| Peer-Reviewed

Relictual tRNAs Recognized not Chemically Inert Amino Acids, but Chemically Active Aminoacyl-Adenylates

Received: 17 March 2017    Accepted: 10 April 2017    Published: 27 May 2017
Views:       Downloads:
Abstract

Some authors believe that the genetic code originated due to the ability of amino acids to form complexes with the corresponding antikodons. We believe that it is wrong and hypothesize that the relic tRNAs did not form complexes with chemically inactive amino acids. The formation of such complexes was devoid of “biological meaning”. Instead, they recognized of chemically active forms of amino acids, namely aminoacyl-adenylates. Thus, relict recognition of amino acids, which led to the formation of the genetic code do not occur through the formation of complexes, but through a chemical reaction between the corresponding aminoacyl-adenylates and tRNAs relic. All the necessary elements of the relic of the mechanism of recognition of aminoacyl-adenylates evolutionary entrenched in the structure of modern tRNAs. The main element of such mechanism is the uridine base, which is always before the anticodons of modern sense tRNAs. Thus, thanks to our hypothesis, we can answer two fundamental questions: 1. Why only ATP activates amino acids? 2. Why only U-bases are placed before the anticodons of modern sense tRNAs?

Published in Ecology and Evolutionary Biology (Volume 2, Issue 3)
DOI 10.11648/j.eeb.20170203.12
Page(s) 45-48
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Genetic Code Origin, Chemical Base of the Genetic Code, Amino Acid Recognition, Amino Acids Nucleotides Relationships

References
[1] Welton M. G. E., and Pelc S. R. (1966) Stereochemical relationship between coding triplets and amino acids. Nature 210, 1265-1267.
[2] Woese C. R., Dugre D. H., Saxinger W. C., and Dugre S. A. (1966) The molecular basis for the genetic code. PNAS USA, 55, 966-974.
[3] Pelc S. R., and Welton M. G. E. (1966) Stereochemical relationship between coding triplets and amino acids. Nature, 209, 868-870.
[4] Dunnill P. (1966) Triplet nucleotide-amino acid pairing a stereochemical basis for the division between protein and non-protein amino acids. Nature, 210, 1265-1267.
[5] Wong J. T.-F. (1975) A Co-Evolution Theory of the Genetic Code. PNAS USA, 72, 1909-1912.
[6] Hopfield J. J. (1978) Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. PNAS USA, 75, 4334-4338.
[7] Balasubramanian R., Seetharamulu P.,and Raghunathan G.. (1980) A conformational rationale for the origin of the mechanism of nucleic acid-directed protein synthesis of “living” organisms. Orig. Life, 10, 15-30.
[8] Hendry L. B., and Bransome E. D. (1981) Are there structural analogies between amino acids and nucleic acids? Orig. Life, 11, 203-221.
[9] Shimizu M. (1982) Molecular basis for the genetic code. Journal of Molecular Evolution, 18, 297-303.
[10] Di Giulio M. (1997) On the origin of the genetic code. J. Theor. Biol., 187, 573-581.
[11] Schnitzer W., and Ahsen U. (1997) Identification of specific Rp-phosphate oxygens in the tRNA anticodon loop required for ribosomal P-site-binding. PNAS USA, 94, 12823-12828.
[12] Knight R. D., Freeland S. J., and Landweber L. F. (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci., 24, 241-247.
[13] Niu D. K., Lin K., and Zhang D. Y. (2003) Strand compositional asymmetries of nuclear DNA in eukaryotes. J. Mol. Evol., 57, 325-334
[14] Di Giulio M. (2005) The ocean abysses witnessed the origin of the genetic code. Gene, 346, 7-12
[15] Yarus M., Caporaso G., Knight R. (2005) Origins of the genetic code: the escaped triplet theory. Annu. Rev. Biochem. 74, 179-198.
[16] Mackiewicz P., Biecek P., Mackiewicz D. at al. (2008) Optimisation of Asymmetric Mutational Pressure and Selection Pressure Around the Universal Genetic Code. Lecture Notes in Computer Science (LNCS). 5103, 100-109.
[17] Hanyang Y., Zhang S., and Chaput C. (2012) Darvinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nature Chemistry 4, 183-187.
[18] Seligmann H (2010) Dypoot haensisticodons of misacylated tRNAs preferentially mismatch codons coding for the misloaded amino acid? Molecular Biology, 11 (41), 1-5.
[19] Erives A. (2011) A Model of Proto-Anti-Codon RNA Enzymes Requiring L-Amino Acid Homochirality. J Mol. Evol., 73, 10-22.
[20] Rodin A. S., Szathmáry E. and Rodin S. N. (2011) Biology Direct, 6, 1-24.
[21] Cantor, C. and Shimmel P. (1985) Biophysical chemistry 1, Moscow: Mir Saenger W. (1984) Principles of nucleic acid structure. New York: Springer-Verlag.
[22] Pyvovarenko Y. V. (1998) About the possible stereo chemical relationships between olygonucleotides and aminoacyl-adenylates as the basis of genetic code appearance (hypothesis). Journal of Evol. Biochemistry and Physiology, 34, 611-614.
[23] Doherty E. A., and Doudna J. A. (2001) Ribozyme structures and mechanisms. Annu. Rev. Biophys. Biomol. Struct., 30, 447-457.
[24] Joyce G. F. (2004) Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem., 73, 791-836.
[25] Berg P. (1958) The Chemical Synthesis of Amino Acyl Adenylates. J. Biol. Chem., 233, 608-611.
Cite This Article
  • APA Style

