| Peer-Reviewed

TSLC-1 and STAT-3 Expression and Its Implication in Cervical Adenocarcinoma

Received: 16 March 2021    Accepted: 6 April 2021    Published: 23 March 2022
Views:       Downloads:
Abstract

Inserting A549 the incorporation of cDNA into lung cancer (non-small cell) lines as well as tumor genomic clones repressor gene cancer of the lungs 1 (TSLC-1) helps these cell lines reverse tumor enlargement trends. Signal transducer and transcription activator 3 (STAT3) were phosphorylated chronically in 22 percent to 65 percent cancers of the non-small cell lung cancer. Tyrosine kinase receptors, for example EGFR (EGF stands for epidermal growth factor.), MET receptors as well as cytokine receptors, activate STAT3. IL-6, for example non-receptor kinases, as well as SRC were found to be involved as well. In resected NSCLC, overexpression of total or phosphorylated STAT-3 results in a poor prognosis. Gene expression and cell cycle variations show TSLC1 downstream pathways that serve as a bridge between the two repression of tumor products in A549 cells. The activation of STAT3 by stromal cells can be beneficial to NSCLC cell oncogenic outcomes.

Published in Journal of Gynecology and Obstetrics (Volume 10, Issue 2)
DOI 10.11648/j.jgo.20221002.18
Page(s) 108-119
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Endometrial Cancer, Tumor, Gene Expression, STAT-3, TSLC-1, NSCLC, Growth Factors, Pathways

