| Peer-Reviewed

Toward Bottom-up Optoelectronic Design of Increasing Fluorination Low Bandgap in PDTPQX-types Copolymers for Organic Photovoltaics Devices

Received: 2 August 2021    Accepted: 13 August 2021    Published: 9 September 2021
Views:       Downloads:
Abstract

Organic photovoltaic performance has been investigated about the fluorination effects as one part on the optoelectronic properties. The quantum chemical accuracy of the optoelectronic and structural properties based on D-A (Donor-Acceptor) conjugated copolymers as PDTPQX-type (Poly-dithieno-pyrrol-Quinoxaline) has been tediously exposed. The Donor-Acceptor in the copolymers was in our case constitutes to the Donor part in the photovoltaic device, while the Acceptor starting is the PC60BM in the same device, which composed the photovoltaic solar cells. The choice of the Donor part in the copolymers was obtained by their HOMO-LUMO bandgap and UV-visible absorption. The bandgap of the Donor part must be higher than that of the Acceptor part for an untroubled charges transfer from the Donor to the Acceptor according to the photovoltaic principle. The substitution of fluorine atoms (0F, 1F, 2F) on the quinoxaline constituents is an effective way to low the HOMO and LUMO energy levels of the alternating copolymers. This fluorine effect has been explored on the optoelectronic properties such as the HOMO-LUMO band gap Egap energy, the fill factor FF, the open circuit voltage Voc, the electron transfer energy ΔEet, the excitation energy ΔEex, the absorption wave length λ and the oscillator strength OS. The equilibrium geometry at the ground state, the electronic structures as the frontier orbital isosurface have been obtained under the caster of the density functional theory (DFT) assist by the time-dependent density functional theory (TD-DFT) with M05 as exchange-correlation functional to come with 6-311G(d,p) basis set. Calculations were performed both in vaccuum and Chlorobenzene (CB) solvent with IEFPCM quantum model. All this has been done with the aim to enhance the energy gap, the Voc values and the fill factor FF, which exposed the nanomorphology as the topology of the solar cells photoactive layers. The results of this study show that these promote compounds systems as in the fluorination order are excellent candidates to build photovoltaic device in aim to enhance the open-circuit voltage for donor-acceptor heterojunctions used in organic solar cells.

Published in International Journal of Computational and Theoretical Chemistry (Volume 9, Issue 2)
DOI 10.11648/j.ijctc.20210902.12
Page(s) 32-42
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Fluorination, PDTPQx-types, Bandgap, UV-VIS Absorption, TD-DFT

