| Peer-Reviewed

Treatment with Number 2 Feibi Recipe, a Compound Traditional Chinese Medicine Reduces Bleomycin-induced Pulmonary Fibrosis in Mice

Received: 15 April 2021    Accepted: 8 May 2021    Published: 14 May 2021
Views:       Downloads:
Abstract

Objective: Oxidative stress with reactive oxygen species (ROS) generated from exogenous oxidants and pollutants exposure is involved in the pathogenesis of Idiopathic pulmonary fibrosis (IPF). Number 2 Feibi Recipe (Number 2 FBR) is a traditional Chinese herbal formula which can attenuate the lung injury induced by PM2.5. The present study is to explore the effect and mechanism of Number 2 FBR on bleomycin (BLM)-induced pulmonary fibrosis in C57BL/6Cnc mice. Method: Bleomycin-induced C57BL/6Cnc mice were treated with Number 2 FBR and Sulforphane for two weeks. HE and Masson trichrome staining were performed to evaluate pathological changes in lung tissues. The extent of lung fibrosis was evaluated with fibrosis scores, collagen volume fraction, and hydroxyproline concentration. Levels of SOD and 8-iso-PGF2α in lung tissues were measured by using commercial assay kits. The levels of Nrf2, SOD, GSH-Px, and TGF-β1 relative protein and mRNA in lung tissues were measured by real time PCR and Western blot respectively. Results: The results showed that Number 2 FBR ameliorated bleomycin-induced pathological changes, collagen deposition and significantly decreased fibrosis scores, collagen volume fraction, and hydroxyproline concentration in the mice lungs. Additionally, Number 2 FBR inhibited the expression of 8-iso-prostaglandin F2α (8-iso-PGF2α) and transforming growth factor beta1 (TGF-β1), and increased the expression of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2), superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) in lung tissues. Conclusion: Number 2 FBR has an effect of anti-fibrosis by regulating the lung oxidants and antioxidants balance.

Published in Clinical Medicine Research (Volume 10, Issue 3)
DOI 10.11648/j.cmr.20211003.13
Page(s) 73-83
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Number 2 Feibi Recipe, Chinese Medicine, Pulmonary Fibrosis, Nrf2, Bleomycin, Mice

