| Peer-Reviewed

Monitoring of Water Surfaces in the Nakanbe-Wayen Watershed: Case of Bam and Dem Lakes in Burkina Faso

Received: 30 March 2023    Accepted: 20 April 2023    Published: 10 May 2023
Views:       Downloads:
Abstract

Spatial and temporal changes in the water surfaces of the Nakanbe-Wayen watershed influence, at the local and national levels, sustainable economic development. However, these changes in the basin remain poorly characterized. The present study, which aims at analyzing the spatio-temporal dynamics of the water surfaces of lakes Bam and Dem, two wetlands of international importance in the said watershed, exploited the processing power of the Google Earth Engine (GEE) platform to analyze 2121 Landsat image scenes over the period from 2000 to 2020. The water surfaces extraction algorithm, based on a combination of water and vegetation index, has been tested and adopted to rapidly extract the water surfaces of said wetlands. The results indicate that: (1) the water surfaces extraction method is well suited to that of Bam and Dem lakes; (2) the areas of water surfaces have a significant shrinking trend respectively -22.80 ha/year (P-value=0.0006) and -4.44 ha/year (P-value=0. 009) of the permanent surfaces of Bam Lake and Dem Lake from 2000 to 2020; (3) changes in the water surfaces of these lakes may be associated with climate change and human activities and should be studied in more detail. In view of the significant loss of water surfaces areas and the importance of lakes Bam and Dem for the communities and the environment, taking into account strong and concerted actions for restoration and conservation is urgent in order to perpetuate these natural spaces.

Published in International Journal of Natural Resource Ecology and Management (Volume 8, Issue 2)
DOI 10.11648/j.ijnrem.20230802.11
Page(s) 38-48
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Landsat, Google Earth Engine, Wetlands, Dynamics of Change, Burkina Faso

