, Y., Belyavskiy, E., Radha Krishnan, A. K., Kropf, M., Osmanoglou, E., Boldt, L. H., Blaschke, F., Edelmann, F., Haverkamp, W., Tschöpe, C., Pieske-Kraigher, E., Pieske, B., & Takeuchi, M. (2017). Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. European heart journal. Cardiovascular Imaging, 18 (2), 212–223. https://doi.org/10.1093/ehjci/jew011.
[7] Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., Clement, D. L., Coca, A., de Simone, G., Dominiczak, A., Kahan, T., Mahfoud, F., Redon, J., Ruilope, L., Zanchetti, A., Kerins, M., Kjeldsen, S. E., Kreutz, R., Laurent, S., Lip, G.,… ESC Scientific Document Group (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. European heart journal, 39 (33), 3021–3104. https://doi.org/10.1093/eurheartj/ehy339.
[8] Cosentino, F., Grant, P. J., Aboyans, V., Bailey, C. J., Ceriello, A., Delgado, V., Federici, M., Filippatos, G., Grobbee, D. E., Hansen, T. B., Huikuri, H. V., Johansson, I., Jüni, P., Lettino, M., Marx, N., Mellbin, L. G., Östgren, C. J., Rocca, B., Roffi, M., Sattar, N.,… ESC Scientific Document Group (2020). 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. European heart journal, 41 (2), 255–323. https://doi.org/10.1093/eurheartj/ehz486.
[9] Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F. A., Foster, E., Goldstein, S. A., Kuznetsova, T., Lancellotti, P., Muraru, D., Picard, M. H., Rietzschel, E. R., Rudski, L., Spencer, K. T., Tsang, W., & Voigt, J. U. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 28 (1), 1–39. e14. https://doi.org/10.1016/j.echo.2014.10.003.
[10] Nagueh, S. F., Appleton, C. P., Gillebert, T. C., Marino, P. N., Oh, J. K., Smiseth, O. A., Waggoner, A. D., Flachskampf, F. A., Pellikka, P. A., & Evangelista, A. (2009). Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 22 (2), 107–133. https://doi.org/10.1016/j.echo.2008.11.023.
[11] Rudski, L. G., Lai, W. W., Afilalo, J., Hua, L., Handschumacher, M. D., Chandrasekaran, K., Solomon, S. D., Louie, E. K., & Schiller, N. B. (2010). Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 23 (7), 685–788. https://doi.org/10.1016/j.echo.2010.05.010.
[12] Zile, M. R., & Brutsaert, D. L. (2002). New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation, 105 (12), 1503–1508. https://doi.org/10.1161/hc1202.105290.
[13] Voigt, J. U., Pedrizzetti, G., Lysyansky, P., Marwick, T. H., Houle, H., Baumann, R., Pedri, S., Ito, Y., Abe, Y., Metz, S., Song, J. H., Hamilton, J., Sengupta, P. P., Kolias, T. J., d'Hooge, J., Aurigemma, G. P., Thomas, J. D., & Badano, L. P. (2015). Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. European heart journal. Cardiovascular Imaging, 16 (1), 1–11. https://doi.org/10.1093/ehjci/jeu184.
[14] Il'Giovine, Z. J., Mulder, H., Chiswell, K., Arges, K., Tomfohr, J., Hashmi, A., Velazquez, E. J., Kisslo, J. A., Samad, Z., & Rajagopal, S. (2018). Right Ventricular Longitudinal Strain Reproducibility Using Vendor-Dependent and Vendor-Independent Software. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 31 (6), 721–732. e5. https://doi.org/10.1016/j.echo.2018.01.008.
[15] Alberti, K. G., Zimmet, P., Shaw, J., & IDF Epidemiology Task Force Consensus Group (2005). The metabolic syndrome--a new worldwide definition. Lancet (London, England), 366 (9491), 1059–1062. https://doi.org/10.1016/S0140-6736(05)67402-8.