References
[1] Richeldi, L.; Collard, H. R.; Jones, M. G., Idiopathic pulmonary fibrosis. Lancet 2017, 389, (10082), 1941-1952.
[2] Cheresh, P.; Kim, S. J.; Tulasiram, S.; Kamp, D. W., Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta 2013, 1832, (7), 1028-40.
[3] Fois, A. G.; Paliogiannis, P.; Sotgia, S.; Mangoni, A. A.; Zinellu, E.; Pirina, P.; Carru, C.; Zinellu, A., Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review. Respir Res 2018, 19, (1), 51.
[4] Lederer, D. J.; Martinez, F. J., Idiopathic Pulmonary Fibrosis. N Engl J Med 2018, 378, (19), 1811-1823.
[5] Baumgartner, K. B.; Samet, J. M.; Coultas, D. B.; Stidley, C. A.; Hunt, W. C.; Colby, T. V.; Waldron, J. A., Occupational and environmental risk factors for idiopathic pulmonary fibrosis: a multicenter case-control study. Collaborating Centers. Am J Epidemiol 2000, 152, (4), 307-15.
[6] Vanhee, D.; Gosset, P.; Wallaert, B.; Voisin, C.; Tonnel, A. B., Mechanisms of fibrosis in coal workers' pneumoconiosis. Increased production of platelet-derived growth factor, insulin-like growth factor type I, and transforming growth factor beta and relationship to disease severity. Am J Respir Crit Care Med 1994, 150, (4), 1049-55.
[7] Barber, C. M.; Fishwick, D., Idiopathic pulmonary fibrosis and asbestos use. Bmj 2019, 364, l1041.
[8] Abid, S. H.; Malhotra, V.; Perry, M. C., Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol 2001, 13, (4), 242-8.
[9] Raghu, G.; Collard, H. R.; Egan, J. J.; Martinez, F. J.; Behr, J.; Brown, K. K.; Colby, T. V.; Cordier, J. F.; Flaherty, K. R.; Lasky, J. A.; Lynch, D. A.; Ryu, J. H.; Swigris, J. J.; Wells, A. U.; Ancochea, J.; Bouros, D.; Carvalho, C.; Costabel, U.; Ebina, M.; Hansell, D. M.; Johkoh, T.; Kim, D. S.; King, T. E., Jr.; Kondoh, Y.; Myers, J.; Müller, N. L.; Nicholson, A. G.; Richeldi, L.; Selman, M.; Dudden, R. F.; Griss, B. S.; Protzko, S. L.; Schünemann, H. J., An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011, 183, (6), 788-824.
[10] Walters, G. I., Occupational exposures and idiopathic pulmonary fibrosis. Curr Opin Allergy Clin Immunol 2020, 20, (2), 103-111.
[11] Gladyshev, V. N., The free radical theory of aging is dead. Long live the damage theory! Antioxid Redox Signal 2014, 20, (4), 727-31.
[12] Kanoh, S.; Kobayashi, H.; Motoyoshi, K., Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 2005, 128, (4), 2387-92.
[13] Hogg, J. C., Why does airway inflammation persist after the smoking stops? Thorax 2006, 61, (2), 96-7.
[14] Adamson, I. Y.; Bowden, D. H., Role of polymorphonuclear leukocytes in silica-induced pulmonary fibrosis. Am J Pathol 1984, 117, (1), 37-43.
[15] Cheng, N.; Shi, X.; Ye, J.; Castranova, V.; Chen, F.; Leonard, S. S.; Vallyathan, V.; Rojanasakul, Y., Role of transcription factor NF-kappaB in asbestos-induced TNFalpha response from macrophages. Exp Mol Pathol 1999, 66, (3), 201-10.
[16] Circu, M. L.; Aw, T. Y., Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010, 48, (6), 749-62.
[17] Pociask, D. A.; Sime, P. J.; Brody, A. R., Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest 2004, 84, (8), 1013-23.
[18] Card, J. W.; Racz, W. J.; Brien, J. F.; Massey, T. E., Attenuation of amiodarone-induced pulmonary fibrosis by vitamin E is associated with suppression of transforming growth factor-beta1 gene expression but not prevention of mitochondrial dysfunction. J Pharmacol Exp Ther 2003, 304, (1), 277-83.