References
[1] J.-L. Michelot, Les zones humides et l'eau, BRGM. Paris 07 SP ed. Paris, 2003.
[2] Y. Deng, W. Jiang, Z. Tang, Z. Ling, and Z. Wu, "Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform," Remote Sensing, vol. 11, p. 2213, 2019.
[3] A. P. Wood, A. Dixon, and M. P. McCartney, Wetland management and sustainable livelihoods in Africa: Routledge/Earthscan from Routledge, 2013.
[4] E. Maltby, D. Hogan, and R. Mclnnes, "The function of river marginal wetland ecosystems," Improving the science base for the development of procedures of functional analysis. Final report to the European Union for project EC DGXII CT90-0084, 1996.
[5] W. Junk, S. An, M. Finlayson, B. Gopal, J. Květ, S. Mitchell, et al., "Current state of knowledge regarding the world's wetlands and their future under global climate change: A synthesis," Aquatic Sciences, vol. 75, pp. 151-167, 01/01 2013.
[6] N. C. Davidson, "How much wetland has the world lost? Long-term and recent trends in global wetland area," Marine and Freshwater Research, vol. 65, pp. 934-941, 2014.
[7] Z. Zhu, "Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 130, pp. 370-384, 2017.
[8] SP/CNDD, "Le quatrième rapport sur l’état de l’environnement au Burkina Faso (REEB IV) " 2018.
[9] Q. Huang, D. Long, M. Du, C. Zeng, G. Qiao, X. Li, et al., "Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River," Remote Sensing of Environment, vol. 219, pp. 115-134, 2018/12/15/ 2018.
[10] S. Hu, J. Qin, J. Ren, H. Zhao, J. Ren, and H. Hong, "Automatic Extraction of Water Inundation Areas Using Sentinel-1 Data for Large Plain Areas," Remote Sensing, vol. 12, p. 243, 2020.
[11] L. Moser, A. Schmitt, A. Wendleder, and A. Roth, "Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data," Remote Sensing, vol. 8, p. 302, 04/05 2016.
[12] C. Wang, M. Jia, N. Chen, and W. Wang, "Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin," Remote Sensing, vol. 10, p. 1635, 2018.
[13] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, "Google Earth Engine: Planetary-scale geospatial analysis for everyone," Remote Sensing of Environment, vol. 202, pp. 18-27, 2017/12/01/ 2017.
[14] H. A. Zurqani, C. J. Post, E. A. Mikhailova, M. A. Schlautman, and J. L. Sharp, "Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine," International Journal of Applied Earth Observation and Geoinformation, vol. 69, pp. 175-185, 2018/07/01/ 2018.
[15] O. Mutanga and L. Kumar, "Google Earth Engine Applications," Remote Sensing, vol. 11, p. 591, 2019.
[16] J.-F. Pekel, A. Cottam, N. Gorelick, and A. S. Belward, "High-resolution mapping of global surface water and its long-term changes," Nature, vol. 540, pp. 418-422, 2016/12/01 2016.
[17] Z. Zou, X. Xiao, J. Dong, Y. Qin, R. B. Doughty, M. A. Menarguez, et al., "Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016," Proceedings of the National Academy of Sciences, vol. 115, pp. 3810-3815, 2018.
[18] Y. Zhou, J. Dong, X. Xiao, R. Liu, Z. Zou, G. Zhao, et al., "Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine," Science of The Total Environment, vol. 689, pp. 366-380, 2019/11/01/ 2019.
[19] J. Bian, A. Li, G. Lei, Z. Zhang, and X. Nan, "Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 162, pp. 63-76, 2020/04/01/ 2020.
[20] L. Moser, S. Voigt, E. Schoepfer, and S. Palmer, "Multitemporal Wetland Monitoring in Sub-Saharan West-Africa Using Medium Resolution Optical Satellite Data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, 08/11 2014.
[21] K. Drabo, J. Yameogo, and L. Sawadogo, "Examen de la gestion et stratégies de protection des berges du Lac Bam à Kongoussi au Centre-Nord du Burkina Faso," Int. J. Biol. Chem. Sci, vol. 10, pp. 944-956, 2016.
[22] N. Da, R. Ouédraogo, and A. Ouéda, "Relation poids-longueur et facteur de condition de Clarias anguillaris et Sarotherodon galilaeus pêchées dans le lac Bam et le réservoir de la Kompienga au Burkina Faso," International Journal of Biological and Chemical Sciences, vol. 12, pp. 1601-1610, 2018.
[23] SP/CNDD, "Fiche descriptive Ramsar Lac Bam Burkina Faso," Burkina Faso 2017.
[24] SP/CNDD, "Fiche descriptive Ramsar lac Dem Burkina FAso," 2017.
[25] M. A. Wulder, J. C. White, T. R. Loveland, C. E. Woodcock, A. S. Belward, W. B. Cohen, et al., "The global Landsat archive: Status, consolidation, and direction," Remote Sensing of Environment, vol. 185, pp. 271-283, 2016/11/01/ 2016.
[26] J. L. Dwyer, D. P. Roy, B. Sauer, C. B. Jenkerson, H. K. Zhang, and L. Lymburner, "Analysis Ready Data: Enabling Analysis of the Landsat Archive," Remote Sensing, vol. 10, p. 1363, 2018.
[27] N. Pahlevan and J. R. Schott, "Characterizing the relative calibration of Landsat-7 (ETM+) visible bands with Terra (MODIS) over clear waters: The implications for monitoring water resources," Remote Sensing of Environment, vol. 125, pp. 167-180, 2012/10/01/ 2012.