References
[1] Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., Adv. Mater. 2010, 22, E135–E138.
[2] Scharber, M. C.; Koppe, M.; Gao, J.; Cordella, F.; Loi, M. A.; Denk, P.; Morana, M.; Egelhaaf, H. J.; Forberich, K.; Dennler, G.; Gaudiana, R.; Waller, D.; Zhu, Z.; Shi, X.; Brabec, C. J., Adv. Mater. 2010, 22, 367–370.
[3] Benson-Smith, J. J.; Goris, L.; Vandewal, K.; Haenen, K.; Manca, J. V.; Vanderzande, D.; Bradley, D. D. C.; Nelson, J., Adv. Funct. Mater. 2007, 17, 451–457.
[4] Shuttle, C. G.; Hamilton, R.; O’Regan, B. C.; Nelson, J.; Durrant, J. R. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 16448–16452.
[5] M. R. Lee; RD Eckert; K Forberich; G Dennler; C. J. Brabec; R. A. Gaudiana, Science, 2009, 324, 232-235.
[6] F. Etzold; I. A. Howard; R. Mauer; M. Meister; T. D. Kim; K. S. Lee; N. S. Baek; F. Laquai, J. Am. Chem. Soc., 2011, 133, 9469-9479.
[7] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 11, 2001, 15-26.
[8] E. Bundgaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells 91, 2007, 954-985.
[9] G. Inzelt, Conducting Polymers: A New Era in Electrochemistry; F. Scholz, Ed.; Monographs in Electrochemistry; Springer: Berlin Heidelberg, 2008; Chapter 1, pp 1−6.
[10] J. Roncali, Chem. Rev. 1997, 97, 173−206.
[11] N. C. Greenham; S. C. Moratti; D. D. C. Bradley; R. H. Friend; A. B. Holmes, Nature 1993, 365, 628−630.
[12] J. Gierschner; J. Cornil; H.-J. Egelhaaf, Adv. Mater. 2007, 19, 173−191.
[13] B. A. Jones; A. Facchetti; M. R. Wasielewski; T. J. Marks, J. Am. Chem. Soc. 2007, 129, 15259−15278.
[14] A. Kohler; D. A. dos Santos; D. Beljonne; Z. Shuai; J.-L. Bredas; A. B. Holmes; A. Kraus; K. Mullen; R. H. Friend, Nature 1998, 392, 903−906.
[15] K. Capelle, Braz. J. Phys., 2006, 36, 1318-1343.
[16] S. Logothetidis, J. Mater. Sci. Eng. B, 2008, 152, 96–104.
[17] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima and J. Rand, Appl. Phys. Lett., 2007, 91 (23), 233117.
[18] J. Müller, B. Rech, J. Springer and M. Vanecek, Sol. Energy, 2004, 77, 917–930.
[19] M. C. Scharber; D. Mühlbacher; M. Koppe; P. Denk; C. Waldauf; A. J. Heeger; C. J. Brabec, Adv. Mater., 2006, 18, 789-794.
[20] Green M. A., Solid-State Electronics. 1981; 24:788-789.
[21] Y. Yi, V. Coropceanu, J. L. Brédas, J. Am. Chem. Soc., 2009, 131 (43), 15777-15783.
[22] Lee, J.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J., J. Am. Chem. Soc. 2008, 130, 3619–3623.
[23] Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D. C.; Cook, S.; Durrant, J. R. Appl. Phys. Lett. 2005, 86, 063502–063504.
[24] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 1992, 258 (5087), 1474–1476.
[25] Y. Li, T. Pullerits, M. Zhao, and M. Sun. J. Phys. Chem. C, 2011, 115, 44, 21865-21873.
[26] C. W. Tang, Appl. Phys. Lett., 1986, 48 (2), 183-185.
[27] http://www.heliatek.com/wpcontent/uploads/2013/01/130116PRHeliatekachieves_OPV.pdf, 2013.
[28] P. Verstappen, J. Kesters, W. Vanormelingen, G. H. L. Heintges, J. Drijkoningen, T. Vangerven, L. Marin, S. Koudjina, B. Champagne, J. Manca, L. Lutsen, D. Vanderzande, W. Maes, J. Mater. Chem. A. 2015, 3, 2960–2970.
[29] M. E. Casida, Low-Lying Potential Energy Surfaces, 2002, 828, 199–220.
[30] M. A. L. Marques, C. Ullrich, F. Nogueira, A. Rubio, and E. K. U. Gross, volume 706 of Lecture Notes in Physics, Springer, Berlin, 2006.