[19] Hecker, L.; Vittal, R.; Jones, T.; Jagirdar, R.; Luckhardt, T. R.; Horowitz, J. C.; Pennathur, S.; Martinez, F. J.; Thannickal, V. J., NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 2009, 15, (9), 1077-81.
[20] McKeown, S.; Richter, A. G.; O'Kane, C.; McAuley, D. F.; Thickett, D. R., MMP expression and abnormal lung permeability are important determinants of outcome in IPF. Eur Respir J 2009, 33, (1), 77-84.
[21] Tan, R. J.; Fattman, C. L.; Niehouse, L. M.; Tobolewski, J. M.; Hanford, L. E.; Li, Q.; Monzon, F. A.; Parks, W. C.; Oury, T. D., Matrix metalloproteinases promote inflammation and fibrosis in asbestos-induced lung injury in mice. Am J Respir Cell Mol Biol 2006, 35, (3), 289-97.
[22] Cameli, P.; Carleo, A.; Bergantini, L.; Landi, C.; Prasse, A.; Bargagli, E., Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis. Inflammation 2020, 43, (1), 1-7.
[23] Kliment, C. R.; Oury, T. D., Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med 2010, 49, (5), 707-17.
[24] Suzuki, T.; Yamamoto, M., Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 2015, 88, (Pt B), 93-100.
[25] Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R., Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 2018, 1865, (5), 721-733.
[26] Kikuchi, N.; Ishii, Y.; Morishima, Y.; Yageta, Y.; Haraguchi, N.; Itoh, K.; Yamamoto, M.; Hizawa, N., Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respir Res 2010, 11, (1), 31.
[27] Walters, D. M.; Cho, H. Y.; Kleeberger, S. R., Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal 2008, 10, (2), 321-32.
[28] Markart, P.; Luboeinski, T.; Korfei, M.; Schmidt, R.; Wygrecka, M.; Mahavadi, P.; Mayer, K.; Wilhelm, J.; Seeger, W.; Guenther, A.; Ruppert, C., Alveolar oxidative stress is associated with elevated levels of nonenzymatic low-molecular-weight antioxidants in patients with different forms of chronic fibrosing interstitial lung diseases. Antioxid Redox Signal 2009, 11, (2), 227-40.
[29] Liu, Z.; Wang, W.; Cao, F.; Liu, S.; Zou, X.; Li, G.; Yang, H.; Jiao, Y., Number 2 Feibi Recipe Reduces PM2.5-Induced Lung Injury in Rats. Evid Based Complement Alternat Med 2018, 2018, 3674145.
[30] Hübner, R. H.; Gitter, W.; El Mokhtari, N. E.; Mathiak, M.; Both, M.; Bolte, H.; Freitag-Wolf, S.; Bewig, B., Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 2008, 44, (4), 507-11, 514-7.
[31] Yamamura, K.; Yuen, D.; Hickey, E. J.; He, X.; Chaturvedi, R. R.; Friedberg, M. K.; Grosse-Wortmann, L.; Hanneman, K.; Billia, F.; Farkouh, M. E.; Wald, R. M., Right ventricular fibrosis is associated with cardiac remodelling after pulmonary valve replacement. Heart 2019, 105, (11), 855-863.
[32] Egashira, T.; Takayama, F.; Yamanaka, Y., [Detection and characterization of free radicals, radical scavenging activity, and lipid peroxides in cerebral ischemia-reperfusion injury by electron spin resonance and chemiluminescence high-performance liquid chromatography]. Nihon Shinkei Seishin Yakurigaku Zasshi 1997, 17, (4), 153-8.
[33] Van't Erve, T. J.; Lih, F. B.; Jelsema, C.; Deterding, L. J.; Eling, T. E.; Mason, R. P.; Kadiiska, M. B., Reinterpreting the best biomarker of oxidative stress: The 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic Biol Med 2016, 95, 65-73.
[34] Cui, Y.; Robertson, J.; Maharaj, S.; Waldhauser, L.; Niu, J.; Wang, J.; Farkas, L.; Kolb, M.; Gauldie, J., Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int J Biochem Cell Biol 2011, 43, (8), 1122-33.
[35] Houghton, C. A.; Fassett, R. G.; Coombes, J. S., Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician's Expectation Be Matched by the Reality? Oxid Med Cell Longev 2016, 2016, 7857186.