[28] M. G. Tulbure, M. Broich, S. V. Stehman, and A. Kommareddy, "Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region," Remote Sensing of Environment, vol. 178, pp. 142-157, 2016/06/01/ 2016.
[29] J. E. Vogelmann, A. L. Gallant, H. Shi, and Z. Zhu, "Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data," Remote Sensing of Environment, vol. 185, pp. 258-270, 2016/11/01/ 2016.
[30] S. Foga, P. L. Scaramuzza, S. Guo, Z. Zhu, R. D. Dilley Jr, T. Beckmann, et al., "Cloud detection algorithm comparison and validation for operational Landsat data products," Remote sensing of environment, vol. 194, pp. 379-390, 2017.
[31] Z. Zhu, S. Wang, and C. E. Woodcock, "Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images," Remote Sensing of Environment, vol. 159, pp. 269-277, 2015/03/15/ 2015.
[32] Z. Zou, J. Dong, M. A. Menarguez, X. Xiao, Y. Qin, R. B. Doughty, et al., "Continued decrease of open surface water body area in Oklahoma during 1984–2015," Science of The Total Environment, vol. 595, pp. 451-460, 2017/10/01/ 2017.
[33] Y. Wang, J. Ma, X. Xiao, X. Wang, S. Dai, and B. Zhao, "Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform," Remote Sensing, vol. 11, p. 313, 2019.
[34] H. Xia, J. Zhao, Y. Qin, J. Yang, Y. Cui, H. Song, et al., "Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine," Remote Sensing, vol. 11, p. 1824, 2019.
[35] X. Wang, X. Xiao, Z. Zou, B. Chen, J. Ma, J. Dong, et al., "Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine," Remote Sensing of Environment, vol. 238, p. 110987, 2020/03/01/ 2020.
[36] N. Xu, "Detecting Coastline Change with All Available Landsat Data over 1986–2015: A Case Study for the State of Texas, USA," Atmosphere, vol. 9, p. 107, 2018.
[37] X. Wang, X. Xiao, Z. Zou, J. Dong, Y. Qin, R. B. Doughty, et al., "Gainers and losers of surface and terrestrial water resources in China during 1989–2016," Nature communications, vol. 11, pp. 1-12, 2020.
[38] P. K. Sen, "Estimates of the Regression Coefficient Based on Kendall's Tau," Journal of the American Statistical Association, vol. 63, pp. 1379-1389, 1968/12/01 1968.
[39] A. F. Siegel, "Robust regression using repeated medians," Biometrika, vol. 69, pp. 242-244, 1982.
[40] K. C. Fickas, W. B. Cohen, and Z. Yang, "Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012," Wetlands Ecology and Management, vol. 24, pp. 73-92, 2016/02/01 2016.
[41] I. Nitze, G. Grosse, B. M. Jones, C. D. Arp, M. Ulrich, A. Fedorov, et al., "Landsat-based trend analysis of lake dynamics across northern permafrost regions," Remote Sensing, vol. 9, p. 640, 2017.
[42] R. K. Jaiswal, A. K. Lohani, and H. L. Tiwari, "Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters," Environmental Processes, vol. 2, pp. 729-749, 2015/12/01 2015.
[43] X. Song, S. Song, W. Sun, X. Mu, S. Wang, J. Li, et al., "Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013," Atmospheric Research, vol. 157, pp. 137-152, 2015.
[44] G. M. Tsidu, "Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics," Theoretical and Applied Climatology, vol. 130, pp. 91-106, 2017.
[45] R. Manzanas, L. Amekudzi, K. Preko, S. Herrera, and J. M. Gutiérrez, "Precipitation variability and trends in Ghana: An intercomparison of observational and reanalysis products," Climatic change, vol. 124, pp. 805-819, 2014.
[46] A. G. Frazier and T. W. Giambelluca, "Spatial trend analysis of Hawaiian rainfall from 1920 to 2012," International Journal of Climatology, vol. 37, pp. 2522-2531, 2017.
[47] I. T. Pedron, M. A. Silva Dias, S. de Paula Dias, L. M. Carvalho, and E. D. Freitas, "Trends and variability in extremes of precipitation in Curitiba–Southern Brazil," International Journal of Climatology, vol. 37, pp. 1250-1264, 2017.
[48] F. Hallouz, M. Meddi, G. Mahe, H. Karahacane, and S. Ali Rahmani, "Tendance des précipitations et évolution des écoulements dans un cadre de changement climatique: bassin versant de l’oued Mina en Algérie," Revue des sciences de l’eau / Journal of Water Science, vol. 32, pp. 83-114, 2019.
[49] D. Bambara, A. Bilgo, H. E., M. D., T. A., and H. V., "Perceptions paysannes des changements climatiques et leurs conséquences socio environnementales à Tougou et Donsin, climats sahélien et sahélo-soudanien du Burkina Faso," ulletin de la Recherche Agronomique du Bénin (BRAB), vol. 16, pp. 8-16, 2013.
[50] CINTECH, "Schéma directeur d’aménagement de l’espace du lac Dem," Ouagadougou, Burkina Faso, 72-76 2018.
[51] T. Landmann, M. Schramm, R. R. Colditz, A. Dietz, and S. Dech, "Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables," Remote Sensing, vol. 2, pp. 1751-1766, 2010.
[52] E. Riddell, S. Lorentz, and D. Kotze, "The hydrodynamic response of a semi-arid headwater wetland to technical rehabilitation interventions," Water SA, vol. 38, pp. 55-66, 2012.
[53] N. O. Uluocha and I. C. Okeke, "Implications of wetlands degradation for water resources management: Lessons from Nigeria," GeoJournal, vol. 61, pp. 151-154, 2004/10/01 2004.