References
[1] Abrahamsson, J., Carlsson, B. and Mellander, L. (1993). Tumor necrosis factor-alpha in malignant disease. The American Journal of Pediatric Hematology/Oncology, [online] 15 (4), pp. 364–369. Available at: https://pubmed.ncbi.nlm.nih.gov/8214357/ [Accessed 25 Feb. 2021].
[2] Allinen, M., Peri, L., Kujala, S., Lahti-Domenici, J., Outila, K., Karppinen, S.-M., Launonen, V. and Winqvist, R. (2002). Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: Indications of TSLC1 promoter hypermethylation. Genes, Chromosomes and Cancer, 34 (4), pp. 384–389.
[3] Alvarez, J. V., Greulich, H., Sellers, W. R., Meyerson, M. and Frank, D. A. (2006). Signal Transducer and Activator of Transcription 3 Is Required for the Oncogenic Effects of Non–Small-Cell Lung Cancer–Associated Mutations of the Epidermal Growth Factor Receptor. Cancer Research, [online] 66 (6), pp. 3162–3168. Available at: https://cancerres.aacrjournals.org/content/66/6/3162 [Accessed 26 Feb. 2021].
[4] Ara, T., Song, L., Shimada, H., Keshelava, N., Russell, H. V., Metelitsa, L. S., Groshen, S. G., Seeger, R. C. and DeClerck, Y. A. (2009). Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Research, [online] 69 (1), pp. 329–337. Available at: https://pubmed.ncbi.nlm.nih.gov/19118018/ [Accessed 26 Feb. 2021].
[5] Arcaro, A. and Guerreiro, A. (2007). The Phosphoinositide 3-Kinase Pathway in Human Cancer: Genetic Alterations and Therapeutic Implications. Current Genomics, 8 (5), pp. 271–306.
[6] Barradas, M., Gonos, E. S., Zebedee, Z., Kolettas, E., Petropoulou, C., Delgado, M. D., León, J., Hara, E. and Serrano, M. (2002). Identification of a Candidate Tumor-Suppressor Gene Specifically Activated during Ras-Induced Senescence. Experimental Cell Research, [online] 273 (2), pp. 127–137. Available at: https://www.sciencedirect.com/science/article/pii/S0014482701954345 [Accessed 26 Feb. 2021].
[7] Barré, B., Avril, S. and Coqueret, O. (2003). Opposite regulation of myc and p21waf1 transcription by STAT3 proteins. The Journal of Biological Chemistry, [online] 278 (5), pp. 2990–2996. Available at: https://pubmed.ncbi.nlm.nih.gov/12438313/.
[8] Blaskovich, M. A., Sun, J., Cantor, A., Turkson, J., Jove, R. and Sebti, S. M. (2003). Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Research, [online] 63 (6), pp. 1270–1279. Available at: https://pubmed.ncbi.nlm.nih.gov/12649187/ [Accessed 26 Feb. 2021].
[9] Bollrath, J., Phesse, T. J., von Burstin, V. A., Putoczki, T., Bennecke, M., Bateman, T., Nebelsiek, T., Lundgren-May, T., Canli, Ö., Schwitalla, S., Matthews, V., Schmid, R. M., Kirchner, T., Arkan, M. C., Ernst, M. and Greten, F. R. (2009). gp130-Mediated Stat Activation in Enterocytes Regulates Cell Survival and Cell-Cycle Progression during Colitis-Associated Tumorigenesis. Cancer Cell, [online] 15 (2), pp. 91–102. Available at: https://www.cell.com/cancer-cell/supplemental/S1535-6108(09)00003-8.
[10] Bowman, T., Garcia, R., Turkson, J. and Jove, R. (2000). STATs in oncogenesis. Oncogene, [online] 19 (21), pp. 2474–2488. Available at: https://pubmed.ncbi.nlm.nih.gov/10851046/ [Accessed 26 Feb. 2021].
[11] Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C. and Darnell, J. E. (1999). Stat3 as an Oncogene. Cell, [online] 98 (3), pp. 295–303. Available at: https://www.cell.com/cell/fulltext/S0092-8674(00)81959-5?code=cell-site [Accessed 30 Oct. 2019].
[12] Cantley, L. C. (2002). The Phosphoinositide 3-Kinase Pathway. Science, 296 (5573), pp. 1655–1657.
[13] Catlett-Falcone, R., Landowski, T. H., Oshiro, M. M., Turkson, J., Levitzki, A., Savino, R., Ciliberto, G., Moscinski, L., Fernández-Luna, J. L., Nuñez, G., Dalton, W. S. and Jove, R. (1999). Constitutive Activation of Stat3 Signaling Confers Resistance to Apoptosis in Human U266 Myeloma Cells. Immunity, 10 (1), pp. 105–115.