[36] Li, L. C.; Xu, L.; Hu, Y.; Cui, W. J.; Cui, W. H.; Zhou, W. C.; Kan, L. D., Astragaloside IV Improves Bleomycin-Induced Pulmonary Fibrosis in Rats by Attenuating Extracellular Matrix Deposition. Front Pharmacol 2017, 8, 513.
[37] Li, N.; Feng, F.; Wu, K.; Zhang, H.; Zhang, W.; Wang, W., Inhibitory effects of astragaloside IV on silica-induced pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Biomed Pharmacother 2019, 119, 109387.
[38] Qian, W.; Cai, X.; Qian, Q., Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY) 2020, 12, (5), 4322-4336.
[39] Qian, W.; Cai, X.; Qian, Q.; Zhang, W.; Wang, D., Astragaloside IV modulates TGF-β1-dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. J Cell Mol Med 2018, 22, (9), 4354-4365.
[40] Feng, F.; Li, N.; Cheng, P.; Zhang, H.; Wang, H.; Wang, Y.; Wang, W., Tanshinone IIA attenuates silica-induced pulmonary fibrosis via inhibition of TGF-β1-Smad signaling pathway. Biomed Pharmacother 2020, 121, 109586.
[41] Tang, H.; He, H.; Ji, H.; Gao, L.; Mao, J.; Liu, J.; Lin, H.; Wu, T., Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β-dependent epithelial to mesenchymal transition. J Surg Res 2015, 197, (1), 167-75.
[42] Wu, H.; Li, Y.; Wang, Y.; Xu, D.; Li, C.; Liu, M.; Sun, X.; Li, Z., Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/ angiotensin-(1-7) axis in rats. Int J Med Sci 2014, 11, (6), 578-86.
[43] Huang, X.; He, Y.; Chen, Y.; Wu, P.; Gui, D.; Cai, H.; Chen, A.; Chen, M.; Dai, C.; Yao, D.; Wang, L., Baicalin attenuates bleomycin-induced pulmonary fibrosis via adenosine A2a receptor related TGF-β1-induced ERK1/2 signaling pathway. BMC Pulm Med 2016, 16, (1), 132.
[44] Zhao, H.; Li, C.; Li, L.; Liu, J.; Gao, Y.; Mu, K.; Chen, D.; Lu, A.; Ren, Y.; Li, Z., Baicalin alleviates bleomycin‑induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020, 21, (6), 2321-2334.
[45] Gao, Y.; Lu, J.; Zhang, Y.; Chen, Y.; Gu, Z.; Jiang, X., Baicalein attenuates bleomycin-induced pulmonary fibrosis in rats through inhibition of miR-21. Pulm Pharmacol Ther 2013, 26, (6), 649-54.
[46] Canestaro, W. J.; Forrester, S. H.; Raghu, G.; Ho, L.; Devine, B. E., Drug Treatment of Idiopathic Pulmonary Fibrosis: Systematic Review and Network Meta-Analysis. Chest 2016, 149, (3), 756-66.
[47] Zhang, R.; Xu, L.; An, X.; Sui, X.; Lin, S., Astragalus polysaccharides attenuate pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition and NF-κB pathway activation. Int J Mol Med 2020, 46, (1), 331-339.
[48] Yu, W. N.; Sun, L. F.; Yang, H., Inhibitory Effects of Astragaloside IV on Bleomycin-Induced Pulmonary Fibrosis in Rats Via Attenuation of Oxidative Stress and Inflammation. Inflammation 2016, 39, (5), 1835-41.
[49] Clifford, M. N.; Jaganath, I. B.; Ludwig, I. A.; Crozier, A., Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 2017, 34, (12), 1391-1421.
[50] Liang, N.; Kitts, D. D., Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, (1).
[51] Nikbakht, J.; Hemmati, A. A.; Arzi, A.; Mansouri, M. T.; Rezaie, A.; Ghafourian, M., Protective effect of gallic acid against bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep 2015, 67, (6), 1061-7.
[52] Jin, L.; Piao, Z. H.; Sun, S.; Liu, B.; Ryu, Y.; Choi, S. Y.; Kim, G. R.; Kim, H. S.; Kee, H. J.; Jeong, M. H., Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure. Vascul Pharmacol 2017, 99, 74-82.
[53] Rong, Y.; Cao, B.; Liu, B.; Li, W.; Chen, Y.; Chen, H.; Liu, Y.; Liu, T., A novel Gallic acid derivative attenuates BLM-induced pulmonary fibrosis in mice. Int Immunopharmacol 2018, 64, 183-191.