[31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Gaussian 09, Revision D.01, Inc., Wallingford CT, 2013.
[32] E. Frisch, H. P. Hratchian, R. D. Dennington II, et al., 2009 Gaussview, Version 5.0.8, Gaussian, Inc., 235 Wallingford CT.
[33] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2005, 2999–3093.
[34] Y. Zhao, N. E. Schultz and D. G. Truhlar, J. Chem. Phys., 2005, 123 (16), 161103.
[35] V. A. Rassolov, J. A. Pople, M. A. Ratner, T. L. Windus, J. Chem. Phys, 1998, 109 (4), 1223–1229.
[36] W. J. Hehre, R. Ditchfield, J. A. Pople, J Chem Phys, 1972, 56 (5), 2257–2261.
[37] McCormick, T. M.; Bridges, C. R.; Carrera, E. I.; DiCarmine, P. M.; Gibson, G. L.; Hollinger, J.; Kozycz, L. M.; Seferos, D. S. Macromolecules, 2013, 46, 3879–3886.
[38] E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107 (8), 3032–3041.
[39] B. Mennucci, E. Cancès, J. Tomasi, J. Phys. Chem. B 1997, 101, 49, 10506–10517.
[40] S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55 (1), 117–129.
[41] R. Cammi, J. Tomasi, J. Comput. Chem. 1995, 16 (12), 1449–1458.
[42] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393 (1-3), 51–57.
[43] Klamt, A., Moya, C. Palomar, J., J. Chem. Theory Comput, 2015, 11 (9), 4220–4225.
[44] M. Bourass, N. Komiha, O. K. Kabbaj, N. Wazzan, M. Chemek, M. Bouachrine, New J. Chem. 2019, 43, 15899–15909.
[45] N. Hergué, C. Mallet, G. Savitha, M. Allain, P. Frère, J. Roncali. Org. Lett., 2011, 13, 7, 1762–1765.
[46] Soumia Boussaidi, Hsaine Zgou, Abderrahim Eddiouane, Hassan Chaib, Mohamed, J. Comput. Methods Mol. Des., 2015, 5 (3): 1–9.
[47] R. G. Pearson, Chemical Hardness (Wiley, Hoboken, 1997).
[48] R. G. Pearson, Proc. Natl. Acad. Sci., 1986, 83, 8440–8841.
[49] Roncali J., J. Acc. Chem. Res. 2009, 42, 11, 1719–1730.
[50] Brédas, J. L. Silbey, R. Boudreaux, D. S. S., Chance, R. R., J. Am Chem. Soc., 1983, 105, 6555–6559.
[51] F. C. Grozema, L. P. Candeias, M. Swart, P. V. Duijnen, J. Wildemen, G. Hadzianon, J. Chem. Phys., 2002, 117, 11366–11378.
[52] J. Huang, Y. Niu, W. Yang, Y. Mo, M. Yang, Y. Cao, Macromolecules, 2002, 35, 16, 6080–6082.
[53] A. Gadisa, M. Svensson, M. R. Anderson, O. Inganas, J. Appl. Phys. Lett., 2004, 84, 1609–1611.
[54] C. Deibel, T. Strobel, V. Dyakonov, Adv. Mater., 2010, 22 (37), 4097–4111.
[55] Qiang Mei; Mingwei Shan; Liying Liu; Guerrero, J. M., IEEE Transactions on Industrial Electronics, 2011, 58 (6), 2427–2434.
[56] Y. He, H. Y Chen, J. Hou, Y. Li, J. Am. Chem. Soc., 2010, 132, 1377–1382.
[57] Chemissian v. 4.01 demo version. Available online at: http:// www.chemissian.com.
[58] D. Porath, G. Cuniberti, R. Di Felice, Top. Curr. Chem. 237 (2004) 183–228.
[59] H. J. Son, W. Wang, T. Xu, Y. Liang, Y. Wu, G. Li, L. Yu, J. Am. Chem. Soc. 2011, 133, 1885–1894.
[60] L. G. Mercier, A. Mishra, Y. Ishigaki, F. Henne, G. Schulz, P. Bäuerle, Org. Lett. 2014, 16, 2642–2645.
[61] G. J. Hedley, A. J. Ward, A. Alekseev, C. T. Howells, E. R. Martins, L. A. Serrano, G. Cooke, A. Ruseckas, I. D. W. Samuel., Nat. Commun. 2013, 4 (1), 2867.
[62] X. He, S. Mukherjee, S. Watkins, M. Chen, T. Qin, L. Thomsen, H. Ade, C. R. McNeill., J. Phys. Chem. C. 2014, 118, 9918–9929.
Cite This Article
  • APA Style

