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Preface 

This book presents and explains the design of Integrated Circuits using open 

cores and open source design tools. It covers design aspects for all of the circuit 

elements: a processor (the Open RISC 1200 or OR1200 ), program memory, 

data memory, external address and data buses, communication port, interrupt 

controller, internal bus, clock, reset, and GPIO ports. For this purpose, all the 

hardware cores are open source and the fabrication technology is low cost. 

Detailed aspects of the design process are explained, such as application software 

optimization, small memory usage, memory intensive algorithms versus 

computation intensive algorithms. Also, an analysis of several application and 

research fields is presented, so the designed and implemented circuit used in this 

book as an example, can be used in other applications, with little or no 

modifications. Besides, a detailed design flow is explained, showing calculations 

for every design stage; the design flow covers synthesis process, area optimization, 

power and speed calculations, IO ring definition, and Place&route of the 

components and conections. Finally, two different implementations are 

presented: low-cost high volume, and medium-cost low volume: a) Technical 

data of the Integrated circuit implementation is presented and explained. b) An 

alternate implementation is also presented, using a development board with an 

ARM processor, especially useful for one-shot implementations. We hope that 

this books can help those electronic engineers with innovative ideas that can be 

implemented in an integrated circuit, without needing a big brand behind them. 
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1.1  Integrated Circuits 

Integrated circuits are based on transistor logic, which means that logic gates 

(such as AND, NOT, NOR, EXOR, etc), resistors and other components are 

connected and packed together to achieve a specific function. This way we’ve 

been achieving, for a long time, small, for a long time, small circuits to build 

more complex circuitry using simple functions to build more complex systems. 

For learning purposes students use those small circuits to build more complex 

systems. An easy example is to use several And Not gates to build an Adder or 

a Multiplier (Figure 1.1). 

 

Figure 1.1  Examples of: A) Adder, B) Multiplier, C) Building bigger blocks: Adder and 

Multiplier. 

In the process of building more complex circuit based on simpler ones, 

several questions arise: ―Can all the circuits needed for a specific function be 

integrated into one single integrated circuit?‖ And, ―is there a limit, in either 

size or technology, to build bigger and more complex integrated circuits?‖ 
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Well, the answer is yes. You can implement any mix of simple circuits to 

develop a more complex function, if you find it useful for a potential application. 

And, no, there is no limit for a design system, as long as you are willing to pay 

the design price for power consumption, circuit area, and speed. 

The original purpose of the integrated circuits was to replace the bulky and 

energy hungry bulbs, so the initial functions were oriented to represent logic 

decisions, for example ―if the door is open then activate the alarm‖, or ―if the 

motor speed is greater than 100, close the valve‖. At this point, logic circuits 

have their size and energy consumption, so it was easier to have smaller and 

cooler control rooms making decisions over production processes. Then, what 

we can call the steady era, during the 80’s and 90’s, when the adders came 

along, multiplexers, encoders, memories and micro controllers. Everyone was 

fascinated about what they were able to achieve with those circuits. No one 

would have predicted what this area could become later, when information 

technologies and the internet modified all previous concepts about computing 

and processing. With the Information technology boom, came the data 

processing boom, in a way that more and more complex operations were needed, 

as well as communication protocols and the need for faster processing. 

After these rapid growing technologies it is not easy to predict what will come 

next, but some approaches can be made. Silicon and transistor technologies are 

reaching their limit about minimum size and power consumption, which leads to 

other technologies being, explored (Figure 1.2). Maybe a totally new technology 

for circuits could come soon, and all of what we’ve known now should be 

reconsidered again. But that is what evolution is about. 
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Figure 1.2  A) Memory EEPROM series 93C56C-I/P, B) Multiplexor AD8180ARZ,  

C) Encoders Priority SN74LS148N and D) Processors TMS320VC5510AGGWA2.  

1.2  Digital and Analog Components 

There is another classification for circuits according to the kind of signals and 

voltages it manages. Digital circuits are those which work on only two voltage 

levels, one level to represent a binary 1 and the other to represent a binary 0. All 

data and information in these circuits is represented, operated and stored, using 

0’s and 1’s. Any value can be represented by a combination of 1’s and 0’s, and 

be interpreted back as the original value. Analog circuits contain signals in a 

wider and continuous range of voltages and currents, so physical variables such 

as temperature, pressure, volume, and speed can be represented by a scaled 

value. For example, a Temperature of 50 Celsius can be stated as a value of 10 

if a scale of 0 to 50 is used for the range of 0 to 250 Celsius. 

In this book most of the signals will be digital, except for some sensors and 

actuators that can work with analog signals. Each exception will be stated so 

there is no confusion. 
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1.3  Combinational and Sequential Circuits 

Another circuit classification is based on how outputs are produced. 

According to the way a circuit delivers an output, either it is a signal, data, or a 

result; they are classified as Combinational and Sequential circuits. 

Combinational circuit outputs do not depend on one another for the next 

output or result. This means that the moment when a function is performed does 

not change the result, because it does not depend on previous results or data 

from previous Actions. 

Sequential circuits are time dependant; this means the result of their operation 

may be different depending on the moment a situation occurs. Specifically, a 

circuit that contains a program in the memory executes the program in a 

sequential way, and the outputs produced are taken into account for further 

operations. 

1.4  Clocked or Timed Circuits 

A lot of circuits require synchronization between systems or circuits; it means 

that several, or all, of the circuits involved in a bigger system should perform 

their operations at the same pace or rhythm, since they depend on each other’s 

results in order to know what should be done next. In this circuit a clock marks 

the pace for the execution. A complex system may have one or several clocks, 

just as long as they remain synchronized for the intended purpose. 
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1.5  Circuit Size 

Integrated circuits come in all sizes. The more gates or transistors are inside 

the circuit, the more complex the function would be, the larger the circuit looks 

on the outside, and the more pins are available on the external packaging. A 

general way to classify the circuits by size is as follows, having no precise 

boundary between sizes, but: SSI for Small Scale integration, MSI for Medium 

Scale Integration, LSI for Large Scale Integration, and VLSI for Very Large 

Scale Integration. 

Something interesting happens when circuits become bigger and bigger. When 

you notice, as a circuit designer, that your circuit and functionality are getting 

more complex, you will probably conclude that you need a processor instead of 

individual circuits. After that thought, you lead to this next one: if I already have a 

processor in my design, could the same circuit be used in other applications other 

than the originally intended? The exciting answer is yes! A circuit, when it 

contains a processor, can be easily adapted to perform other functions, with small 

additions or modifications. Here is where circuit design becomes more interesting: 

Once you know how to design and implement a complex function using a 

processor within your integrated circuit, you are ready to implement any function 

you can imagine. 

1.6  Design Process 

Designing an integrated circuit starts as any project does: with the idea of what 

you want to develop. So you start saying something kind of like this: I want to 

have a circuit that takes anyone’s age, weight and height, then it measures his 

temperature and blood pressure, and as a result it can predict how long the person 
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will live. Once you are able to state your intention in known words and clear 

intentions, you are ready to start designing it. The next step is to elaborate what 

you will need to measure, capture, calculate and process. For this example you 

will need: I will need a temperature sensor, a blood pressure sensor, a keyboard so 

the person can type his age and weight, a processor to run the calculations, a 

memory to store the calculation program, and a display to show the user the result. 

At this point you are describing your project in a very known and used way in this 

field: Inputs, functions, outputs. It means that you have acknowledged what data 

you need as input, what functions the system will be performing, in any case, 

everything will be easier if you can think of your idea in these terms: for each 

variable that my project needs, a sensor should be connected to it; the more 

complex the functions are, the longer the program will be; the more outputs the 

project will deliver, the more complex the display or interface will be. At this 

point, the clearer or more specific you can be on those three aspects (inputs, 

functions, outputs), the better. You will start from there until you get to the 

complete circuit, connections and elements. 

A normal design process include iterations between what you want, what you 

achieve, what users say they need, and so on. Usually, the final implementation 

differs a lot from the initial circuit idea. We will discuss in detail the design 

process later. 

1.7  Simulation Process 

Once you have completed your design in paper, and your hand calculations 

show that it works as you want it to, a simulation is needed. You need a 

computer aided design tool to prove that what you are hoping to happen will 

happen. As in any other engineering field, there are many tools to learn and use. 
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For the purpose of this book, we will classify tools in Open source and licensed 

tools. Many universities pay licenses to software companies so their students 

have access to complex and professional tools. If that is your case, you can 

check with the system administrators what software they have for circuit design. 

If that is not your case and you are an independent designer, you can rely on 

open source code and simulators, since licensed software is never cheap and not 

worth it for a single design. 