[14] Center for Disease control and prevention (2019). What Are the Risk Factors for Cervical Cancer? [online] Center for Disease control and prevention. Available at: https://www.cdc.gov/cancer/cervical/basic_info/risk_factors.htm.
[15] Chen, T. M., Pecoraro, G. and Defendi, V. (1993). Genetic analysis of in vitro progression of human papillomavirus-transfected human cervical cells. Cancer Research, [online] 53 (5), pp. 1167–1171. Available at: https://pubmed.ncbi.nlm.nih.gov/8382557/ [Accessed 25 Feb. 2021].
[16] Darnell Jr., J. E. (1997). STATs and Gene Regulation. Science, 277 (5332), pp. 1630–1635.
[17] Decker, T. and Kovarik, P. (2000). Serine phosphorylation of STATs. Oncogene, [online] 19 (21), pp. 2628–2637. Available at: https://www.nature.com/articles/1203481 [Accessed 24 Jan. 2021].
[18] Egan, S. E. and Weinberg, R. A. (1993). The pathway to signal achievement. Nature, [online] 365 (6449), pp. 781–783. Available at: https://www.nature.com/articles/365781a0 [Accessed 26 Feb. 2021].
[19] Frank, D. A. (1999). STAT signaling in the pathogenesis and treatment of cancer. Molecular Medicine (Cambridge, Mass.), [online] 5 (7), pp. 432–456. Available at: https://pubmed.ncbi.nlm.nih.gov/10449805/ [Accessed 26 Feb. 2021].
[20] Fukami, T., Fukuhara, H., Kuramochi, M., Maruyama, T., Isogai, K., Sakamoto, M., Takamoto, S. and Murakami, Y. (2003). Promoter methylation of theTSLC1 gene in advanced lung tumors and various cancer cell lines. International Journal of Cancer, 107 (1), pp. 53–59.
[21] Fukuhara, H., Kuramochi, M., Fukami, T., Kasahara, K., Furuhata, M., Nobukuni, T., Maruyama, T., Isogai, K., Sekiya, T., Shuin, T., Kitamura, T., Reeves, R.H. and Murakami, Y. (2002). Promoter Methylation of TSLC1and Tumor Suppression by Its Gene Product in Human Prostate Cancer. Japanese Journal of Cancer Research, 93 (6), pp. 605–609.
[22] Gao, S. P., Mark, K. G., Leslie, K., Pao, W., Motoi, N., Gerald, W. L., Travis, W. D., Bornmann, W., Veach, D., Clarkson, B. and Bromberg, J. F. (2007). Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. The Journal of Clinical Investigation, [online] 117 (12), pp. 3846–3856. Available at: https://pubmed.ncbi.nlm.nih.gov/18060032/ [Accessed 26 Feb. 2021].
[23] Ghaderi, M., Nikitina, L., Peacock, C. S., Hjelmström, P., Hallmans, G., Wiklund, F., Lenner, P., Blackwell, J. M., Dillner, J. and Sanjeevi, C. B. (2000). Tumor Necrosis Factor a-11 and DR15-DQ6 (B*0602) Haplotype Increase the Risk for Cervical Intraepithelial Neoplasia in Human Papillomavirus 16 Seropositive Women in Northern Sweden. Cancer Epidemiology and Prevention Biomarkers, [online] 9 (10), pp. 1067–1070. Available at: https://cebp.aacrjournals.org/content/9/10/1067 [Accessed 25 Feb. 2021].
[24] Gomyo, H., Arai, Y., Tanigami, A., Murakami, Y., Hattori, M., Hosoda, F., Arai, K., Aikawa, Y., Tsuda, H., Hirohashi, S., Asakawa, S., Shimizu, N., Soeda, E., Sakaki, Y. and Ohki, M. (1999). A 2-Mb sequence-ready contig map and a novel immunoglobulin superfamily gene IGSF4 in the LOH region of chromosome 11 q 23.2. Genomics, [online] 62 (2), pp. 139–146. Available at: https://pubmed.ncbi.nlm.nih.gov/10610705/ [Accessed 26 Feb. 2021].
[25] Govan, V. A., Constant, D., Hoffman, M. and Williamson, A.-L. (2006). The allelic distribution of -308 Tumor Necrosis Factor-alpha gene polymorphism in South African women with cervical cancer and control women. BMC Cancer, 6 (1).
[26] Greulich, H.; Chen, T. H.; Feng, W.; Janne, P. A.; Alvarez, J. V.; Zappaterra, M.; Bulmer, S. E.; Frank, D. A.; Hahn, W. C.; Sellers, W. R.; et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005, 2, e313.