[54] E. P. Glenn, R. Felger, A. Burquez, and D. Turner, "Cienega de Santa Clara: endangered wetland in the Colorado River delta, Sonora, Mexico," Natural resources journal, vol. 32, pp. 817-824, 01/01 1992.
[55] M. Wang, S. Qi, and X. Zhang, "Wetland loss and degradation in the Yellow River Delta, Shandong Province of China," Environmental Earth Sciences, vol. 67, pp. 185-188, 2012/09/01 2012.
[56] D. Mohamed, S. Labar, M. Fethi, and B. Imad-eddine, "Etude des changements écologiques des zones humides en milieu désertique en utilisant l’imagerie LANDSAT et le SIG," International Journal of Environment and Water, vol. 2, pp. 81-87, 01/01 2013.
[57] P. Zhu and P. Gong, "Suitability mapping of global wetland areas and validation with remotely sensed data," Science China Earth Sciences, vol. 57, pp. 2283-2292, 2014/10/01 2014.
[58] S. HU, Z. NIU, H. ZHANG, Y. CHEN, and N. GONG, "Simulation of spatial distribution of China potential wetland," Chinese Science Bulletin, vol. 60, p. 3251, 2015.
[59] R. Tiner, "Wetlands: An Overview," ed, 2015, pp. 3-18.
[60] G. Pinay, C. Gascuel, A. Menesguen, Y. Souchon, M. Le Moal, A. Levain, et al., "L’eutrophisation: manifestations, causes, conséquences et prédictibilité. Synthèse de l’Expertise scientifique collective CNRS - Ifremer - INRA - Irstea.," 2017.
[61] K. Souberou, K. Agbossou, and E. Ogouwale, "Inventaire et caractérisation des bas-fonds dans le bassin versant de l’Oti au Bénin à l’aide des images Landsat et ASTER DEM," International Journal of Environment, Agriculture and Biotechnology (IJEAB), vol. 2, pp. 1601–1623, 2017.
[62] S. Tao, J. Fang, X. Zhao, S. Zhao, H. Shen, H. Hu, et al., "Rapid loss of lakes on the Mongolian Plateau," Proc Natl Acad Sci U S A, vol. 112, pp. 2281-6, Feb 17 2015.
[63] MEDD, "Plan d'action National pour la gestion durable des Zones Humides du Burkina Faso," 2013.
[64] IPCC, "Africa," in Climate Change 2014 – Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report: Volume 2: Regional Aspects. vol. 2, C. Intergovernmental Panel on Climate, Ed., ed Cambridge: Cambridge University Press, 2014, pp. 1199-1266.
[65] AEN, "Schema directeur d'amenaement et de gestion des eaux de surface de l'agence de l'eau du Nakanbé: Tome 1 Etat des lieux," 2015.
[66] V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, et al., "Climate change 2014 impacts, adaptation, and vulnerability Part B: regional aspects: working group II contribution to the fifth assessment report of the intergovernmental panel on climate change," in Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed: Cambridge University Press, 2014, pp. 1-1820.
[67] W. Claude, S. Léon, J. Kini, N. Tiatité, S. Mohamed, and S. Valentin, "Vers une gestion intégrée des ressources en eau au Burkina Faso," 2017.
[68] e. H. H. Hussein, C. Laurence, and T. Laurent, "Modélisation de l'érosion hydrique à l’échelle du bassin versant du Mhaydssé. Békaa-Liban," VertigO - la revue électronique en sciences de l'environnement [En ligne], vol. 18 2018.
[69] DGRE, "Etat des lieux des ressources en eau du Bassin du Nakanbé," Burkina Faso 2010.
[70] R. Ouedraogo, Fish and fisheries prospective in arid inland waters of Burkina Faso, West Africa: na, 2010.
[71] AEN, "Espace de competence de l’agence de l’eau du Nakanbe (EC-AEN): Schema directeur d’amenagement et de gestion de l’eau (SDAGE)," Agence de l’Eau du Nakanbé 2019.
[72] G. Serpantié and P. Zombre, "Contraintes et potentialités des petits bas-fonds soudano-sahéliens vis à vis d'une riziculture sous aménagement d'étalement de crues: expérience du programme R3S à Bidi (Nord Yatenga)," in Atelier National sur la Riziculture et Commission du Programme Riz, Bobo Dioulasso, 1994, p. 20 multigr.
[73] A. Mama, B. A. Sinsin, C. D. Cannière, and J. Bogaert, "Anthropisation et dynamique des paysages en zone soudanienne au nord du Bénin," Tropicultura, vol. 31, pp. 78-88, 2013.
[74] A. Zare, "Climate variability and natural resource management in a tropical wetland: an integrated approach applied to the case of the inner Niger Delta (Mali) Variabilité climatique et gestion des ressources naturelles dans une zone humide tropicale: une approche intégrée appliquée au cas du delta intérieur du fleuve Niger (Mali)," Université Montpellier Institut international d'ingénierie de l'eau et de l'environnement, 2015.
[75] A. Ilboudo, S. Soulama, E. Hien, and P. Zombre, "Perceptions paysannes de la dégradation des ressources naturelles des bas-fonds en zone soudano-sahélienne: cas du sous bassin versant du Nakanbé-Dem au Burkina Faso," Int. J. Biol. Chem. Sci., vol. 14, pp. 883-895, 2020.
[76] K. H. Thamaga, T. Dube, and C. Shoko, "Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa," Geocarto International, pp. 1-23, 2021.
Cite This Article
  • APA Style