1.8  Implementation 

Many enthusiast designers often risk their time and money by implementing 

their idea without the certainty that it will work properly, it means, without 

simulating it. It is up to you if you want to buy circuit components, sensors, and 

such, relying only on your hand calculations. The more complex your design is, 

the greater the possibility that it won’t work as you expect it to work. After a 

successful simulation you have several options for implementing your design: If 

it’s not intended for mass production you can use either the proto board version, 

which is cheap and good for prototyping, but only for small to medium circuits, 

or the FPGA version (Field Programmable Gate Array) which lets you know in 

a more accurate way the size, power consumption, transistor count, and speed of 

your circuit, when it becomes an integrated circuit. The development board 

version, allows you to store and run your program, check the output, connect 

your sensors, and test your program over and over until you are satisfied with 

the result. In the market you can find development boards for as low as 40 US 

dollars. The last option for implementing your circuit is to pack everything it 

needs into one single integrated circuit. This is what this book is all about: how 

to get a whole idea into one single integrated circuit. The best option for mass 
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production is an integrated circuit that contains everything it needs to perform 

its function. As you may notice, an integrated circuit is a final version of an idea, 

which you cannot modify it, has been fabricated. Nevertheless the circuitry and 

connections cannot be modified, but remember that if you put a memory inside 

your integrated circuit, and the memory has a program, and you were careful 

enough to consider a programming interface then you can modify the program 

in your circuit. Even it can serve as with different purposes if your design is 

made open enough. 

1.9  Fabrication Process 

Once you’ve finished your integrated circuit design you need to have the 

design in standard format files, so you can send these files to a fabrication 

company and then receive from them your shiny and brand new integrated 

circuits. Fabrication processes uses silicon wafers, and stamp your circuit on the 

silicon, so transistors and connections are made as you specified. Then the small 

piece of silicon is packed to protect it, adding pins for you to connect the circuit to 

whatever other system, sensors, or components it will be connected. Most of the 

well-known fabricants have University programs, in which they charge less for 

university projects, or let you join teams in order to split the fabrication costs. The 

fabrication process (Figure 1.3) involves ―clean rooms‖ and very expensive 

equipment, as any dust particle, even if it is as small as a few nanometers, can get 

into the circuit, and produce a malfunction. 
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Figure 1.3  Fabrication process. 

1.10  Marketing Process 

In the beginning you intended your circuit for one purpose, so by now you 

probably know if it will be the main module of a stand-alone device, such as a 

microwave oven or a dishwasher machine. Having stated that integrated circuits 

that perform a specific function are intended for a specific device, you will need 

to get your circuit to the market, maybe not directly to the consumer, but to the 

device manufacturer. 
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You may start as circuit designer using gates, adders, multiplexers and so, but 

soon you will find that it is better to include a processor and a memory in your 

design, so additions in functionality are easy to integrate. Here is where you 

notice the hardware versus software implementation advantages. Let’s explain 

how hardware and software are involved in your design decisions: Any project 

idea can be implemented completely using hardware, it means that every single 

decision is made by a transistor or set of transistors, connected in a way that 

will result in a voltage indicating what will happen with an output signal. If 

your project has many decisions to make, data to store, operations to make, you 

can use the simulator, estimate how many transistors the circuit need. On the 

other hand, if all the decisions your project is making are translated into a 

programming language, you can estimate how much memory the program will 

need to be stored. And the memory size can be easily translated into transistor 

count. This way you can compare if your hardware based version is          

smaller –using less transistors- than your software based version. We will get 

into this subject with more detail ahead. 

2.1  Relevance and Potential Uses 

Stimulation systems provide signals and test patterns to be used in a variety 

of applications. Potential uses and applications for stimulation systems 

constantly increase as existing tests and lab procedures are desired to be 

miniaturized or new tests are conceived, whether they are for Lab analysis, 

prosthetic testing, pollution analysis, or point-of-care. 

Current experiments need a stimulation system so tests can be repeatedly 

performed in order to store results, perform analysis, and obtain statistics and 

finally report state of the art conclusions and results. On-going experiments 
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whose focus is to obtain novel results on a specific research area should be 

supported by a stimulation system that eases the experiment and allows 

researchers to define and change the stimulation patterns and tests. 

Once stimulation systems are found useful in a specific application, the next 

natural step is to add intelligence to the system, so it can precisely reproduce 

test procedures, improve performance by learning from previous results, and 

evolve according to upcoming needs. Potential uses for this stimulation system 

include a wide range of experiments, from detecting pathogenic cells in fluid 

samples, bacteria or viruses in blood and urine droplets, microbes or fungi in 

food items and water, and also target agents in the environment, the human 

body, or industrial processes. 

Specifically, particle manipulation experiments are expected to become part 

of the everyday life, so usual lab tests can be performed by a miniature device, 

in site, and by non-specialized personnel. In characterization efforts, all kind of 

particles and cells are separately stimulated in order to determine their 

characteristics so manipulation and test procedures become known and can be 

used in future tests. 

Current research is also going to automated tests using stimulation systems, 

where prosthetic devices are analyzed to check if they react as their human 

counterpart does; a set or sequence of signals, similar to those generated by the 

brain in order to control or to sense that body part, is applied to the prosthetic 

part to determine if proper behavior has been achieved and the body part is 

ready to use. 
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Besides, when a stimulation system is configurable as the one presented here, 

its use may extend to related applications, such as cell disruption, embryo 

viability tests, DNA manipulation, and serial/automated medical lab tests. 

2.2  Design Variables 

As circuit designers learn along their experience, there are trade-offs between 

design variables. The most important of these variables are: circuit speed, circuit 

area, and power consumption. Secondary variables are pin-out and time to market. 

Circuit speed involves how fast the used processor and peripherals will run; area 

is the space the circuit will take in the silicon wafer; power consumption refers to 

how much battery power will take to fully and continuously execute the 

application program. All these variables are discussed in detail ahead. 

2.3  Chips and Intelligent Systems 

Early designs and implementations for portable labs are initially prototyped 

on development boards, printed circuits, or FPGAs, and there are some design 

efforts to produce a miniature device which may eventually lead to low-power 

Lab-on-chips and portable labs. Along with miniaturization efforts, intelligent 

testing goes its own way on current research work; it will become part of the 

future fully automated lab processes and tests, so it has to be defined in general 

terms and be able to be programmed for complex future tests. 

About miniaturization and intelligence current developments, several works 

are referenced here: reviews of stimulation experiments using proposed or 

designed integrated systems, automation of effective and programmable particle 
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manipulation using MEMS and a bio-cell processor, DEP filters which could 

continuously eliminate cells suspended in water, and so on. 

An early chip proposal was the engine for a micro-fluidic Lab-on-Chip 

system; it was presented by Gascoigne as a high voltage integrated circuit which 

transports droplets on programmable paths; it creates forces over multiple 

droplets while varying electrode excitation voltage and frequency. Electrodes 

are driven with a 100Vpp periodic waveform; the maximum waveform 

frequency is about 200Hz. This prototype chip has a 32x32 array of 100V 

electrode drivers. Fabricated in a 130V SOI CMOS technology dissipates 

1.87W max, in a 10.4x 8.2 mm2. The chip is programmable: the routes of 

multiple droplets may be set arbitrarily within the bounds of the electrode array 

and the stimulation waveform amplitude, phase, and frequency may be adjusted. 

Newer proposals present designs for Lab-on-a-chip integrating one or several 

sub-systems: Delizia proposes a large array of capacitor sensors for detecting 

dielectric permittivity variation. It uses an 11-bit resolution ADC at a sampling 

rate of 100 Kilo-samples/sec; it is implemented in 0.35 µm CMOS technology. 

The noise coupled to the signal at the chip pad is reduced by using an on-chip 

analog-to-digital converter. Simulation results show a SNR=65.7 dB and an 

ENOB value of 10.6b. Its power consumption is about 150 mW. Readout chain 

is implemented in 0.35 µm CMOS technology with a 3.3 V supply voltage. 

Keilman presents a proposal of a bio-analysis system that may be part of 

future low-power bio-analysis platforms. The analysis technique uses the electro 

kinetic phenomenon for noninvasive biological cell manipulation. This work 

generalizes the concept of test micro-structures using standard CMOS process 

by providing a generic electrode structure, which, when integrated with a 
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processor, is capable of generating an arbitrary electric field shape, thus 

facilitating a programmable sequence of different cell manipulations. 

Shih et al proposes an adaptive biochip integrating DEP traps and a 

programmable array for the multi-sorting applications of bio-molecules. The 

magnitude and direction of the DEP force are controlled via the distribution of 

time-variant non-uniform electric fields. The voltage on each individual 

electrode of the multi-sorting array is programmable. 

When a programmable or configurable system is desired, a user interface 

comes in hand for operation, since it allows repeatable and reliable setting of 

test parameters. There is on-going work on programmable and configurable 

testing, although it does not come together with miniaturization efforts. A 

device presented by Manaresi is a 64 mm2 chip implemented in a two-poly 

three-metal 0.35 µm CMOS technology, featuring an array of 320x320 

actuation electrodes, 20µm x20µm micro sites, including addressing logic, an 

embedded memory for electrode programming, and an optical sensor. The chip 

enables software-controlled displacement of living cells, and the manipulation 

does not damage the viability of the cells. 

Similarly, Jungyul Park presents an integrated MEMS-based bio-cell 

processor; the purpose is the automation of transporting, isolating and 

immobilizing individual embryo cells for effective manipulation. 

An interesting topic on SoC is that modular designs should be able to integrate 

between them by using standard existing interfaces so a complex system is built 

by connecting several simple functional blocks. New developments of digital 

blocks or cores should take integrated systems for particle manipulation to the 

next level: future designs should include in one design the stimulation system, the 
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fluidic device, the actuating elements, the sensing circuitry, the data collecting 

system, the analysis system and the storage device. 