[27] Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yi Yu, G. -, Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L. and Karin, M. (2009). IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer. Cancer Cell, [online] 15 (2), pp. 103–113. Available at: https://www.sciencedirect.com/science/article/pii/S1535610809000026#sec3.
[28] Harada, D., Takigawa, N. and Kiura, K. (2014). The Role of STAT3 in Non-Small Cell Lung Cancer. Cancers, 6 (2), pp. 708–722.
[29] Haura, E. B., Zheng, Z., Song, L., Cantor, A. and Bepler, G. (2005). Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, [online] 11 (23), pp. 8288–8294. Available at: https://pubmed.ncbi.nlm.nih.gov/16322287/ [Accessed 26 Feb. 2021].
[30] Honda, T., Tamura, G., Waki, T., Jin, Z., Sato, K., Motoyama, T., Kawata, S., Kimura, W., Nishizuka, S. and Murakami, Y. (2002). Hypermethylation of theTSLC1Gene Promoter in Primary Gastric Cancers and Gastric Cancer Cell Lines. Japanese Journal of Cancer Research, 93 (8), pp. 857–860.
[31] Hui, A. B.-Y., Lo, K.-W., Kwong, J., Lam, E. C.-W., Chan, S. Y.-Y., Chow, L. S.-N., Chan, A. S.-C., Teo, P. M.-L. and Huang, D. P. (2003). Epigenetic inactivation ofTSLC1 gene in nasopharyngeal carcinoma. Molecular Carcinogenesis, 38 (4), pp. 170–178.
[32] Hung, W. and Elliott, B. (2001). Co-operative Effect of c-Src Tyrosine Kinase and Stat3 in Activation of Hepatocyte Growth Factor Expression in Mammary Carcinoma Cells. Journal of Biological Chemistry, [online] 276 (15), pp. 12395–12403. Available at: https://www.jbc.org/article/S0021-9258(19)46129-2/fulltext [Accessed 26 Feb. 2021].
[33] Ito, T., Shimada, Y., Hashimoto, Y., Kaganoi, J., Kan, T., Watanabe, G., Murakami, Y. and Imamura, M. (2003). Involvement of TSLC1 in Progression of Esophageal Squamous Cell Carcinoma. Cancer Research, [online] 63 (19), pp. 6320–6326. Available at: https://cancerres.aacrjournals.org/content/63/19/6320.short [Accessed 26 Feb. 2021].
[34] Jiang, R., Jin, Z., Liu, Z., Sun, L., Wang, L. and Li, K. (2011). Correlation of activated STAT3 expression with clinicopathologic features in lung adenocarcinoma and squamous cell carcinoma. Molecular Diagnosis & Therapy, [online] 15 (6), pp. 347–352. Available at: https://pubmed.ncbi.nlm.nih.gov/22208386/ [Accessed 26 Feb. 2021].
[35] Ke, S., Pandya-Jones, A., Saito, Y., Fak, J. J., Vågbø, C. B., Geula, S., Hanna, J. H., Black, D. L., Darnell, J. E. and Darnell, R. B. (2017). m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes & Development, 31 (10), pp. 990–1006.
[36] Kok, K., Naylor, S. L. and Buys, C. H. C. M. (1997). Deletions of the Short Arm of Chromosome 3 in Solid Tumors and the Search for Suppressor Genes. [online] Science Direct. Available at: https://www.sciencedirect.com/science/article/pii/S0065230X08600962 [Accessed 26 Feb. 2021].
[37] Kortylewski, M., Xin, H., Kujawski, M., Lee, H., Liu, Y., Harris, T., Drake, C., Pardoll, D. and Yu, H. (2009). Regulation of the IL-23 and IL-12 Balance by Stat3 Signaling in the Tumor Microenvironment. Cancer Cell, 15 (2), pp. 114–123.
[38] Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H. and Yu, H. (2008). Stat3 mediates myeloid cell–dependent tumor angiogenesis in mice. Journal of Clinical Investigation, 118 (10), pp. 3367–3377.
[39] Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H. P., Pletcher, M., Isomura, M., Onizuka, M., Kitamura, T., Sekiya, T., Reeves, R. H. and Murakami, Y. (2001). TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genetics, [online] 27 (4), pp. 427–430. Available at: https://www.nature.com/articles/ng0401_427 [Accessed 25 Feb. 2021].
[40] Lazo, P. A. (1999). The molecular genetics of cervical carcinoma. British Journal of Cancer, 80 (12), pp. 2008–2018.