    Simplice Koudjina, Affi Sopi Thomas, René Sawadogo, Nobel Kouakou N’Guessan, Wilfried Gbèdodé Kanhounnon, et al. (2021). Toward Bottom-up Optoelectronic Design of Increasing Fluorination Low Bandgap in PDTPQX-types Copolymers for Organic Photovoltaics Devices. International Journal of Computational and Theoretical Chemistry, 9(2), 32-42. https://doi.org/10.11648/j.ijctc.20210902.12

    Copy | Download

    ACS Style

    Simplice Koudjina; Affi Sopi Thomas; René Sawadogo; Nobel Kouakou N’Guessan; Wilfried Gbèdodé Kanhounnon, et al. Toward Bottom-up Optoelectronic Design of Increasing Fluorination Low Bandgap in PDTPQX-types Copolymers for Organic Photovoltaics Devices. Int. J. Comput. Theor. Chem. 2021, 9(2), 32-42. doi: 10.11648/j.ijctc.20210902.12

    Copy | Download

    AMA Style

    Simplice Koudjina, Affi Sopi Thomas, René Sawadogo, Nobel Kouakou N’Guessan, Wilfried Gbèdodé Kanhounnon, et al. Toward Bottom-up Optoelectronic Design of Increasing Fluorination Low Bandgap in PDTPQX-types Copolymers for Organic Photovoltaics Devices. Int J Comput Theor Chem. 2021;9(2):32-42. doi: 10.11648/j.ijctc.20210902.12