[16] Tadic, M., Cuspidi, C., Sljivic, A., Andric, A., Ivanovic, B., Scepanovic, R., Ilic, I., Jozika, L., Marjanovic, T., & Celic, V. (2014). Effects of the metabolic syndrome on right heart mechanics and function. The Canadian journal of cardiology, 30 (3), 325–331. https://doi.org/10.1016/j.cjca.2013.12.006.
[17] Saklayen M. G. (2018). The Global Epidemic of the Metabolic Syndrome. Current hypertension reports, 20 (2), 12. https://doi.org/10.1007/s11906-018-0812-z.
[18] O'Neill, S., & O'Driscoll, L. (2015). Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity reviews: an official journal of the International Association for the Study of Obesity, 16 (1), 1–12. https://doi.org/10.1111/obr.12229.
[19] Tadic, M., Ivanovic, B., & Grozdic, I. (2011). Metabolic syndrome impacts the right ventricle: true or false?. Echocardiography (Mount Kisco, N.Y.), 28 (5), 530–538. https://doi.org/10.1111/j.1540-8175.2011.01390.x.
[20] Tune, J. D., Goodwill, A. G., Sassoon, D. J., & Mather, K. J. (2017). Cardiovascular consequences of metabolic syndrome. Translational research: the journal of laboratory and clinical medicine, 183, 57–70. https://doi.org/10.1016/j.trsl.2017.01.001.
[21] Kranstuber, A. L., Del Rio, C., Biesiadecki, B. J., Hamlin, R. L., Ottobre, J., Gyorke, S., & Lacombe, V. A. (2012). Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Frontiers in physiology, 3, 292. https://doi.org/10.3389/fphys.2012.00292.
[22] Bidasee, K. R., Zhang, Y., Shao, C. H., Wang, M., Patel, K. P., Dincer, U. D., & Besch, H. R., Jr (2004). Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes, 53 (2), 463–473. https://doi.org/10.2337/diabetes.53.2.463.
[23] Samiei, N., Bayat, M., Firouzi, A., Dehghani, F., Parsaee, M., Rahimi, S., Ahmadi, S., Pourmojib, M., Ghaemmaghami, Z., Rezaei, Y., & Peighambari, M. M. (2018). Subclinical systolic and diastolic dysfunctions in patients with metabolic syndrome and angiographically normal coronary arteries: An echocardiographic study. Journal of clinical ultrasound: JCU, 46 (3), 195–201. https://doi.org/10.1002/jcu.22568.
[24] Serrano-Ferrer, J., Walther, G., Crendal, E., Vinet, A., Dutheil, F., Naughton, G., Lesourd, B., Chapier, R., Courteix, D., & Obert, P. (2014). Right ventricle free wall mechanics in metabolic syndrome without type-2 diabetes: effects of a 3-month lifestyle intervention program. Cardiovascular diabetology, 13, 116. https://doi.org/10.1186/s12933-014-0116-9.
[25] Zeller, J., Strack, C., Fenk, S., Mohr, M., Loew, T., Schmitz, G., Maier, L., Fischer, M., & Baessler, A. (2016). Relation Between Obesity, Metabolic Syndrome, Successful Long-Term Weight Reduction, and Right Ventricular Function. International heart journal, 57 (4), 441–448. https://doi.org/10.1536/ihj.15-403.
[26] Aslan, E., Sert, A., Buyukinan, M., Pirgon, M. O., Kurku, H., Yilmaz, H., & Odabas, D. (2019). Left and right ventricular function by echocardiography, tissue Doppler imaging, carotid intima-media thickness, and asymmetric dimethyl arginine levels in obese adolescents with metabolic syndrome. Cardiology in the young, 29 (3), 310–318. https://doi.org/10.1017/S1047951118002329.
[27] Lu, K. J., Chen, J. X., Profitis, K., Kearney, L. G., DeSilva, D., Smith, G., Ord, M., Harberts, S., Calafiore, P., Jones, E., & Srivastava, P. M. (2015). Right ventricular global longitudinal strain is an independent predictor of right ventricular function: a multimodality study of cardiac magnetic resonance imaging, real time three-dimensional echocardiography and speckle tracking echocardiography. Echocardiography (Mount Kisco, N.Y.), 32 (6), 966–974. https://doi.org/10.1111/echo.12783.