As an early example, there is a software configurable architecture able to 

implement a variety of AC electro-kinetic techniques. The architecture is 

developed as a flexible IP block and in conjunction with integrated micro fluidic 

devices and other third-party IP blocks, form the analysis function. This design is 

basically a two dimensional randomly addressable electrode array being driven by 

one of four sinusoidal analog signals. The so called Lexel™ array and supporting 

circuitry are designed on a single chip using a standard 0.18μm CMOS process. 

Table 2.1  Referenced works on Intelligent Labs-on-Chip and Bio-Chips. 

Year Category Application Focus Integration Intelligence 
Implementation 

Specifications 

2003 

Proof of 

concept/ DEP 

processor 

Droplet 

manipulation 

Droplet based 

chemistry 

No, all 

external 

elements 

Application 

dependent 

Proposal, fluidic 

processor 

versatile 

platform 

2004 

Proposal/ 

Particle 

manipulation 

Diagnostic 

instrument 
 

Stimulation, 

circuit, 

electrodes 

array 

No No 

2004 
Design / Bio-

cell processor 

MEMS, 

embryo cell 

Manipulation 

automation, 

MEMS based 

bio-cell 

processor 

Processor, 

DEP valves 
Automated tests 

MEMS based 

bio cell 

processor 

2005 

Implementation/ 

Low power bio-

analysis 

platform 

Bio Analysis  

Stimulation 

system, 

fluidic device, 

2D electrode 

array. 

SW configurable, 

IP modularity, four 

output channels 

IC 

2007 

Design/ 

Stimulation 

chip 

Lab-on-chip 

Stimulation 

systems for 

electrode 

arrays 

Electrode 

array, 

excitation 

circuit, 

drivers, 

Programmable 

droplet routes and 

waveform 

parameters. 

Expandable 

architecture 

Fout=200 Hz; 

demo chip in a 

130-V 1.0 µm 

SOI CMOS. 

1.87 W, 10.4 x 

8.2 mm2 

2007 

Design/ 

Programmable 

Bio chip 

Bio-

molecules 

multi-sorting 

 

DEP traps, 

programmable 

array. 

Programmable 

stimulation 
IC 
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Year Category Application Focus Integration Intelligence 
Implementation 

Specifications 

2008 

Design/ 

Stimulation and 

read-out Chip 

Lab-on-Chip 

Capacitor 

sensors and 

actuators array 

Sensors array, 

ADC, 

Amplifiers, 

Readout chain 

Programmable gain 

Simulation for 

actuators. 

Implemented in 

0.35 µm CMOS 

2009 

Design/ Field 

array micro-

system 

Bio-medical  
Sensors, 

actuators 
No 

Integrated 

circuit (IC) 

Table 2.1 summarizes the work done by referenced research works that go on 

the line of Systems-on-a-chip and Lab-on-a-chip. Scope refers to the level 

achieved in that work: a novel proposal, a detailed design, or a finished and 

tested implementation. Category refers to the target element in a Lab-on-chip 

structure; it can be a fluidic device, a stimulation chip, an actuator/sensor set, 

etc. Focus summarizes de orientation of the work so it shows that it is specific 

for a particular experimental environment. Intelligence refers to the capabilities 

of the system to be considered intelligent: programmable functions, uses a 

processor, configurable operation, includes user interface. Integration refers to 

the elements covered by the design and the possibility to integrate it into other 

existing modular designs: a fluidic device, sensors and actuators, stimulation 

circuitry, a standard user interface, and modularity or IP blocks usage. 

Implementation (intended or developed) for that proposal or design: printed 

circuit, integrated circuit, or simulation only. Application refers to the expected 

or target application, such as air and water pollution, lab test and analysis, 

medical treatment, or generic particle manipulation. 

2.4  Opportunity Areas 

The detailed analysis of the state of the art on this area allows us to determine 

the need of a system like the one presented in this work. A wide range of 
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applications are using electrical signals to stimulate a fluidic device for 

experimentation on particle manipulation. The majority of those tests are 

performed manually controlling the parameters of the applied signals. Also, 

most of the experiments are specific for a certain type of particle, using certain 

waveform within a narrow frequency range. This design tackles the need for 

automated test procedures, configurable operation, miniaturization of the design 

and a modular design style to ease integration of this system into existing or 

future designs. 

Existing stimulation systems are about using limited logic to synthesize a 

desired frequency and deliver it to an experimental device; from there, a 

specific and non-configurable signal or pattern is obtained, and it can be used 

only for that specific purpose. 

The system in this work is a processor based design that can execute a variety 

of application programs, a memory system that is optimally used to contain 

program and data while delivering a variety of signals and patterns in a wide 

frequency range, and the configuration capabilities to allow users to adapt it to 

specific tests and applications with no modifications to the hardware or software. 

The automation of testing and stimulation procedures obtained from this 

system can speed up current research work by providing a reliable way of 

repeating, configuring and adapting the system to a specific application, whether 

it is used as an autonomous system or integrated to an existing Lab-on-a-chip. 

2.5  Systems and Labs on a Chip 

The integration in one chip of all the components needed for an application, 

known as System on a Chip (SoC), has been the optimal implementation for 
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many embedded systems. In functionality it can go as far as designers’ dream of 

it, from containing a little logic up to a processor and peripherals that can be 

programmed to perform multiple functions. 

A SoC containing a set of components like processor, memory system, 

peripherals and configurable application software can lead to a design that is 

reliable, modular, programmable and easy to integrate into other designs. 

A generic diagram for a design can be presented as in Figure 2.1: a user 

interface configures, programs, and operates a stimulation system; this system 

delivers selected electrical signals and patterns to a fluidic device containing the 

sample and particles to be manipulated; a sensing system can collect info from 

the stimulation effect and, either go directly back to the interface, or pass 

through a characterization system where it can be useful for identifying a 

specific type of particles. 

 

Figure 2.1  The electric stimulation system in a particle manipulation environment. 
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3.1  System Definition and Specifications 

Based on referenced research works, the definition of what a stimulation 

system should be and how should it be implemented was achieved, in order to 

cover particle manipulation tests and procedures over a wide range of 

applications. Research areas include: 

Frequency range: Based on the state of the art in particle manipulation, 

define and justify a frequency range eligible for a wide range of applications in 

manipulation procedures and tests. 

Frequency synthesis methodology: Explore existing implementations, 

examine their applicability to this work and decide if the output frequency to 

system clock ratio can be achieved with them or if a novel methodology is 

needed to generate data for single and superimposed frequencies. 

System design: Explore the design options for the system in this work and 

justify the selection, from logic-only, programmable array based, and processor 

based implementation. 

Optimization and modularity: Analyze the trade-offs of the selected design 

scheme about performance (output frequency to clock frequency ratio), circuit 

size, and power consumption considering portable applications as the target. 

Explore the trends on intelligent systems about modularity, re-usability, 

integration and interconnection capabilities. Explore the core-based design 

methodology. 
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Configurability: Define and justify the parameters that should be open and 

configurable in order to obtain an electric stimulation system that covers the 

majority of electro-kinetically driven micro-fluidic devices. 

Prototype implementation: Define a feasible prototype hardware 

implementation to run the application program so functional specifications and 

frequency synthesis methodology can be evaluated. 

3.1.1  Motivation 

Existing systems for manipulation and separation of particles depend on 

previously known information about the type of target particles or by 

experimenting on them; such experiments consist of controlling and changing 

or repeating electrical stimulation, analyzing response and sweeping signal 

parameters until desired results are achieved. An automated, programmable, 

configurable system is needed where reliable stimulation is needed for efficient 

and faster advances on research work about particle manipulation. Advantages 

of an automated, programmable, intelligent manipulation system: 

• Multiple tests can be done and repeated by programming test sequences. 

• Previously programmed test parameters for a known test sequence can be 

stored, accessed, and repeated. 

• More reliable data results are obtained due to precise reproduction of test 

parameters.  

• User interface allows rapidly configuring and operating the system for 

new tests and procedures. 
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• An intelligent design targets future Lab-on-chip implementations and 

portable Lab devices. 

• A programmable system allows to run original application or to load a 

new one. 

• A scalable design provides interconnection and communication channels 

so it can be integrated to other systems. 

3.1.2  Statement of the Problem 

There are current problems and limitations in particle manipulation 

procedures and research works, so present needs should be detected and solved; 

overcoming the state of the art and anticipate for future needs in stimulation 

systems would allow researchers to speed up experiments and results. 

The trends show that experiments need more controlled testing environments 

by using more complex electric stimulation, which only programmable systems 

can deliver, like signal composition, dual frequency signals, traveling wave fields, 

mixing sine with square and triangle signals, and what may come in the future. 

Besides, if frequency range of output signals could cover a wide spectrum of 

particle types, sizes, and shapes, research work would be more efficient and 

might reveal results from previously unknown experimental circumstances. 

Last but not least, current implementation schemes for digital frequency 

systems should take as primary goals a low power, minimum size, and high 

performance design. 
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Figure 3.1 illustrates how the research work in all the related disciplines and 

the corresponding tasks lead to specific outcomes and contributions of this work 

in each of the four related research areas: the effect of electric fields in     

electro-kinetically driven fluidic devices, frequency synthesis methodologies, 

Lab-on-Chip systems, and System-on-Chip design. 