    Copy | Download

  • @article{10.11648/j.ijctc.20210902.12,
      author = {Simplice Koudjina and Affi Sopi Thomas and René Sawadogo and Nobel Kouakou N’Guessan and Wilfried Gbèdodé Kanhounnon and Gaston Assongba Kpotin and Guy Yacolé Sylvain Atohoun},
      title = {Toward Bottom-up Optoelectronic Design of Increasing Fluorination Low Bandgap in PDTPQX-types Copolymers for Organic Photovoltaics Devices},
      journal = {International Journal of Computational and Theoretical Chemistry},
      volume = {9},
      number = {2},
      pages = {32-42},
      doi = {10.11648/j.ijctc.20210902.12},
      url = {https://doi.org/10.11648/j.ijctc.20210902.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20210902.12},
      abstract = {Organic photovoltaic performance has been investigated about the fluorination effects as one part on the optoelectronic properties. The quantum chemical accuracy of the optoelectronic and structural properties based on D-A (Donor-Acceptor) conjugated copolymers as PDTPQX-type (Poly-dithieno-pyrrol-Quinoxaline) has been tediously exposed. The Donor-Acceptor in the copolymers was in our case constitutes to the Donor part in the photovoltaic device, while the Acceptor starting is the PC60BM in the same device, which composed the photovoltaic solar cells. The choice of the Donor part in the copolymers was obtained by their HOMO-LUMO bandgap and UV-visible absorption. The bandgap of the Donor part must be higher than that of the Acceptor part for an untroubled charges transfer from the Donor to the Acceptor according to the photovoltaic principle. The substitution of fluorine atoms (0F, 1F, 2F) on the quinoxaline constituents is an effective way to low the HOMO and LUMO energy levels of the alternating copolymers. This fluorine effect has been explored on the optoelectronic properties such as the HOMO-LUMO band gap Egap energy, the fill factor FF, the open circuit voltage Voc, the electron transfer energy ΔEet, the excitation energy ΔEex, the absorption wave length λ and the oscillator strength OS. The equilibrium geometry at the ground state, the electronic structures as the frontier orbital isosurface have been obtained under the caster of the density functional theory (DFT) assist by the time-dependent density functional theory (TD-DFT) with M05 as exchange-correlation functional to come with 6-311G(d,p) basis set. Calculations were performed both in vaccuum and Chlorobenzene (CB) solvent with IEFPCM quantum model. All this has been done with the aim to enhance the energy gap, the Voc values and the fill factor FF, which exposed the nanomorphology as the topology of the solar cells photoactive layers. The results of this study show that these promote compounds systems as in the fluorination order are excellent candidates to build photovoltaic device in aim to enhance the open-circuit voltage for donor-acceptor heterojunctions used in organic solar cells.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Toward Bottom-up Optoelectronic Design of Increasing Fluorination Low Bandgap in PDTPQX-types Copolymers for Organic Photovoltaics Devices
    AU  - Simplice Koudjina
    AU  - Affi Sopi Thomas
    AU  - René Sawadogo
    AU  - Nobel Kouakou N’Guessan
    AU  - Wilfried Gbèdodé Kanhounnon
    AU  - Gaston Assongba Kpotin
    AU  - Guy Yacolé Sylvain Atohoun
    Y1  - 2021/09/09
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ijctc.20210902.12
    DO  - 10.11648/j.ijctc.20210902.12
    T2  - International Journal of Computational and Theoretical Chemistry
    JF  - International Journal of Computational and Theoretical Chemistry
    JO  - International Journal of Computational and Theoretical Chemistry
    SP  - 32
    EP  - 42
    PB  - Science Publishing Group
    SN  - 2376-7308
    UR  - https://doi.org/10.11648/j.ijctc.20210902.12
    AB  - Organic photovoltaic performance has been investigated about the fluorination effects as one part on the optoelectronic properties. The quantum chemical accuracy of the optoelectronic and structural properties based on D-A (Donor-Acceptor) conjugated copolymers as PDTPQX-type (Poly-dithieno-pyrrol-Quinoxaline) has been tediously exposed. The Donor-Acceptor in the copolymers was in our case constitutes to the Donor part in the photovoltaic device, while the Acceptor starting is the PC60BM in the same device, which composed the photovoltaic solar cells. The choice of the Donor part in the copolymers was obtained by their HOMO-LUMO bandgap and UV-visible absorption. The bandgap of the Donor part must be higher than that of the Acceptor part for an untroubled charges transfer from the Donor to the Acceptor according to the photovoltaic principle. The substitution of fluorine atoms (0F, 1F, 2F) on the quinoxaline constituents is an effective way to low the HOMO and LUMO energy levels of the alternating copolymers. This fluorine effect has been explored on the optoelectronic properties such as the HOMO-LUMO band gap Egap energy, the fill factor FF, the open circuit voltage Voc, the electron transfer energy ΔEet, the excitation energy ΔEex, the absorption wave length λ and the oscillator strength OS. The equilibrium geometry at the ground state, the electronic structures as the frontier orbital isosurface have been obtained under the caster of the density functional theory (DFT) assist by the time-dependent density functional theory (TD-DFT) with M05 as exchange-correlation functional to come with 6-311G(d,p) basis set. Calculations were performed both in vaccuum and Chlorobenzene (CB) solvent with IEFPCM quantum model. All this has been done with the aim to enhance the energy gap, the Voc values and the fill factor FF, which exposed the nanomorphology as the topology of the solar cells photoactive layers. The results of this study show that these promote compounds systems as in the fluorination order are excellent candidates to build photovoltaic device in aim to enhance the open-circuit voltage for donor-acceptor heterojunctions used in organic solar cells.
    VL  - 9
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy (LACTHESMO), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Thermodynamic and Physico-Chemistry of Medium (LTPCM), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Molecular Chemistry and Materials (LCMM), University of Ouagadougou, Ouagadougou, Burkina-Faso

  • Laboratory of Thermodynamic and Physico-Chemistry of Medium (LTPCM), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy (LACTHESMO), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy (LACTHESMO), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy (LACTHESMO), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Sections