    Yuri Pivovarenko. (2017). Relictual tRNAs Recognized not Chemically Inert Amino Acids, but Chemically Active Aminoacyl-Adenylates. Ecology and Evolutionary Biology, 2(3), 45-48. https://doi.org/10.11648/j.eeb.20170203.12

    Copy | Download

    ACS Style

    Yuri Pivovarenko. Relictual tRNAs Recognized not Chemically Inert Amino Acids, but Chemically Active Aminoacyl-Adenylates. Ecol. Evol. Biol. 2017, 2(3), 45-48. doi: 10.11648/j.eeb.20170203.12

    Copy | Download

    AMA Style

    Yuri Pivovarenko. Relictual tRNAs Recognized not Chemically Inert Amino Acids, but Chemically Active Aminoacyl-Adenylates. Ecol Evol Biol. 2017;2(3):45-48. doi: 10.11648/j.eeb.20170203.12

    Copy | Download

  • @article{10.11648/j.eeb.20170203.12,
      author = {Yuri Pivovarenko},
      title = {Relictual tRNAs Recognized not Chemically Inert Amino Acids, but Chemically Active Aminoacyl-Adenylates},
      journal = {Ecology and Evolutionary Biology},
      volume = {2},
      number = {3},
      pages = {45-48},
      doi = {10.11648/j.eeb.20170203.12},
      url = {https://doi.org/10.11648/j.eeb.20170203.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.eeb.20170203.12},
      abstract = {Some authors believe that the genetic code originated due to the ability of amino acids to form complexes with the corresponding antikodons. We believe that it is wrong and hypothesize that the relic tRNAs did not form complexes with chemically inactive amino acids. The formation of such complexes was devoid of “biological meaning”. Instead, they recognized of chemically active forms of amino acids, namely aminoacyl-adenylates. Thus, relict recognition of amino acids, which led to the formation of the genetic code do not occur through the formation of complexes, but through a chemical reaction between the corresponding aminoacyl-adenylates and tRNAs relic. All the necessary elements of the relic of the mechanism of recognition of aminoacyl-adenylates evolutionary entrenched in the structure of modern tRNAs. The main element of such mechanism is the uridine base, which is always before the anticodons of modern sense tRNAs. Thus, thanks to our hypothesis, we can answer two fundamental questions: 1. Why only ATP activates amino acids? 2. Why only U-bases are placed before the anticodons of modern sense tRNAs?},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Relictual tRNAs Recognized not Chemically Inert Amino Acids, but Chemically Active Aminoacyl-Adenylates
    AU  - Yuri Pivovarenko
    Y1  - 2017/05/27
    PY  - 2017
    N1  - https://doi.org/10.11648/j.eeb.20170203.12
    DO  - 10.11648/j.eeb.20170203.12
    T2  - Ecology and Evolutionary Biology
    JF  - Ecology and Evolutionary Biology
    JO  - Ecology and Evolutionary Biology
    SP  - 45
    EP  - 48
    PB  - Science Publishing Group
    SN  - 2575-3762
    UR  - https://doi.org/10.11648/j.eeb.20170203.12
    AB  - Some authors believe that the genetic code originated due to the ability of amino acids to form complexes with the corresponding antikodons. We believe that it is wrong and hypothesize that the relic tRNAs did not form complexes with chemically inactive amino acids. The formation of such complexes was devoid of “biological meaning”. Instead, they recognized of chemically active forms of amino acids, namely aminoacyl-adenylates. Thus, relict recognition of amino acids, which led to the formation of the genetic code do not occur through the formation of complexes, but through a chemical reaction between the corresponding aminoacyl-adenylates and tRNAs relic. All the necessary elements of the relic of the mechanism of recognition of aminoacyl-adenylates evolutionary entrenched in the structure of modern tRNAs. The main element of such mechanism is the uridine base, which is always before the anticodons of modern sense tRNAs. Thus, thanks to our hypothesis, we can answer two fundamental questions: 1. Why only ATP activates amino acids? 2. Why only U-bases are placed before the anticodons of modern sense tRNAs?
    VL  - 2
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Research and Training Center ‘Physical and Chemical Materials Science’ Under Kyiv Taras Shevchenko University and NAS of Ukraine, Kiev, Ukraine

  • Sections