 

Figure 3.1  Performed tasks, achieved outcomes and contributions made  

in the four research areas. 

The overall goal is to specify, define, design, and implement an open 

processor-based system that allows users from different areas to configure and 

automate their tests over a specific target particles or cells to obtain reliable and 

repeatable results in order to achieve the desired mobility effect. It is also 

desirable to have configurable system variables and test parameters that can be 

selected or programmed before the experiment or test is executed. 
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3.1.3  Proposed System 

This work presents a processor-based stimulation system to generate signals 

and configurable tests for stimulation of micro-fluidic devices. It delivers multiple 

waveforms and patterns to cover a wide range of experiments and applications. 

Specific tests or sequence of tests that should be made on specific particles 

may not be known by publication time since this is a developing area, so this 

system is designed to be configurable and to deliver a variety of signal patterns 

and combinations within a frequency range. The design consists of a set of cores 

integrated as a System-on-Chip (SoC) to configure, operate, and execute a 

stimulation system which delivers desired data. 

This stimulation system includes user interface capabilities for configuration 

and operation, a memory system to upload and contain the application software 

for frequency synthesis, a processor to execute the program, and output ports to 

deliver data from synthesized frequency as shown in Figure 3.2. 

 

Figure 3.2  Proposed systems. 

This system is also designed to favor an easy integration to existing or           

on-going designs of Lab on a chip: it provides input/output Wishbone buses for 

data and instructions so the system can be application independent by using a 
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ROM based Bios that loads the selected application software depending on the 

desired use. Existing or proposed Lab-on-chip systems to be connected to this 

stimulation system, which is using another standard communication bus like 

AMBA, can use a converting bridge for interconnection without changing the 

current design. 

One of the possible implementations presented, shows how a different 

application program can be uploaded before operation, so modifications and 

additions to the program can be made and tested outside the system and later 

uploaded to an in-chip memory for operation. This capability, besides making the 

system adaptable to future applications, makes possible its integration to existing 

systems. 

The user interface allows configuring the system, select mode of operation, 

select desired type of signal, selecting single or superimposed frequencies, and 

visualizing data being delivered. User interface interacts with the system via a 

standard serial port. 

The memory system consists of a ROM to contain the boot-loader which 

uploads the application software at the beginning of operation and Harvard 

architecture of RAM to contain the program and the data for operation. The 

processor selected for the SoC design, the OR1200, is the best option from the 

available open source cores, and its corresponding instruction set covers the 

needs for this application software. 

The on-chip communication is achieved using the Wishbone bus, which is 

the standard bus for open source cores, and allows a smooth integration of all 

the components in the system. Two Wishbone buses, one for data and one for 

instruction, are taken outside the chip so it can be integrated to other systems. 
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The hardware architecture for the chip is oriented to low power, low area, and 

low execution times, and by using open source cores this is a design that can be 

completed with no licensing cost during design and fabrication stages. 

The application software implements the novel frequency synthesis 

methodology designed during this work, so it optimizes hardware resources 

such as memory map, instruction set, and system clock, in order to achieve 

maximum output-frequency/system-clock rate in output signals. The software 

can be tested on development boards based on the same or similar processor. 

This system is also designed on a modular basis so it can be integrated, as is, 

into Lab-on-Chip systems or by adding new driver cores and the application 

software is designed in an open-source style so it can be configured or extended 

for future applications. 

3.1.4  Frequency Synthesis 

The novel frequency synthesis methodology developed for this system 

integrates the advantages of both, memory intensive and computation intensive 

approaches into one new synthesis methodology while keeping a low 

implementation area, low power, and high performance design. 

For this system a look-up table is used to store base sine sampled data for a 

complete sine cycle. As any digital design the best tradeoff between hardware 

and software implementation should be selected: hardware is used for data 

storage and software for data processing computation. A software implemented 

algorithm is defined to select data from look-up table for target frequencies and 

store it in temporary tables; process data from temporary tables to get single or 

dual frequency data samples, and store them in output buffer tables. 
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Finally, and most important, a computation-free algorithm loads data from 

output buffer table and stores it in one or more output ports depending on the 

operation mode. An external conditioning circuitry including a DAC, a current 

to voltage converter and a voltage amplifier converts sampled data into the 

finally delivered analog signal. 

3.1.5  Comprehensive System 

As state of the art, research shows highly controlled experiment environments 

can be achieved when using more complex stimulation, so this system needs to 

deliver configurable multi-waveform, dual-frequency signals to speed-up 

research work on multi-particle manipulation tests. The system architecture has 

the foundation for control purposes, data storage and signal processing; it can be 

customized to achieve particular control and operation purposes of stimulation 

systems. 

The mix of single-frequency signal generation along with signal 

superposition and system configuration capabilities, allows a wide control range 

on stimulation tests. Besides, with minimal modifications other waveforms and 

patterns can be obtained. A frequency range sweep can be run as a sequence of 

several user selected exposure times to analyze results under several stimulation 

conditions on the same experiment. 

Execution times are lowered to its minimum so maximum output frequency is 

dependent only on the processor specification. Besides, a size optimized routine 

does not change for different generation modes or for different waveforms, so 

memory usage is kept at a minimum regardless the operation mode. 



 

Chapter 3  System Design 

 

http://www.sciencepublishinggroup.com 35 

Memory architecture is designed for minimum area: data samples for sine, 

triangle and saw tooth waveforms are stored in base data tables using them, 

temporary tables are constructed based on selected output frequency and desired 

number of voltage steps; output or buffer tables are finally calculated after a 

time match operation depending of the number of channels to be updated 

simultaneously. 

Data pre-processing and table preparation reduces computation instructions 

during signal generation achieving maximum output frequency to clock 

frequency ratio. The system can generate any periodic waveform as long as it is 

stored in memory data tables. 

For signal updating, multiple simultaneous writes to output port are made so no 

loss in output frequency occurs when two or more signals are being delivered 

simultaneously. This port partitioning scheme is particularly convenient for this 

application. 

The proposed system combines efficient use of hardware and software 

resources: minimum generation code, no computation during synthesis, and 

minimum memory access times. 

3.1.6  Scope and Limitations 

About research, the commitment is to review the state of the art on the four 

areas mentioned to identify the common ground for electric stimulation of 

fluidic devices, to keep-up with trends, and to anticipate to future stimulation 

needs. About new developments the challenge is to deliver a flexible and 

programmable system which runs a novel signal generation methodology and to 

prove its functionality. 
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About system design: the goal is to identify the system requirements, to 

define its functional specifications, for System-on-Chip -standard functionality 

version- and for development board -extended functionality version-, and to use 

available software and hardware resources to implement the design. 

Limitations are related to time and to available resources: time because 

design decisions for this system are made based on what current research work 

shows and what can be identified as a trend; and resources are related to budget 

dependencies and access to licensed or open CAD tools to achieve the intended 

design. 

Implementation on development board is limited to available processor, 

instruction set and communication ports specifications for that board. For chip 

implementation, system specifications like circuit area, power consumption and 

maximum output frequency are defined and limited by three factors: fabrication 

technology, physical libraries available, and efficiency of application software; 

the first two are resources dependent and the third is designer dependent. 

Signal waveforms to be delivered are sine, triangle, and square and saw tooth 

wave. For dual superimposed frequencies the ratio between frequencies define 

the memory size needed for temporary and buffer tables: if frequencies are not 

exact multiples a hyper-cycle for resulting signal is not possible or very large, 

and that leads to unfeasible, large or infinite, memory needs. 
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3.2  Software Architecture 

 

Figure 3.3  System-on-Chip block diagram for the platform based design. 

The hardware architecture of the SoC is a platform and bus based architecture; 

it uses a selected set of open source cores and the Wishbone on-chip 

communication bus. The selection of the OR1200 processor is selected due to 

its previously demonstrated implementations in FPGAs and to its open 

instruction set. The on-chip memory array may contain the application software 

developed specifically for stimulating fluidic devices or a boot-loader to up-load 

different applications. In chip data, memory contains a complete cycle of the 

three base waveforms in 256 samples of 8-bit data each. A UART port is used 

to configure operation, to program sequence tests, to control operation and to 

visualize data during execution. The four 8-bit GPIO ports deliver processed 

data points for output signals, which may be, according to selection made in 

configuration: sine, triangle, or saw tooth and presenting single, dual or 

superimposed frequencies. Figure 3.3 shows interconnection between in-chip 

blocks; processor and Bus Interface Units connect directly to Wishbone 
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instruction and data buses, and memories peripherals connect via wrappers. 

Table 3.1 details the function of each primary block in the SoC. 

Table 3.1  Function description for primary system blocks. 

Element Description 

CPU (OR1200) 
RISC CPU, Harvard architecture, cache memory for data and instructions, operates at 

250 MHz max using 180 nm standard cells TSMC technology. 

Wishbone Bus On-chip bus for cache, main memories and interface peripherals 

GPIO 
Grouped in four I/O 8-bit ports, from open source cores: used as inputs for 

configuration and operation, as outputs for data 

Clock and Reset 
Receives clock from crystal oscillator, generates clock and reset signals for system 

operation, base clock for processor blocks and ¼ base clock for Wishbone bus. 

UART 
Serial port controller provides connection for external configuration and operation 

device. Open core source is used. 