[54] Xin, X.; Yao, D.; Zhang, K.; Han, S.; Liu, D.; Wang, H.; Liu, X.; Li, G.; Huang, J.; Wang, J., Protective effects of Rosavin on bleomycin-induced pulmonary fibrosis via suppressing fibrotic and inflammatory signaling pathways in mice. Biomed Pharmacother 2019, 115, 108870.
[55] Liu, Q.; Chu, H.; Ma, Y.; Wu, T.; Qian, F.; Ren, X.; Tu, W.; Zhou, X.; Jin, L.; Wu, W.; Wang, J., Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway. Sci Rep 2016, 6, 27610.
[56] Liu, M.; Xu, H.; Zhang, L.; Zhang, C.; Yang, L.; Ma, E.; Liu, L.; Li, Y., Salvianolic acid B inhibits myofibroblast transdifferentiation in experimental pulmonary fibrosis via the up-regulation of Nrf2. Biochem Biophys Res Commun 2018, 495, (1), 325-331.
[57] Jiang, L.; Wang, J.; Ju, J.; Dai, J., Salvianolic acid B and sodium tanshinone II A sulfonate prevent pulmonary fibrosis through anti-inflammatory and anti-fibrotic process. Eur J Pharmacol 2020, 883, 173352.
[58] Larki, A.; Hemmati, A. A.; Arzi, A.; Borujerdnia, M. G.; Esmaeilzadeh, S.; Zad Karami, M. R., Regulatory effect of caffeic acid phenethyl ester on type I collagen and interferon-gamma in bleomycin-induced pulmonary fibrosis in rat. Res Pharm Sci 2013, 8, (4), 243-52.
[59] Larki-Harchegani, A.; Hemmati, A. A.; Arzi, A.; Ghafurian-Boroojerdnia, M.; Shabib, S.; Zadkarami, M. R.; Esmaeilzadeh, S., Evaluation of the Effects of Caffeic Acid Phenethyl Ester on Prostaglandin E2 and Two Key Cytokines Involved in Bleomycin-induced Pulmonary Fibrosis. Iran J Basic Med Sci 2013, 16, (7), 850-7.
[60] An, L.; Peng, L. Y.; Sun, N. Y.; Yang, Y. L.; Zhang, X. W.; Li, B.; Liu, B. L.; Li, P.; Chen, J., Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxid Redox Signal 2019, 30, (15), 1831-1848.
[61] Zhu, Z.; Li, Q.; Xu, C.; Zhao, J.; Li, S.; Wang, Y.; Tian, L., Sodium tanshinone IIA sulfonate attenuates silica-induced pulmonary fibrosis in rats via activation of the Nrf2 and thioredoxin system. Environ Toxicol Pharmacol 2020, 80, 103461.
[62] Feng, F.; Cheng, P.; Xu, S.; Li, N.; Wang, H.; Zhang, Y.; Wang, W., Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling. Chem Biol Interact 2020, 319, 109024.
[63] He, H.; Tang, H.; Gao, L.; Wu, Y.; Feng, Z.; Lin, H.; Wu, T., Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis in rats. Mol Med Rep 2015, 11, (6), 4190-6.
[64] Zhang, Q.; Gan, C.; Liu, H.; Wang, L.; Li, Y.; Tan, Z.; You, J.; Yao, Y.; Xie, Y.; Yin, W.; Ye, T., Cryptotanshinone reverses the epithelial-mesenchymal transformation process and attenuates bleomycin-induced pulmonary fibrosis. Phytother Res 2020, 34, (10), 2685-2696.
[65] Zhang, Y.; Lu, W.; Zhang, X.; Lu, J.; Xu, S.; Chen, S.; Zhong, Z.; Zhou, T.; Wang, Q.; Chen, J.; Liu, P., Cryptotanshinone protects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways. Pharmacol Res 2019, 147, 104307.
[66] Zhang, L.; Ji, Y.; Kang, Z.; Lv, C.; Jiang, W., Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. Toxicol Appl Pharmacol 2015, 283, (1), 50-6.
[67] Gao, L.; Tang, H.; He, H.; Liu, J.; Mao, J.; Ji, H.; Lin, H.; Wu, T., Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Front Pharmacol 2015, 6, 215.
[68] Zhang, D.; Liu, B.; Cao, B.; Wei, F.; Yu, X.; Li, G. F.; Chen, H.; Wei, L. Q.; Wang, P. L., Synergistic protection of Schizandrin B and Glycyrrhizic acid against bleomycin-induced pulmonary fibrosis by inhibiting TGF-β1/Smad2 pathways and overexpression of NOX4. Int Immunopharmacol 2017, 48, 67-75.
Cite This Article
  • APA Style