    Wennepinguere Virginie Marie Yameogo, Boalidioa Tankoano, Oumar Kabore, You Lucette Akpa, Zezouma Sanon, et al. (2023). Monitoring of Water Surfaces in the Nakanbe-Wayen Watershed: Case of Bam and Dem Lakes in Burkina Faso. International Journal of Natural Resource Ecology and Management, 8(2), 38-48. https://doi.org/10.11648/j.ijnrem.20230802.11

    Copy | Download

    ACS Style

    Wennepinguere Virginie Marie Yameogo; Boalidioa Tankoano; Oumar Kabore; You Lucette Akpa; Zezouma Sanon, et al. Monitoring of Water Surfaces in the Nakanbe-Wayen Watershed: Case of Bam and Dem Lakes in Burkina Faso. Int. J. Nat. Resour. Ecol. Manag. 2023, 8(2), 38-48. doi: 10.11648/j.ijnrem.20230802.11

    Copy | Download

    AMA Style

    Wennepinguere Virginie Marie Yameogo, Boalidioa Tankoano, Oumar Kabore, You Lucette Akpa, Zezouma Sanon, et al. Monitoring of Water Surfaces in the Nakanbe-Wayen Watershed: Case of Bam and Dem Lakes in Burkina Faso. Int J Nat Resour Ecol Manag. 2023;8(2):38-48. doi: 10.11648/j.ijnrem.20230802.11