RAM and ROM 
Memory blocks built with Artisan memory generators for verilog, vclef and gdsII 

views. 

Interrupt controller Exceptions handler from open cores included in OR1200 architecture. 

3.2.1  Processor Based Implementation 

This particular implementation for the processor was based on the open 

source files of the OR1200. The Open RISC 1200 is a synthesizable CPU core 

from Open Cores.org; it is a configurable open source Verilog implementation 

of the Open RISC 1000 architecture. The OR1200 is intended to be used in a 

variety of embedded applications. Some open source software, such as Linux, 

has been ported over to the OR1200 platform. 

The GNU tool chain, including GCC, has also been ported to the architecture 

to aid in software development. The clock cycle for the OR1200 is 250 MHz at 

a 0.18 µm, 6ML fabrication process. 

Estimated power consumption of this processor running at 250 MHz and 

implemented in 0.18µm technology is less than 1W at full throttle. 
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Available libraries: 180nm from TSMC will be used for this design. System 

specifications will meet application software requirements for standard version. 

Components: Processor has been selected from available open source cores. 

Memories have been obtained through memory generators, Peripherals have 

been selected from open source cores. 

Design constraints: Constraints are considered in this order: Performance, Area 

and Power. Target clock frequency is around 250MHz for an 180nm technology 

implementation. Processor area budget is less than 2mm2; on-chip memory area is 

less than 3mm2. Power budget for OR1200 processor in this technology is 1W at 

full throttle, added blocks should not exceed that by more than 20%. 

3.2.2  SoC Components 

The OR1200 is a RISC, Harvard Architecture processor with basic DSP 

capabilities. As an open source, customizable, core it is not optimized for power 

or size. This particular implementation for the processor was based on the open 

source files of the OR1200. 

The Open RISC 1200 is a synthesizable CPU core from OpenCores.org; it is 

a configurable open source Verilog implementation of the Open RISC 1000 

architecture. 

It specifies a Central CPU/DSP block, Direct mapped data cache, Direct 

mapped instruction cache, Data MMU based on hash-based DTLB (Translation 

Lookaside Buffer), Instruction MMU based on hash-based ITLB, Power 

management unit and power management interface, Tick timer, Debug unit and 

development interface, Interrupt controller and interrupt interface, Instruction 

and Data WISHBONE interfaces, and a MAC unit. Peripherals and a memory 
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subsystem may be added using the implementation of a standardized 32-bit 

Wishbone bus interface. 

 

Figure 3.4  OR1200 Architecture. 

 

Figure 3.5  OR1200 internal cores. 

The CPU is an implementation of the 32-bit ORBIS32 Instruction Set 

Architecture. It has five instruction formats and supports two addressing modes; 

it has a single-issue 5-stage pipeline, single cycle execution on most instructions. 
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It uses a Harvard architecture with separate MMUs for data and instruction 

memories, with support for virtual memory, a hash-based 1-way direct-mapped 

TLB with page size of 8 KB and a default size of 64 entries, and one-way 

direct-mapped D-Cache and I-Cache, 8 KB each. 

Table 3.2  Specifications of the OR1200. 

Concept Specification 

Architecture 32-bit scalar RISC, Harvard 

Pipeline 5 stage, 32-bit integer instructions 

DSP Basic capabilities 

Caches Separate instruction and data, 1-way direct mapped. Configurable to 1, 2, 4, 8KB 

Virtual memory 64-entry hash based 1-way direct mapped TLB for data and instruction MMU 

Speed 
Worst case: 150 dhrystone 2.1 MIPS at 150MHz (typical corner 250MHz) 

Best case for 180nm implementation: 300 dhrystone, 2.1MIPS at 300MHz 

Size Default configuration about 40K ASIC gates, 1M transistors 

RTL status Not optimized for speed or area 

Instruction Set 
Instruction unit handles only ORBIS32 instruction class. ORFPX32/64 and 

ORVDX64 instruction classes are not supported. 

Configurable Major characteristics can be set by user (see Core HW configuration table) 

Communication bus Wishbone, internal and for SoC interconnection 

GPRs 
General Purpose Register file is implemented as two synchronous dual-port 

memories, 32 words, and 32 bits per word. 

Exceptions 
Transparent to user software, same mechanism to handle all types of exceptions, 

control is transferred to an exception handler. See Exceptions table. 

Interrupt controller Direct enabled Int0 and Int1, Masked Int [31:2] 

Tick timer Clocked by RISC clock, re-start able, mask interrupt, Max count 2^32 

Power management Dynamically activated modes: slow and idle, Doze, Sleep, and Clock gating 

Debug unit Basic debugging; No watch points, break points or program flow control registers. 

Clock & Reset 

Core has several clock inputs: clk_cpu, clk_dc, clk_ic, clk_dmmu, clk_immu, 

clk_tt; all clocks must be in phase and as low skew as possible. Reset signal rest 

reset all flip flops when asserted high; when not asserted reset exception start. 

Wishbone interface 
Rev. B compliant, 32-bit bus width may connect to external peripherals and 

external memory subsystem. 
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Table 3.2 and 3.3 summarizes the specifications of the OR1200 selected for 

the design; Figures 3.4 and 3.5 shows the processor architecture. 

Table 3.3  List and description of the processor cores and the  

peripherals for the System-on-Chip. 

Core Block description Core Block description 

OR1200_alu Arithmetic and Logic Unit OR1200_lsu Load and Storage Unit 

OR1200_cfgr Configuration Registers OR1200_mult_mac Multiply and MAC Unit 

OR1200_ctrl Control Unit OR1200_operandmuxes Operand Mixes 

OR1200_dc_top Data Cache OR1200_pic 
Programmable Interrupt 

Controller 

OR1200_dmmu_top 
Data Memory Management 

Unit 
OR1200_pm Power Management Unit 

OR1200_du Debug Unit OR1200_rf Register File 

OR1200_except Exceptions Unit OR1200_sb Store Buffer 

OR1200_freeze Freeze Unit OR1200_sprs Special Purpose Registers 

OR1200_genpc General Program Counter OR1200_tt Tick Timer 

OR1200_gpio General Purpose Input Output OR1200_uart 
Universal Asynchronous 

Rec/Trans 

OR1200_ic_top Instruction Cache OR1200_wb_biu Wishbone Bus Interface Unit 

OR1200_if Instruction Fetch OR1200_wbmux Wishbone Mux 

OR1200_immu_top 
Instruction Memory 

Management Unit 
- - 

Communication Bus. The wishbone bus has become the standard 

communication bus for the open source cores. It serves as the in-chip bus and as 

the interface bus for the SoC with the external world, and as for Harvard 

architecture there are separated buses for data and for instructions. 

Instruction interface is used to connect OR1200 core to memory subsystem 

for purpose of fetching instructions or instruction cache lines. Data interface is 

used to connect OR1200 core to external peripherals and memory subsystem for 
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purpose of reading and writing data or data cache lines. Table 3.4 lists signals 

for instruction lines (data lines are named dwb_xxx). 

Table 3.4  The Wishbone instruction bus. 

Signal Width I/O Description 

iwb_CLK_I 1 I Clock input 

iwb_RST_I 1 I Reset input 

iwb_CYC_O 1 O Indicates valid bus cycle (core select) 

iwb_ADR_O 32 O Address outputs 

iwb_DAT_I 32 I Data inputs 

iwb_DAT_O 32 O Data outputs 

iwb_SEL_O 4 O Indicates valid bytes of data bus (during valid cycle it must be 0xf) 

iwb_ACK_I 1 I Acknowledgment input (normal transaction termination) 

iwb_ERR_I 1 I Error acknowledgment input (abnormal transaction termination) 

iwb_RTY_I 1 I In OR1200 treated same way as iwb_ERR_I. 

iwb_WE_O 1 O Write transaction when asserted high 

iwb_STB_O 1 O Indicates valid data transfer cycle 

Memory System: As Harvard architecture, Instruction memory and Data 

memory are kept separated. Instruction Memory stores the application program 

for System configuration, System operation, Frequency Synthesis, and Output 

data delivering. Data Memory stores data samples for required waveforms:     

look-up tables containing sine, triangle, and saw tooth wave signal data; 

Temporary tables for processed data, and Buffer output tables for final processed 

data. 

Possible implementations are explored: storing application software in on-

chip ROM adds circuit area and restrain functionality to what's stored; loading 

application software to RAM using a boot-loader reduces memory area and 

allows additions to application software to be made and debugged in 

development board before being loaded into the chip. 
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A similar concept was developed for waveform data tables: data can be stored 

in on-chip ROM with fixed data width and samples per waveform cycle, this 

increases in-chip data memory space and reduces flexibility to change data size 

and samples per cycle. Otherwise sample data can be modified outside the chip, 

as well as the number of data samples per cycle, and then uploaded to RAM 

using the boot-loader. This shows the trade-off between fully customized 

designs versus a configurable programmable circuit design. 

User Interface. A UART port has been selected for system configuration and 

operation. It was selected over a USB port since it takes less circuit area and 

speed is not important during configuration and operation setting. For extended 

interfacing capabilities, Wishbone data and instruction buses have been added, 

they can be used for external memory access and to connect this system to 

external peripheral systems, drivers or bridges. 