[41] Lesina, M., Kurkowski, Magdalena U., Ludes, K., Rose-John, S., Treiber, M., Klöppel, G., Yoshimura, A., Reindl, W., Sipos, B., Akira, S., Schmid, Roland M. and Algül, H. (2011). Stat3/Socs3 Activation by IL-6 Transsignaling Promotes Progression of Pancreatic Intraepithelial Neoplasia and Development of Pancreatic Cancer. Cancer Cell, 19 (4), pp. 456–469.
[42] Levy, D. E. and Darnell, J. E. (2002). STATs: transcriptional control and biological impact. Nature Reviews Molecular Cell Biology, 3 (9), pp. 651–662.
[43] Li, Y., Du, H., Qin, Y., Roberts, J., Cummings, O. W. and Yan, C. (2007). Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Research, [online] 67 (18), pp. 8494–8503. Available at: https://pubmed.ncbi.nlm.nih.gov/17875688/ [Accessed 26 Feb. 2021].
[44] Looyenga, B. D., Hutchings, D., Cherni, I., Kingsley, C., Weiss, G. J. and MacKeigan, J. P. (2012). STAT3 Is Activated by JAK2 Independent of Key Oncogenic Driver Mutations in Non-Small Cell Lung Carcinoma. PLoS ONE, 7 (2), p. e30820.
[45] Lou, W., Ni, Z., Dyer, K., Tweardy, D. J. and Gao, A. C. (2000). Interleukin-6 induces prostate cancer cell growth accompanied by activation of Stat3 signaling pathway. The Prostate, 42 (3), pp. 239–242.
[46] Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J. and Haber, D. A. (2004). Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine, 350 (21), pp. 2129–2139.
[47] Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008). Cancer-related inflammation. Nature, 454 (7203), pp. 436–444.
[48] Mao, X., Seidlitz, E., Truant, R., Hitt, M. and Ghosh, H. P. (2004). Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene, [online] 23 (33), pp. 5632–5642. Available at: https://www.nature.com/articles/1207756 [Accessed 26 Feb. 2021].
[49] Masuda, M., Yageta, M., Fukuhara, H., Kuramochi, M., Maruyama, T., Nomoto, A. and Murakami, Y. (2002). The Tumor Suppressor Protein TSLC1 Is Involved in Cell-Cell Adhesion. Journal of Biological Chemistry, [online] 277 (34), pp. 31014–31019. Available at: https://www.sciencedirect.com/science/article/pii/S0021925820701882 [Accessed 26 Feb. 2021].
[50] Mitsudomi, T. and Yatabe, Y. (2007). Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Science, 98 (12), pp. 1817–1824.
[51] Mora, L. B., Buettner, R., Seigne, J., Diaz, J., Ahmad, N., Garcia, R., Bowman, T., Falcone, R., Fairclough, R., Cantor, A., Muro-Cacho, C., Livingston, S., Karras, J., Pow-Sang, J. and Jove, R. (2002). Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Research, [online] 62 (22), pp. 6659–6666. Available at: https://pubmed.ncbi.nlm.nih.gov/12438264/ [Accessed 26 Feb. 2021].
[52] M, S., H, R., K, M., JM, H., JA, M. and PM, H. (2013). Human pathogenic papillomaviruses. Springer.
[53] Murakami, T., Takigawa, N., Ninomiya, T., Ochi, N., Yasugi, M., Honda, Y., Kubo, T., Ichihara, E., Hotta, K., Tanimoto, M. and Kiura, K. (2014). Effect of AZD1480 in an epidermal growth factor receptor-driven lung cancer model. Lung Cancer, [online] 83 (1), pp. 30–36. Available at: http://www.lungcancerjournal.info/article/S0169-5002(13)00455-8/pdf [Accessed 26 Feb. 2021].
[54] Murakami, Y., Nobukuni, T., Tamura, K., Maruyama, T., Sekiya, T., Arai, Y., Gomyou, H., Tanigami, A., Ohki, M., Cabin, D., Frischmeyer, P., Hunt, P. and Reeves, R. H. (1998). Localization of tumor suppressor activity important in nonsmall cell lung carcinoma on chromosome 11q. Proceedings of the National Academy of Sciences, [online] 95 (14), pp. 8153–8158. Available at: https://www.pnas.org/content/95/14/8153.short [Accessed 26 Feb. 2021].