    Qi Long, Zhao Heng Liu, Jie Niu, Hao Ge Liu, Xiao Feng Gu, et al. (2021). Treatment with Number 2 Feibi Recipe, a Compound Traditional Chinese Medicine Reduces Bleomycin-induced Pulmonary Fibrosis in Mice. Clinical Medicine Research, 10(3), 73-83. https://doi.org/10.11648/j.cmr.20211003.13

    Copy | Download

    ACS Style

    Qi Long; Zhao Heng Liu; Jie Niu; Hao Ge Liu; Xiao Feng Gu, et al. Treatment with Number 2 Feibi Recipe, a Compound Traditional Chinese Medicine Reduces Bleomycin-induced Pulmonary Fibrosis in Mice. Clin. Med. Res. 2021, 10(3), 73-83. doi: 10.11648/j.cmr.20211003.13

    Copy | Download

    AMA Style

    Qi Long, Zhao Heng Liu, Jie Niu, Hao Ge Liu, Xiao Feng Gu, et al. Treatment with Number 2 Feibi Recipe, a Compound Traditional Chinese Medicine Reduces Bleomycin-induced Pulmonary Fibrosis in Mice. Clin Med Res. 2021;10(3):73-83. doi: 10.11648/j.cmr.20211003.13

    Copy | Download

  • @article{10.11648/j.cmr.20211003.13,
      author = {Qi Long and Zhao Heng Liu and Jie Niu and Hao Ge Liu and Xiao Feng Gu and Qing Lu Pang and Fang Cao and Yang Jiao},
      title = {Treatment with Number 2 Feibi Recipe, a Compound Traditional Chinese Medicine Reduces Bleomycin-induced Pulmonary Fibrosis in Mice},
      journal = {Clinical Medicine Research},
      volume = {10},
      number = {3},
      pages = {73-83},
      doi = {10.11648/j.cmr.20211003.13},
      url = {https://doi.org/10.11648/j.cmr.20211003.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.cmr.20211003.13},
      abstract = {Objective: Oxidative stress with reactive oxygen species (ROS) generated from exogenous oxidants and pollutants exposure is involved in the pathogenesis of Idiopathic pulmonary fibrosis (IPF). Number 2 Feibi Recipe (Number 2 FBR) is a traditional Chinese herbal formula which can attenuate the lung injury induced by PM2.5. The present study is to explore the effect and mechanism of Number 2 FBR on bleomycin (BLM)-induced pulmonary fibrosis in C57BL/6Cnc mice. Method: Bleomycin-induced C57BL/6Cnc mice were treated with Number 2 FBR and Sulforphane for two weeks. HE and Masson trichrome staining were performed to evaluate pathological changes in lung tissues. The extent of lung fibrosis was evaluated with fibrosis scores, collagen volume fraction, and hydroxyproline concentration. Levels of SOD and 8-iso-PGF2α in lung tissues were measured by using commercial assay kits. The levels of Nrf2, SOD, GSH-Px, and TGF-β1 relative protein and mRNA in lung tissues were measured by real time PCR and Western blot respectively. Results: The results showed that Number 2 FBR ameliorated bleomycin-induced pathological changes, collagen deposition and significantly decreased fibrosis scores, collagen volume fraction, and hydroxyproline concentration in the mice lungs. Additionally, Number 2 FBR inhibited the expression of 8-iso-prostaglandin F2α (8-iso-PGF2α) and transforming growth factor beta1 (TGF-β1), and increased the expression of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2), superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) in lung tissues. Conclusion: Number 2 FBR has an effect of anti-fibrosis by regulating the lung oxidants and antioxidants balance.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Treatment with Number 2 Feibi Recipe, a Compound Traditional Chinese Medicine Reduces Bleomycin-induced Pulmonary Fibrosis in Mice
    AU  - Qi Long
    AU  - Zhao Heng Liu
    AU  - Jie Niu
    AU  - Hao Ge Liu
    AU  - Xiao Feng Gu
    AU  - Qing Lu Pang
    AU  - Fang Cao
    AU  - Yang Jiao
    Y1  - 2021/05/14
    PY  - 2021
    N1  - https://doi.org/10.11648/j.cmr.20211003.13
    DO  - 10.11648/j.cmr.20211003.13
    T2  - Clinical Medicine Research
    JF  - Clinical Medicine Research
    JO  - Clinical Medicine Research
    SP  - 73
    EP  - 83
    PB  - Science Publishing Group
    SN  - 2326-9057
    UR  - https://doi.org/10.11648/j.cmr.20211003.13
    AB  - Objective: Oxidative stress with reactive oxygen species (ROS) generated from exogenous oxidants and pollutants exposure is involved in the pathogenesis of Idiopathic pulmonary fibrosis (IPF). Number 2 Feibi Recipe (Number 2 FBR) is a traditional Chinese herbal formula which can attenuate the lung injury induced by PM2.5. The present study is to explore the effect and mechanism of Number 2 FBR on bleomycin (BLM)-induced pulmonary fibrosis in C57BL/6Cnc mice. Method: Bleomycin-induced C57BL/6Cnc mice were treated with Number 2 FBR and Sulforphane for two weeks. HE and Masson trichrome staining were performed to evaluate pathological changes in lung tissues. The extent of lung fibrosis was evaluated with fibrosis scores, collagen volume fraction, and hydroxyproline concentration. Levels of SOD and 8-iso-PGF2α in lung tissues were measured by using commercial assay kits. The levels of Nrf2, SOD, GSH-Px, and TGF-β1 relative protein and mRNA in lung tissues were measured by real time PCR and Western blot respectively. Results: The results showed that Number 2 FBR ameliorated bleomycin-induced pathological changes, collagen deposition and significantly decreased fibrosis scores, collagen volume fraction, and hydroxyproline concentration in the mice lungs. Additionally, Number 2 FBR inhibited the expression of 8-iso-prostaglandin F2α (8-iso-PGF2α) and transforming growth factor beta1 (TGF-β1), and increased the expression of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2), superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) in lung tissues. Conclusion: Number 2 FBR has an effect of anti-fibrosis by regulating the lung oxidants and antioxidants balance.
    VL  - 10
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Graduate School, Beijing University of Chinese Medicine, Beijing, China

  • School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China

  • Dongfang Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China

  • Graduate School, Beijing University of Chinese Medicine, Beijing, China

  • Graduate School, Beijing University of Chinese Medicine, Beijing, China

  • Graduate School, Beijing University of Chinese Medicine, Beijing, China

  • Dongfang Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China

  • Dongfang Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China

  • Sections