User interface functionality has been summarized in Table 3.5 according to 

the system configuration and operation needs: 

Table 3.5  User interface: primary functions. 

Function Description 

Load Load application software from available selections 

Select Define waveform to be used for next experiment 

Configure 
Select waveform, samples per cycle, output frequencies, operation mode, and exposure time for 

signal generation. 

Operate 
Start signal generation disabling other functionalities to maximize output frequency. Keep 

continuous operation until exposure time finishes or stop request is received. 

Monitor 
Displays feedback info from operation and data being sent to output port. This function can be 

disabled to eliminate execution time for monitoring and maximize output frequency. 

Output Ports: Parallel ports have been used as output channels: a 32 bit    

(4x8 bit) GPIO port is used to deliver output data. Standard data is 8 bit wide, 

so up to four channels are available. Output data is delivered in one of this 
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forms depending on operation mode: in mode 1, 8-bit data samples containing 

one single frequency are delivered; in mode 2, 16-bit data samples containing 

two separate frequencies are delivered in two 8-bit channels, 8-bit each; in 

mode 3, 8-bit data samples containing two superimposed frequencies are 

delivered in one 8-bit channel. 

3.3  Challenges for Variable Optimization 

Here are shown the major challenges to be faced in the definition and design 

stages of the system; also is presented the decision to be analyzed and justified 

at each concept. 

To obtain the maximum output frequency from a base operation frequency on 

the value you need. Variable optimization: processor selection, design and 

fabrication models availability. 

1. To minimize execution code when in signal generation routine, so nominal 

output frequency is not reduced. Decision: Base data tables storage scheme, 

output memory buffer use, only one executing thread when running signal 

generation. 

2. To define a data selection algorithm for waveform construction to reduce 

harmonic addition. Decision: Define an algorithm to select a set of data 

that minimizes gap between voltage steps. 

3. To optimize code for minimum execution time on procedures like:  

• Select data from tables. Variable optimization: Equally time separated 

data or equally voltage separated data for harmonic reduction. 
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• Addressing memory and load data from memory. Decision: schemes for 

storing and addressing original waveform data, in cache or external 

memory. 

• Buffer memory table construction. Variable optimization: separate, 

continuous, adjacent or superimposed memory segments when 

generating more than 1 signal, to reduce access times and maximize 

output frequency. 

4. To keep power consumption low. Variable optimization: Consider the 

system as a whole or by operating mode, since most of the time the system 

will be in stand-by or configuring mode. 

• Software related consumption. Application routines should be minimized 

on code size and execution time, in all operating modes: stand-by mode, 

configuring mode, pre-processing mode, and signal generation mode. 

• Hardware related consumption. Determine power consumption for: 

• Processor, in all operating modes. 

• Memory, in read and write access. 

• For every core include activity factor in power estimation. 

3.4  System-on-Chip Specifications 

The bus based architecture has been defined, and four implementation options 

have been explored, in order to compare performance and circuit size for each of 

those implementations. Since main impact in circuit area is due to instruction and 

data memory, this has been the parameter to be set first, keeping the configurable 
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and programmable capabilities in focus. Option 4 from Table 3.6 has been 

selected for the SoC implementation; for the development board implementation 

there were less memory restrictions and load-store-execute flow was defined by 

software development tools.  

1. Parameters: 

• Instruction and Data Cache size: 2 K-bytes blocks, up to 8 K-bytes total. 

• Instruction on-chip RAM: 2 K-bytes blocks, up to 8 K-bytes total. 

• Instruction on-chip ROM: 256 bytes for boot-loader or 2 K-bytes 

blocks, up to 8 K-bytes total for on-chip application. 

2. Application Software functionality. 

• Standard implementation on SoC. Program size < 4Kb. Data size < 1Kb. 

Output data: two output channels; Operation: resolution from coarse 

8bit data. Output patterns: sine, triangle and saw tooth for single or 

superimposed frequencies. 

• Extended implementation on development board. Program size < 8Kb. 

Data size < 4Kb. Number of output channels is board dependent. 

Output patterns: sinusoidal, triangle, and saw tooth, for single or any 

mix of two superimposed waveforms of different frequencies. A 

sequence of user defined test with different time exposure. 

3. Variables 

• Circuit Area. 

• Processor area: ALU, Registers, MMU, Exceptions, Control. 
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• On-chip memory area: Instruction and Data RAM, Instruction ROM. 

• Total chip area: processor, memories, peripherals. 

4. Performance 

• Pre- processing times: time to store processed and buffer data tables. 

• Execution times: for each functional module in application. 

• Time between samples: maximum time between stores to GPIO port, 

minimum output frequency. 

5. Hardware configurations. The way to load and store application software, 

along with the selected functionality for it, can fit into several architectures. 

Application software can be stored and modified on external flash or 

EEPROM memory, and loaded into in-chip RAM using a small boot-loader. 

6. Possible implementations: select block size for Instruction cache memory, 

Data RAM, and ROM. 

7. Operation Flow. Application software may be stored in on-chip ROM 

with no further modification or debugging capabilities after fabrication, or 

stored in external memory for debugging, modifications, and up-grade test 

in development board, to be loaded into chip during boot-load. A top-level 

operation flow is shown in Table 3.6 for four possible implementations. 

Table 3.6  Possible implementations, shown at top-level operation. 

 
Application Software stored  

in in-chip ROM 

Application Software loaded  

from external Flash 

In-chip RAM 

size is 

smaller than 

application 

software size 

Option 1 

Go to program Start instruction. 

Load pre-processing program from in-chip 

ROM into I Cache. 

Option 3 

Start boot loader. 

Load external pre-processing program into in-

chip RAM. 
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Application Software stored  

in in-chip ROM 

Application Software loaded  

from external Flash 

Read operation parameters from interface. 

Load data from in-chip ROM into D 

Cache. 

Generate and store temporary and buffer 

data tables in D Cache. 

Load data generating program from in-chip 

ROM into I Cache. 

Store data in buffer tables from D Cache to 

output port. 

Read operation parameters from interface. 

Load external data into in-chip RAM. 

Generate and store temporary and buffer data 

tables in D Cache. 

Load external data generating program into in-

chip RAM. 

Generate and store temporary and buffer data 

tables in D Cache. 

Store data in buffer tables from D Cache to 

output port. 

In-chip RAM 

size is larger 

than 

application 

software size 

Option 2 

Go to program Start instruction. 

Load program from in-chip ROM into I 

Cache. 

Read operation parameters from interface. 

Load data from in-chip ROM into D 

Cache. 

Generate and store temporary and buffer 

data tables in D Cache. 

Store data in buffer tables from D Cache to 

output port. 

Option 4 

Start boot loader. 

Load external program into in-chip RAM or I 

Cache. 

Read operation parameters from interface. 

Load external data into in-chip RAM or D-

Cache. 

Generate and store temporary and buffer data 

tables in D Cache. 

Store data in buffer tables from D Cache to 

output port. 

3.5  Signal Generation 

A goal of this work is to achieve the maximum output frequency for a given 

architecture, processor speed, and memory access times. The key tasks for this 

achievement have been: a) data pre-processing, b) the signal generation scheme, 

and c) the memory access routine.  

The equation for output frequency in the selected waveform is: 

0

1
F

tbs spc



 

Where Fo is the output frequency, tbs is time between samples (the time 

between two consecutive data samples to be sent to the output port), and spc is 
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the number of samples per cycle (the number of data samples used to build a 

complete cycle of the selected waveform).  

The value of tbs depends on the system clock cycle and the instructions that 

take for the signal generation routine to get a new data sample from the output 

table and send it to the output port: 

  tbs # of instructions clock period  

For example, for a system clock of 100 MHz, using 12 samples per sine cycle, 

and a simple load-store routine of 6 instructions, the cycle period would be 

1/100E+6 = 10 ns and the Output frequency: 

   0

1
1 388

6 10 9 12
F . MHz

E
 


 

As can be seen from (3), to get higher frequencies a tradeoff can be made by, 

e.g., using fewer samples per waveform cycle, eliminate check-for-stop during 

generation or change instruction counting for timer operation. 

A precise count for clock cycles between output data samples, and therefore 

maximum output frequency, can be calculated after compiling the application 

software for the target processor, the OR1200, based on execution cycles per 

instruction type shown in Table 3.7. 

Table 3.7  Instruction Set Architecture execution times. 

Instruction type Cycles to execute 

Load 2, if cache hit 

Store 1, if cache hit 

Integer arithmetic 1 

Multiply 3 

Compare, logical 1 

Rotate, Shift 1 
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Another way to look at output frequency is to calculate from processor speed 

and from cycles per instruction in the signal generation cycle: 

min

Cycles between samples
T

Pr ocessor speed
  

For OR1200 running @ 200MHz:  

10
0 05 s

200MHzmin
.     

If 10 data samples for the sinusoidal signal are desired, then:  

  10 0 05 s 0 5 ssin . .      

0

1 1
2

0 4
F MHz

sin . s
  


 

Which, according to the ―Nyquist–Shannon sampling theorem‖, states that 

perfect reconstruction of a signal is possible when the sampling frequency is 

greater than twice the maximum frequency of the signal being sampled. In this 

case minimum execution time is 0.05 μs, so the system could generate, at most, 

10 MHz signals. At this sampling rate an external filter will be needed to improve 

spectral purity. 