[55] Niu, G., Bowman, T., Huang, M., Shivers, S., Reintgen, D., Daud, A., Chang, A., Kraker, A., Jove, R. and Yu, H. (2002). Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene, [online] 21 (46), pp. 7001–7010. Available at: https://pubmed.ncbi.nlm.nih.gov/12370822/ [Accessed 26 Feb. 2021].
[56] O’Shea, J. J., Holland, S. M. and Staudt, L. M. (2013). JAKs and STATs in Immunity, Immunodeficiency, and Cancer. New England Journal of Medicine, 368 (2), pp. 161–170.
[57] O’Shea, John J. and Plenge, R. (2012). JAK and STAT Signaling Molecules in Immunoregulation and Immune-Mediated Disease. Immunity, 36 (4), pp. 542–550.
[58] Paez, J. G. (2004). EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science, 304 (5676), pp. 1497–1500.
[59] Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., Mardis, E., Kupfer, D., Wilson, R., Kris, M. and Varmus, H. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences, 101 (36), pp. 13306–13311.
[60] Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2005). Global Cancer Statistics, 2002. CA: A Cancer Journal for Clinicians, 55 (2), pp. 74–108.
[61] Pishvaian, M. J., Feltes, C. M., Thompson, P., Bussemakers, M. J., Schalken, J. A. and Byers, S. W. (1999). Cadherin-11 Is Expressed in Invasive Breast Cancer Cell Lines. Cancer Research, [online] 59 (4), pp. 947–952. Available at: https://cancerres.aacrjournals.org/content/59/4/947.short [Accessed 26 Feb. 2021].
[62] Shain, K. H., Yarde, D. N., Meads, M. B., Huang, M., Jove, R., Hazlehurst, L. A. and Dalton, W. S. (2009). Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Research, [online] 69 (3), pp. 1009–1015. Available at: https://pubmed.ncbi.nlm.nih.gov/19155309/ [Accessed 26 Feb. 2021].
[63] Shen, Y., Devgan, G., Darnell, J. E. and Bromberg, J. F. (2001). Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proceedings of the National Academy of Sciences of the United States of America, [online] 98 (4), pp. 1543–1548. Available at: https://pubmed.ncbi.nlm.nih.gov/11171987/ [Accessed 26 Feb. 2021].
[64] Shingai, T., Ikeda, W., Kakunaga, S., Morimoto, K., Takekuni, K., Itoh, S., Satoh, K., Takeuchi, M., Imai, T., Monden, M. and Takai, Y. (2003). Implications of Nectin-like Molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in Cell-Cell Adhesion and Transmembrane Protein Localization in Epithelial Cells. Journal of Biological Chemistry, [online] 278 (37), pp. 35421–35427. Available at: https://www.jbc.org/article/S0021-9258(20)83603-5/fulltext [Accessed 26 Feb. 2021].
[65] Song, L., Turkson, J., Karras, J. G., Jove, R. and Haura, E. B. (2003). Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene, [online] 22 (27), pp. 4150–4165. Available at: https://pubmed.ncbi.nlm.nih.gov/12833138/ [Accessed 26 Feb. 2021].
[66] Sordella, R. (2004). Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways. Science, 305 (5687), pp. 1163–1167.
[67] Stanczuk, G. A., Sibanda, E. N., Tswana, S. A. and Bergstrom, S. (2003). Polymorphism at the -308-promoter position of the tumor necrosis factor-alpha (TNF-alpha) gene and cervical cancer. International Journal of Gynecological Cancer, 13 (2), pp. 148–153.
[68] Steenbergen, R. D. M., Kramer, D., Braakhuis, B. J. M., Stern, P. L., Verheijen, R. H. M., Meijer, C. J. L. M. and Snijders, P. J. F. (2004). TSLC1 Gene Silencing in Cervical Cancer Cell Lines and Cervical Neoplasia. JNCI: Journal of the National Cancer Institute, [online] 96 (4), pp. 294–305. Available at: https://academic.oup.com/jnci/article-abstract/96/4/294/2606709 [Accessed 26 Feb. 2021].
[69] Sussan, T. E., Pletcher, M. T., Murakami, Y. and Reeves, R. H. (2005). Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression. Molecular Cancer, 4 (1), p. 28.