[28] Hanboly, N., 2016. Right ventricle morphology and function in systemic hypertension. Niger. J. Cardiol. 13, 11. https://doi.org/10.4103/0189-7969.173854.
[29] Chahal, H., McClelland, R. L., Tandri, H., Jain, A., Turkbey, E. B., Hundley, W. G., Barr, R. G., Kizer, J., Lima, J., Bluemke, D. A., & Kawut, S. M. (2012). Obesity and right ventricular structure and function: the MESA-Right Ventricle Study. Chest, 141 (2), 388–395. https://doi.org/10.1378/chest.11-0172.
[30] Sletten, A. C., Peterson, L. R., & Schaffer, J. E. (2018). Manifestations and mechanisms of myocardial lipotoxicity in obesity. Journal of internal medicine, 284 (5), 478–491. https://doi.org/10.1111/joim.12728.
[31] Gullestad, L., Ueland, T., Vinge, L. E., Finsen, A., Yndestad, A., & Aukrust, P. (2012). Inflammatory cytokines in heart failure: mediators and markers. Cardiology, 122 (1), 23–35. https://doi.org/10.1159/000338166.
[32] Cannavale, G., Francone, M., Galea, N., Vullo, F., Molisso, A., Carbone, I., & Catalano, C. (2018). Fatty Images of the Heart: Spectrum of Normal and Pathological Findings by Computed Tomography and Cardiac Magnetic Resonance Imaging. BioMed research international, 2018, 5610347. https://doi.org/10.1155/2018/5610347.
[33] Garg, Sumit & Arora, Shitij & Agarwal, Jawahar. (2018). Influence of BMI on Cardiac Output and Peripheral Blood Flow in Young Adult Males. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. 12. 10.7860/JCDR/2018/25814.11279.
[34] Patscheider, H., Lorbeer, R., Auweter, S., Schafnitzel, A., Bayerl, C., Curta, A., Rathmann, W., Heier, M., Meisinger, C., Peters, A., Bamberg, F., & Hetterich, H. (2018). Subclinical changes in MRI-determined right ventricular volumes and function in subjects with prediabetes and diabetes. European radiology, 28 (7), 3105–3113. https://doi.org/10.1007/s00330-017-5185-1.
[35] Pan, M., Han, Y., Si, R., Guo, R., Desai, A., & Makino, A. (2017). Hypoxia-induced pulmonary hypertension in type 2 diabetic mice. Pulmonary circulation, 7 (1), 175–185. https://doi.org/10.1086/690206.
[36] Dalen, H., Thorstensen, A., Romundstad, P. R., Aase, S. A., Stoylen, A., & Vatten, L. J. (2011). Cardiovascular risk factors and systolic and diastolic cardiac function: a tissue Doppler and speckle tracking echocardiographic study. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 24 (3), 322–32. e6. https://doi.org/10.1016/j.echo.2010.12.010.
[37] Gopal, D. M., Santhanakrishnan, R., Wang, Y. C., Ayalon, N., Donohue, C., Rahban, Y., Perez, A. J., Downing, J., Liang, C. seng, Gokce, N., Colucci, W. S., Ho, J. E., 2015. Impaired right ventricular hemodynamics indicate preclinical pulmonary hypertension in patients with metabolic syndrome. J. Am. Heart Assoc. 4, e001597. https://doi.org/10.1161/JAHA.114.001597.
[38] Tamborini, G., Muratori, M., Brusoni, D., Celeste, F., Maffessanti, F., Caiani, E. G., Alamanni, F., & Pepi, M. (2009). Is right ventricular systolic function reduced after cardiac surgery? A two- and three-dimensional echocardiographic study. European journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 10 (5), 630–634. https://doi.org/10.1093/ejechocard/jep015.
[39] Sedaia, E., Revenco, V., Gutan, I., Ochisor, V. & Vascenco, A., 2020. The impact of epicardial adipose tissue and right ventricular hypertrophy on diastolic and global function of right ventricle in patients with metabolic syndrome. Eur. Heart J. 41. https://doi.org/10.1093/ehjci/ehaa946.0905.
Cite This Article
  • APA Style