3.5.1  Frequency Synthesis Methodology 

Frequency synthesis has been historically achieved using several analog and 

digital approaches. The digital approach favors miniaturization and additional 

functionalities such as data storage and data processing. Actual devices which 

deliver output signals for a wide frequency range can be found already in wireless 

communications, but they are application specific and do not allow additional 

http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
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functions. A variety of signals and patterns have been found to be useful in the 

mentioned range of applications, where researchers currently work with manual 

procedures using regular equipment as signal generators or oscillators. A more 

controlled experiment setting is desired so research results can speed up, and it 

can be achieved by having complex electric stimulation and varying signal 

parameters such as frequency, waveform, superimposed patterns, etc.  

Besides the problem of delivering complex signal patterns, electric stimulation 

has to be implemented in a small size device because typical applications demand 

portable stimulation and test instruments, our approach integrates frequency 

synthesis, with multi-waveform generation, multi-waveform superposition, and 

operation configurability, so the implementation can be customized for multiple 

applications and processes. Besides, as a modular processor based solution is 

implemented, the methodology takes advantage of it by remaining generic and 

open to modifications, additions, and upgrades. 

At the end, a small, low power implementation was achieved. Original digital 

frequency synthesis schemes calculate sine values on the fly (computation 

intensive scheme) or access pre-stored values from memory (memory intensive 

scheme). None of both schemes are useful by themselves in this system due to 

the goal of maximizing output frequency to clock frequency ratio, and to the 

memory and speed optimization tradeoffs between both schemes.  

For performance optimization in this system the main intention of pre-

processing the base sine data sample is to reduce computation during signal 

generation (i.e. while sending processed data to the output port); this way pre-

processing times does not impact maximum output frequency. Computation 

intensive versus Memory intensive schemes are shown in Figure 3.6: 
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Figure 3.6  DDFS: Memory intensive versus Computation intensive methodologies. 

3.5.2  Output Data 

Available signal waveforms for board implementations are sine, triangle, and 

saw tooth. Preprocessing base data into temporary and into output buffer tables 

allows application software to do computation intensive tasks before operation 

and simple address-load-store operations during signal generation: Data input for 

pre-processing algorithm comes from base data samples tables. Selected samples 

are extracted by translating temporal spacing into memory spacing to achieve 

target signal frequency. Number of data samples per cycle is user defined. 

When superimposed frequencies are desired pre-processing is executed twice 

with correspondent time-space parameters. Intermediate data is stored in 

separate temporary tables for each processed frequency. 

Final processed data is stored in one output buffer table for simple access, 

low execution times. 

Figure 3.7 shows data processing for one single frequency, and 9b for two 

single frequency outputs – the last step would be add for superposition and 

concatenate for separate frequencies-. See appendix A2 for the complete data 
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tables of base waveforms and an example of data processing for superimposing 

two frequencies. 

 

Figure 3.7  a) Data processing for one single frequency. b) Data processing for two 

single frequency outputs. Last processing step is Add for frequency superposition or 

Concatenate for separate frequencies. 

3.5.3  Frequency Sweep and Superposition 

Preprocessed data from temporary tables are superimposed by time matching 

of data samples from both separate frequencies. Data samples are added when 

time matches among samples and time holes due to frequency difference is 

filled with last data. Output data is stored into buffer tables. If there is no 

common factor between frequencies, buffer table size can grow indefinitely. 

A set of sequenced tests can be programmed to be executed when 

characterization test need to go through a frequency range to identify particle's 

properties or behavior. These sequenced tests can sweep a desired frequency 
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range in user defined steps, for example, a 1 MHz signal is delivered for 30 

seconds and a 10 MHz signal is delivered for 60 seconds after the first one, and 

so on. This frequency sweeps are useful when the particle's behavior is 

unknown or when running a characterization experiment. 

3.5.4  Methodology Software Architecture 

Application software is developed to perform four main tasks: Define and 

store waveform data samples, get configuration and operation parameters from 

user, process data to obtain selected output signals, and execute frequency 

synthesis to deliver processed output data samples. 

Waveform data samples for a complete cycle are pre-calculated and stored as 

integer numbers in a 0-255 scale, being 0 the lowest peak value of the 

waveform (-V), 127 the mid-value (0), and 255 the highest peak value (+V). 

Values are stored in data RAM to reduce ROM needs. For the three stated 

waveforms 3 x 256 bytes of data space is needed. As these values are stored into 

RAM along with the program code uploading, new data tables with different 

waveforms can be included in the source files of the application and the 

software architecture remains unchanged. 

Configuration and operation parameters are for user to select the type of 

waveform desired, the operation mode to be executed, and the time period to 

deliver the outputs. 

When operation mode users select 1 out of 3: one output signal with one 

single frequency, two separate output signals with two different frequencies, or 

one output signal with two superimposed frequencies. 
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Data processing takes base waveform data to generate a temporary table 

containing selected data to form the desired frequency. Temporary tables for 

two different frequencies are generated for modes 2 and 3. Temporary tables in 

modes 2 and 3 are processed to form one output table containing two separate or 

superimposed frequencies. Values for temporary and output tables are stored in 

RAM during processing. 

Output data delivering, to complete frequency synthesis process, takes data 

from processed output table and sends it to output port, using 8 bits for modes 1 

and 3, or 16 bits for operation mode 2. Figure 3.8 shows application software 

flow: 

Application functionality is achieved by independent tasks. Table 3.8 

presents function description for detailing software execution. 

Table 3.8  Application Software, Function Description. 

Function Description 

Get operation parameters. Configure 

operation. 

Gets operation parameters: frequency for output signals, 

samples per cycle, operation mode 

Generate data samples for waveforms Calculates and stores base sine data into memory table. 

Calculate time and space between samples 

to construct desired frequency, mode 1. 

Calculates time and space intervals to extract data from base 

table to construct one desired frequency. 

Mode 1: generate output table for selected 

frequency 

Process data from base table and store into temporary table. 

Calculate time and space between samples 

for two frequencies, modes 2 and 3. 

Calculates time and space intervals to extract data from base 

table to construct two different desired frequencies. 

Modes 2 and 3: generate separate 

temporary tables for each frequency 

Process data from base table and store into two separate 

temporary tables. 

Mode 2: generate output table for selected 

concatenated frequencies 

Process data from temporary table and store into one output 

table containing two frequencies in two separate signals. 

Mode 3: generate output table for selected 

superimposed frequencies 

Process data from base table and store into one output table 

containing two frequencies in one signal. 

Send data from output table to output port Take processed data from output table and store it into output 

port. 8 bits for modes 1 and 3, 16 bits for mode 2. 
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Function Description 

Format data to 8 bits in base waveform 

tables 

Scale base sine data from -1 to 1 to 0-255 (8bits). 

Continuous cycle of signal generation Deliver output data continuously until stop requested or 

sequence time finished. 

Non-multiple frequencies protection Eliminates remaining cycle data for superimposed frequencies 

when no hyper-cycle is possible. 

Variable size protection during data 

processing 

Scale to 8 bits intermediate data resulting from operations to fit 

temporary and output tables. 

Transmit output data for record and re-use Transmit delivered data to serial port to be displayed or stored 

by user interface for visualization, record,, or future use. 

Scale data, modes 1 and 3 Scale output data in modes 1 and 3 to 8 bits 

Scale data, mode 2 Scale output data in mode 2 to 16 bits 

 

Figure 3.8  Application Software Flow. 
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3.6  ASIC Design Flow 

In this section are presented a description of the design methodology, the 

CAD tools used in the chip design flow, and the procedures and results on the 

clusters involved in the design: synthesis, timing, memory blocks generation, 

place and route of the system cores, power consumption analysis, IO ring 

design, and integration at chip level. 

3.6.1  Design Methodology 

 

Figure 3.9  Chip design flow on four areas: Timing, Power, IO pins, Area. 
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Open source cores have been used to integrate a modular architecture over an 

open source bus. The design flow has been followed for optimal performance, 

minimum chip area and minimum power consumption, in that priority order 

when a compromise was needed. Work on all the areas relevant to physical 

design has been done: timing optimization, power estimation and grid design, 

IO pin selection and ring design, block placement and pin optimization for 

routing, and layout generation for minimal area.  

3.6.2  CAD Tools 

During the design flow, CAD tools have been used and the design process is 

not seamless due, mostly, to input-output file formats and compatibility between 

tools. As a reference, a tutorial on design flow was reviewed. Table 3.9 shows the 

tools used for each of the main design tasks. Tasks have been performed 

sequentially in the first design steps; in the later design steps they were performed 

in parallel and iteratively to work on the trade-offs of the design: chip area, power 

consumption, and system timing/performance. Figure 3.9 illustrates the design 

flow. 

Table 3.9  CAD Tools Used in design flow. 

Concept Tasks Tools 

Timing 

Synthesis process at block level and at processor level. 

Set initial time constraints at block level. 

Iteratively push timing constraints at block and chip level. 

Deliver block and global timing analysis. 

Synopsys, Design Compiler (DC) 

Place and 

Route 

Initial area estimations at block level. 

Deliver an initial floor plan for routing. 

Placement and routing at block level. 

Global routing. 

Placement optimizations. 