    Copy | Download

  • @article{10.11648/j.ijnrem.20230802.11,
      author = {Wennepinguere Virginie Marie Yameogo and Boalidioa Tankoano and Oumar Kabore and You Lucette Akpa and Zezouma Sanon and Farid Traore and Mipro Hien},
      title = {Monitoring of Water Surfaces in the Nakanbe-Wayen Watershed: Case of Bam and Dem Lakes in Burkina Faso},
      journal = {International Journal of Natural Resource Ecology and Management},
      volume = {8},
      number = {2},
      pages = {38-48},
      doi = {10.11648/j.ijnrem.20230802.11},
      url = {https://doi.org/10.11648/j.ijnrem.20230802.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnrem.20230802.11},
      abstract = {Spatial and temporal changes in the water surfaces of the Nakanbe-Wayen watershed influence, at the local and national levels, sustainable economic development. However, these changes in the basin remain poorly characterized. The present study, which aims at analyzing the spatio-temporal dynamics of the water surfaces of lakes Bam and Dem, two wetlands of international importance in the said watershed, exploited the processing power of the Google Earth Engine (GEE) platform to analyze 2121 Landsat image scenes over the period from 2000 to 2020. The water surfaces extraction algorithm, based on a combination of water and vegetation index, has been tested and adopted to rapidly extract the water surfaces of said wetlands. The results indicate that: (1) the water surfaces extraction method is well suited to that of Bam and Dem lakes; (2) the areas of water surfaces have a significant shrinking trend respectively -22.80 ha/year (P-value=0.0006) and -4.44 ha/year (P-value=0. 009) of the permanent surfaces of Bam Lake and Dem Lake from 2000 to 2020; (3) changes in the water surfaces of these lakes may be associated with climate change and human activities and should be studied in more detail. In view of the significant loss of water surfaces areas and the importance of lakes Bam and Dem for the communities and the environment, taking into account strong and concerted actions for restoration and conservation is urgent in order to perpetuate these natural spaces.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Monitoring of Water Surfaces in the Nakanbe-Wayen Watershed: Case of Bam and Dem Lakes in Burkina Faso
    AU  - Wennepinguere Virginie Marie Yameogo
    AU  - Boalidioa Tankoano
    AU  - Oumar Kabore
    AU  - You Lucette Akpa
    AU  - Zezouma Sanon
    AU  - Farid Traore
    AU  - Mipro Hien
    Y1  - 2023/05/10
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ijnrem.20230802.11
    DO  - 10.11648/j.ijnrem.20230802.11
    T2  - International Journal of Natural Resource Ecology and Management
    JF  - International Journal of Natural Resource Ecology and Management
    JO  - International Journal of Natural Resource Ecology and Management
    SP  - 38
    EP  - 48
    PB  - Science Publishing Group
    SN  - 2575-3061
    UR  - https://doi.org/10.11648/j.ijnrem.20230802.11
    AB  - Spatial and temporal changes in the water surfaces of the Nakanbe-Wayen watershed influence, at the local and national levels, sustainable economic development. However, these changes in the basin remain poorly characterized. The present study, which aims at analyzing the spatio-temporal dynamics of the water surfaces of lakes Bam and Dem, two wetlands of international importance in the said watershed, exploited the processing power of the Google Earth Engine (GEE) platform to analyze 2121 Landsat image scenes over the period from 2000 to 2020. The water surfaces extraction algorithm, based on a combination of water and vegetation index, has been tested and adopted to rapidly extract the water surfaces of said wetlands. The results indicate that: (1) the water surfaces extraction method is well suited to that of Bam and Dem lakes; (2) the areas of water surfaces have a significant shrinking trend respectively -22.80 ha/year (P-value=0.0006) and -4.44 ha/year (P-value=0. 009) of the permanent surfaces of Bam Lake and Dem Lake from 2000 to 2020; (3) changes in the water surfaces of these lakes may be associated with climate change and human activities and should be studied in more detail. In view of the significant loss of water surfaces areas and the importance of lakes Bam and Dem for the communities and the environment, taking into account strong and concerted actions for restoration and conservation is urgent in order to perpetuate these natural spaces.
    VL  - 8
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Environment Water and Forests, University Nazi Boni, Bobo Dioulasse, Burkina Faso

  • Department of Environment Water and Forests, University Nazi Boni, Bobo Dioulasse, Burkina Faso

  • Natural Resources Management Department, Institute of Environment and Agricultural Research (INERA), Ouagadougou, Burkina Faso

  • Center for Research and Application in Remote Sensing (CURAT), University Felix Houphouet Boigny, Abidjan, Cote d’Ivoire

  • Natural Resources Management Department, Institute of Environment and Agricultural Research (INERA), Ouagadougou, Burkina Faso

  • Natural Resources Management Department, Institute of Environment and Agricultural Research (INERA), Ouagadougou, Burkina Faso

  • Department of Environment Water and Forests, University Nazi Boni, Bobo Dioulasse, Burkina Faso

  • Sections