[70] The American Cancer Society (2020). What Is Cervical Cancer? | Types of Cervical Cancer. [online] www.cancer.org. Available at: https://www.cancer.org/cancer/cervical-cancer/about/what-is-cervical-cancer.html#:~:text=Adenocarcinomas%20are%20cancers%20that%20develop [Accessed 25 Feb. 2021].
[71] Tsao, M.-S., Sakurada, A., Cutz, J.-C., Zhu, C.-Q., Kamel-Reid, S., Squire, J., Lorimer, I., Zhang, T., Liu, N., Daneshmand, M., Marrano, P., da Cunha Santos, G., Lagarde, A., Richardson, F., Seymour, L., Whitehead, M., Ding, K., Pater, J. and Shepherd, F. A. (2005). Erlotinib in lung cancer - molecular and clinical predictors of outcome. The New England Journal of Medicine, [online] 353 (2), pp. 133–144. Available at: https://pubmed.ncbi.nlm.nih.gov/16014883/ [Accessed 26 Feb. 2021].
[72] Urase, K., Soyama, A., Fujita, E. and Momoi, T. (2001). Expression of RA175 mRNA, a new member of the immunoglobulin superfamily, in developing mouse brain. Neuroreport, [online] 12 (15), pp. 3217–3221. Available at: https://pubmed.ncbi.nlm.nih.gov/11711859/ [Accessed 26 Feb. 2021].
[73] Verstovsek, S. (2009). Therapeutic potential of JAK2 inhibitors. Hematology. American Society of Hematology. Education Program, [online] pp. 636–642. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166576/ [Accessed 29 Jul. 2020].
[74] Vivanco, I. and Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nature Reviews Cancer, 2 (7), pp. 489–501.
[75] Wang, L., Yi, T., Kortylewski, M., Pardoll, D. M., Zeng, D. and Yu, H. (2009). IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. The Journal of Experimental Medicine, 206 (7), pp. 1457–1464.
[76] Williams, K., Christensen, J. and Helin, K. (2011). DNA methylation: TET proteins—guardians of CpG islands? EMBO reports, 13 (1), pp. 28–35.
[77] Xu, Y. H. and Lu, S. (2014). A meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with non-small-cell lung cancer. European Journal of Surgical Oncology: The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, [online] 40 (3), pp. 311–317. Available at: https://pubmed.ncbi.nlm.nih.gov/24332948/ [Accessed 26 Feb. 2021].
[78] Yan, C., Naltner, A., Martin, M., Naltner, M., Fangman, J. M. and Gurel, O. (2002). Transcriptional Stimulation of the Surfactant Protein B Gene by STAT3 in Respiratory Epithelial Cells. Journal of Biological Chemistry, [online] 277 (13), pp. 10967–10972. Available at: https://www.jbc.org/article/S0021-9258(18)52113-X/abstract [Accessed 26 Feb. 2021].
[79] Yang, Y., Kiss, H., Kost-Alimova, M., Kedra, D., Fransson, I., Seroussi, E., Li, J., Szeles, A., Kholodnyuk, I., Imreh, M. P., Fodor, K., Hadlaczky, G., Klein, G., Dumanski, J. P. and Imreh, S. (1999). A 1-Mb PAC Contig Spanning the Common Eliminated Region 1 (CER1) in Microcell Hybrid-Derived SCID Tumors. Genomics, [online] 62 (2), pp. 147–155. Available at: https://www.sciencedirect.com/science/article/pii/S0888754399959529 [Accessed 26 Feb. 2021].
[80] Yuan, B.-F. (2014). Chapter Four - 5-Methylcytosine and Its Derivatives. [online] ScienceDirect. Available at: https://www.sciencedirect.com/science/article/pii/S0065242314000043.
[81] Yu, H. and Jove, R. (2004). The STATs of cancer — new molecular targets come of age. Nature Reviews Cancer, 4 (2), pp. 97–105.
[82] Zhao, M., Gao, F.-H., Wang, J.-Y., Liu, F., Yuan, H.-H., Zhang, W.-Y. and Jiang, B. (2011). JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer. Lung Cancer, 73 (3), pp. 366–374.
[83] Zhong, Z., Wen, Z. and Darnell, J. (1994). Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 264 (5155), pp. 95–98.
[84] Zimmer, S., Kahl, P., Buhl, T. M., Steiner, S., Wardelmann, E., Merkelbach-Bruse, S., Buettner, R. and Heukamp, L. C. (2008). Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. Journal of Cancer Research and Clinical Oncology, 135 (5), pp. 723–730.
Cite This Article
  • APA Style