    Ibrahim Mohammed Ibrahim, Attia Morsy Shokr, Mostafa Attia Al-Sawasany. (2021). Assessment of Right Ventricular Function by Speckle Tracking Echocardiography in Patients with Metabolic Syndrome. Cardiology and Cardiovascular Research, 5(4), 157-165. https://doi.org/10.11648/j.ccr.20210504.11

    Copy | Download

    ACS Style

    Ibrahim Mohammed Ibrahim; Attia Morsy Shokr; Mostafa Attia Al-Sawasany. Assessment of Right Ventricular Function by Speckle Tracking Echocardiography in Patients with Metabolic Syndrome. Cardiol. Cardiovasc. Res. 2021, 5(4), 157-165. doi: 10.11648/j.ccr.20210504.11

    Copy | Download

    AMA Style

    Ibrahim Mohammed Ibrahim, Attia Morsy Shokr, Mostafa Attia Al-Sawasany. Assessment of Right Ventricular Function by Speckle Tracking Echocardiography in Patients with Metabolic Syndrome. Cardiol Cardiovasc Res. 2021;5(4):157-165. doi: 10.11648/j.ccr.20210504.11

    Copy | Download

  • @article{10.11648/j.ccr.20210504.11,
      author = {Ibrahim Mohammed Ibrahim and Attia Morsy Shokr and Mostafa Attia Al-Sawasany},
      title = {Assessment of Right Ventricular Function by Speckle Tracking Echocardiography in Patients with Metabolic Syndrome},
      journal = {Cardiology and Cardiovascular Research},
      volume = {5},
      number = {4},
      pages = {157-165},
      doi = {10.11648/j.ccr.20210504.11},
      url = {https://doi.org/10.11648/j.ccr.20210504.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ccr.20210504.11},
      abstract = {Metabolic syndrome (MetS) and visceral adiposity are crucial cardio metabolic risk factors. There is evidence of subclinical left ventricular myocardial dysfunction in individuals with metabolic syndrome (MetS). However, the effect of MetS on the right ventricle (RV) is yet unknown. By using 2D Speckle Tracking Echocardiography, we investigated the link between MetS and right ventricle function. This study was conducted on 50 MetS patients and 25 age and gender matched individuals (control group). The MetS is diagnosed when presence of ≥3 American Heart Association/National Heart, Lung, and Blood Institute criteria. All individuals had sufficient laboratory assays as well as a thorough 2D examination including tissue Doppler imaging (TDI) and R. V global longitudinal strain (GLS) during the period between November 2019 and December 2020. The metabolic group had a statistically significant lower RV- GLS (-18.27±2.16 in MetS subjects vs. - 26.64±3.05 in control subjects, P<0.001), a significantly lower E/A ratio (0.95±0.12 in MetS subjects vs. 1.14±0.15 in controls, P<0.001), and a statistically significant increase in the E/Em ratio (5.66±1.03 in MetS subjects vs. 4.24±0.46 in controls, P<0.001). Other echocardiographic or functional capacity tests revealed no significant differences between the two groups. We concluded that MetS was associated with preclinical right ventricle systolic dysfunction detected by 2D-STE observed with Normal RV by TAPSE and FAC and Normal left ventricular ejection fraction (LVEF) in addition to RV diastolic dysfunction.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Assessment of Right Ventricular Function by Speckle Tracking Echocardiography in Patients with Metabolic Syndrome
    AU  - Ibrahim Mohammed Ibrahim
    AU  - Attia Morsy Shokr
    AU  - Mostafa Attia Al-Sawasany
    Y1  - 2021/10/28
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ccr.20210504.11
    DO  - 10.11648/j.ccr.20210504.11
    T2  - Cardiology and Cardiovascular Research
    JF  - Cardiology and Cardiovascular Research
    JO  - Cardiology and Cardiovascular Research
    SP  - 157
    EP  - 165
    PB  - Science Publishing Group
    SN  - 2578-8914
    UR  - https://doi.org/10.11648/j.ccr.20210504.11
    AB  - Metabolic syndrome (MetS) and visceral adiposity are crucial cardio metabolic risk factors. There is evidence of subclinical left ventricular myocardial dysfunction in individuals with metabolic syndrome (MetS). However, the effect of MetS on the right ventricle (RV) is yet unknown. By using 2D Speckle Tracking Echocardiography, we investigated the link between MetS and right ventricle function. This study was conducted on 50 MetS patients and 25 age and gender matched individuals (control group). The MetS is diagnosed when presence of ≥3 American Heart Association/National Heart, Lung, and Blood Institute criteria. All individuals had sufficient laboratory assays as well as a thorough 2D examination including tissue Doppler imaging (TDI) and R. V global longitudinal strain (GLS) during the period between November 2019 and December 2020. The metabolic group had a statistically significant lower RV- GLS (-18.27±2.16 in MetS subjects vs. - 26.64±3.05 in control subjects, P<0.001), a significantly lower E/A ratio (0.95±0.12 in MetS subjects vs. 1.14±0.15 in controls, P<0.001), and a statistically significant increase in the E/Em ratio (5.66±1.03 in MetS subjects vs. 4.24±0.46 in controls, P<0.001). Other echocardiographic or functional capacity tests revealed no significant differences between the two groups. We concluded that MetS was associated with preclinical right ventricle systolic dysfunction detected by 2D-STE observed with Normal RV by TAPSE and FAC and Normal left ventricular ejection fraction (LVEF) in addition to RV diastolic dysfunction.
    VL  - 5
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Cardiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

  • Cardiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

  • Cardiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

  • Sections