    Sadik Yusuf Musse. (2022). TSLC-1 and STAT-3 Expression and Its Implication in Cervical Adenocarcinoma. Journal of Gynecology and Obstetrics, 10(2), 108-119. https://doi.org/10.11648/j.jgo.20221002.18

    Copy | Download

    ACS Style

    Sadik Yusuf Musse. TSLC-1 and STAT-3 Expression and Its Implication in Cervical Adenocarcinoma. J. Gynecol. Obstet. 2022, 10(2), 108-119. doi: 10.11648/j.jgo.20221002.18

    Copy | Download

    AMA Style

    Sadik Yusuf Musse. TSLC-1 and STAT-3 Expression and Its Implication in Cervical Adenocarcinoma. J Gynecol Obstet. 2022;10(2):108-119. doi: 10.11648/j.jgo.20221002.18

    Copy | Download

  • @article{10.11648/j.jgo.20221002.18,
      author = {Sadik Yusuf Musse},
      title = {TSLC-1 and STAT-3 Expression and Its Implication in Cervical Adenocarcinoma},
      journal = {Journal of Gynecology and Obstetrics},
      volume = {10},
      number = {2},
      pages = {108-119},
      doi = {10.11648/j.jgo.20221002.18},
      url = {https://doi.org/10.11648/j.jgo.20221002.18},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jgo.20221002.18},
      abstract = {Inserting A549 the incorporation of cDNA into lung cancer (non-small cell) lines as well as tumor genomic clones repressor gene cancer of the lungs 1 (TSLC-1) helps these cell lines reverse tumor enlargement trends. Signal transducer and transcription activator 3 (STAT3) were phosphorylated chronically in 22 percent to 65 percent cancers of the non-small cell lung cancer. Tyrosine kinase receptors, for example EGFR (EGF stands for epidermal growth factor.), MET receptors as well as cytokine receptors, activate STAT3. IL-6, for example non-receptor kinases, as well as SRC were found to be involved as well. In resected NSCLC, overexpression of total or phosphorylated STAT-3 results in a poor prognosis. Gene expression and cell cycle variations show TSLC1 downstream pathways that serve as a bridge between the two repression of tumor products in A549 cells. The activation of STAT3 by stromal cells can be beneficial to NSCLC cell oncogenic outcomes.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - TSLC-1 and STAT-3 Expression and Its Implication in Cervical Adenocarcinoma
    AU  - Sadik Yusuf Musse
    Y1  - 2022/03/23
    PY  - 2022
    N1  - https://doi.org/10.11648/j.jgo.20221002.18
    DO  - 10.11648/j.jgo.20221002.18
    T2  - Journal of Gynecology and Obstetrics
    JF  - Journal of Gynecology and Obstetrics
    JO  - Journal of Gynecology and Obstetrics
    SP  - 108
    EP  - 119
    PB  - Science Publishing Group
    SN  - 2376-7820
    UR  - https://doi.org/10.11648/j.jgo.20221002.18
    AB  - Inserting A549 the incorporation of cDNA into lung cancer (non-small cell) lines as well as tumor genomic clones repressor gene cancer of the lungs 1 (TSLC-1) helps these cell lines reverse tumor enlargement trends. Signal transducer and transcription activator 3 (STAT3) were phosphorylated chronically in 22 percent to 65 percent cancers of the non-small cell lung cancer. Tyrosine kinase receptors, for example EGFR (EGF stands for epidermal growth factor.), MET receptors as well as cytokine receptors, activate STAT3. IL-6, for example non-receptor kinases, as well as SRC were found to be involved as well. In resected NSCLC, overexpression of total or phosphorylated STAT-3 results in a poor prognosis. Gene expression and cell cycle variations show TSLC1 downstream pathways that serve as a bridge between the two repression of tumor products in A549 cells. The activation of STAT3 by stromal cells can be beneficial to NSCLC cell oncogenic outcomes.
    VL  - 10
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • School of Medicine, Wuhan University, Wuhan, China

  • Sections