Synopsys, Design Compiler (DC) 

Synopsys, Integrated Circuit 

Compiler (ICC) 

Memories 

Generate logical and physical views for RAM and ROM 

blocks. Generate different aspect ratio implementations for 

placement optimization. 

Create memory wrappers for integration. 

Artisan, Memory Generators 

Synopsys, Design Compiler (DC) 

Power 
Initial power estimations at block level. 

Iterative Power Grid Design. 

Synopsys, Design Compiler 

Synopsys, PrimeTime PX 
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Concept Tasks Tools 

IO Ring Iterative IO Ring design. 
Synopsys, Integrated Circuit 

Compiler (ICC) 

Clock Clock tree synthesis at chip level. 
Synopsys, Integrated Circuit 

Compiler (ICC) 

Integration 

Integrate Power grid to floor plan. 

Integrate IO ring to floor plan. 

Integrate memory blocks at chip level. 

Integrate clock tree at chip level. 

Synopsys, Integrated Circuit 

Compiler (ICC) 

JupiterXT, Synopsys 

Verificatio

n 
Functional verification at block and processor level Mentor Graphics, ModelSim 

3.6.3  Synthesis and Timing 

During the synthesis process the local and global timing has been optimized 

and initial area and power estimations have been done. Eight rounds of 

synthesis have been performed until timing convergence and closure have been 

achieved. Synthesis rounds to get minimum slack time, area estimations, and 

power estimations have been done with Design Compiler from Synopsys. 

Selected processor cores from Open Cores have been used for bus compatibility 

and minimum edition of source codes. The available versions of these open 

source cores are not optimized for performance or area, so optimization in these 

areas have been done during this design process. 

A simulation for functionality, at processor level, has been done before 

starting synthesis process, using ModelSim from Mentor Graphics. 

The tasks performed and the obtained results from the rounds of synthesis were: 

Round 0: Estimate initial timing constraints for each core based on gate count, 

estimated size and worst case data path. 

1st to 4th first rounds: Run synthesis at block level pushing timing constraints; 

consider adjacent blocks in data path to push constraints for required arrival 

times and arrival times. 
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5th and 6th rounds: Run synthesis at top level. Identify critical paths. Push 

timing constraints on critical paths. Use new version of open core source repeat 

from round 5. 

7th and final 8th rounds: Update CVS tree (source version control) to match 

last rounds. Round 8 was the final round for pushing the block and global 

timing constraints. 

The global path delay at top level synthesis has been calculated by: 

Global path delay= Arrival time + Pass-through + (cycle time – Required 

arrival time) + interconnect delay 

Where the first three terms depend on both, block level synthesis and top 

level synthesis, and the last term depends on floor-plan and time of flight for 

metal 3 and metal 4. 

Final results show that the minimum clock cycle is the requested 4 ns plus the 

worst slack time achieved of -0.978 ns, which leads to a minimum required clock 

cycle of 4.978 ns, equivalent to a processor frequency of 200.8 MHz; Figure 3.10 

shows the occurrence distribution of the single and double cycle paths in the 

architecture, being the ones on the left the worst slack times observed. 

Table 3.10  Results from the rounds. 

Round Slack Action taken Improvement 

1 -7.9ns   

2 -6.4ns Iterate timing constraints at block level 1.5ns 

3 -4.5ns Consider pin info in constraints 2.1ns 

4 -4,3ns   

5v1 -2.3ns Push synthesis effort 2ns 

5v2 -1.2ns Identify multi-cycle paths 1.5ns 

5v3 -0.75ns   

6 -1.0ns Source files change -0.25ns 
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Round Slack Action taken Improvement 

7 -0.82ns Source files change 0.18ns 

8 -1.1ns  -0.28ns 

Final -0.978ns Consider interconnect delay 0.12ns 

 

Figure 3.10  Occurrence distributions of the single and double cycle paths in the 

architecture. 

Memory blocks. 

Memories for this system (instruction cache, data cache, in-chip RAM and  

in-chip ROM) have been generated using a Memory Generator tool from 

Artisan which takes as input an abstract description of the memory blocks and 

produces several memory formats suitable for various tools and purposes. Using 

a memory generator instead of synthesizing a memory can optimize speed, for 

density and for power, can control the memory blocks aspect ratio for efficient 

floor planning, deliver timing and power models for integrate to other design 

tools, allow configurable word-write mask and redundancy options. 
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Memory blocks of 2 K bytes, 4 K bytes and 8 K bytes have been generated to 

facilitate block placement and routing in chip. 

A set of views can be generated: PostScript data sheet, ASCII data table, 

GDSII layout file, LVS netlist, Synopsys model, PrimeTime models, TLF models, 

VCLEF footprint, Verilog model, and VHDL model. The Relative footprint 

shows how the aspect ratio of the memory changes as the words, bits, and Mux 

parameters are varied. The instance and the power ring are included in the 

footprint. 

RAM architecture, timing specifications, and physical characteristics: 

1. Synchronous Random Access Memory is triggered by the CLK rising edge. 

2. Pins: CLK, CEN, WEN, OEN, A[m-1:0], D[n-1:0], output Q [n-1:0]. 

3. Memory blocks are cut in symmetrical sides to easy clock distribution and 

layout. 

4. Dual port memories provide dual ports for all, input and output signals. 

5. Power rings. Power rings can be generated around the SRAM, size them 

properly. Size depends on the chip-level power distribution, the number, 

width, and placement of supply wire connections to the power rings, and 

the current consumption. Recommendation: supply current evenly at the 

edge of the instance where the pins are located. 

6. Top metal layer: metal1 to metal4 are used in the design and blocked for 

routing. Layers above m4 can be routed over the memory. 
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7. I/O pins are located along the bottom edge of the memory block on any of 

the metal layers, and they are large enough to accommodate a               

pre-determined on-grid width wire connection.  

8. Verification: The views produced by the generator can be verified with 

standard tools.  

ROM architecture, timing specifications, and physical characteristics: 

1. Synchronous Read Only Memory is triggered by the CLK rising edge. 

2. Pins: CLK, CEN, A[m-1:0], Q [n-1:0]. If CEN is high then memory is in 

standby mode and Q has last data, if CEN is low memory is in read mode 

and Q has data from address A. 

3. Memory blocks include Row and column decoders, Clock generator, 

Memory array and Amplifiers/IO buffers for the outputs. 

4. Power rings: multiple, evenly spaced connections have been used from 

core Vdd and Vss to the rings around the instance on the side where the I/O 

pins are located. 

5. I/O pins are located along the bottom edge of the memory block on any of 

the metal layers.  

6. ROM code File. An Artisan format ROM code file must be provided for 

each generated instance.  

• Format: Code file contain only 0s and 1s.  

• The line number in the file is equivalent to (address-1).  
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• Each character of a line corresponds to the bits of a word. Character in 

column 1 of a line is the most significant bit.  

• Address goes from m to 0, bits and columns go from n to 0.  

• This file is needed for behavioral or physical views such as Verilog, 

VHDL, Tests can, Sunrise, GDSII and LVS Netlist.  

Tool Verification. Views and files generated have been verified with Synopsys 

Design Compiler. 

Before Place and Route, a FRAM view has been created for all memories in 

the design by importing the VCLEF and running the Blockage, Pin and Via 

(BPV) to create the FRAM.  

3.6.4  Place and Route 

P&R, the process of placing each individual block within the top level design, 

has a major impact in chip area: it must use the area optimized netlist for each 

block and use the interconnect area efficiently for routing. 

Several iterations for P&R have been made due to changes in synthesis, pin 

placement and block aspect ratio impact placement and routing results. 

Integrated Circuit Compiler (ICC), from Synopsys, has been used to route 

signals within blocks, to place blocks within layout, to route signals between 

blocks, and to optimize block and pin placement for optimal routing. 

A preliminary floor-plan has been delivered for power grid design. Block 

placement re-runs have been made with different aspect ratios for each block, 

until better area utilization is achieved. 
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About 30% of space is left between blocks for interconnect routing, clock 

tree and power grid. 

3.6.5  Power Analysis 

To estimate and analyze the power consumption for this system, a sequence 

of iterative tasks have been performed: estimate each block power using Design 

Compiler from Synopsys, include activity factors in power calculations, 

calculate Switching Power, Cell Internal Power and Cell Leakage power for 

each block, design a power grid using Prime Time PX, and integrate power grid 

to routed layout. 

Power estimations for individual blocks are made initially from block size and 

gate count. Activity factors have been integrated using a code benchmark. Later, a 

preliminary floor-plan from ICC has been used as the base for power grid. 

Vertical power lines go on M5, Horizontal on M6. No power ring has been 

added to ease integration with power in M3 and M4 and to power pins in IO 

ring. Power grid includes Vdd, clk, rst and Vss lines, with spacing and widths: 5λ, 

2λ, 2λ, 2λ, 2λ, 2λ, 5λ, 2λ respectively. Total spacing between two Vdd will be 

22λ, which should be multiple of power grid spacing in M3 and M4 for 

interconnection. 

Power estimation for each block has remained similar, regardless the changes 

in source code occurring during synthesis and integration. Power grid at M5/M6 

considers block placement and individual block consumption, while power grid 

inside blocks on M3/M4 will be done automatically. 
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A verification run for obtaining activity factors by block from simulation 

instead that from estimations has also been made. 

Dependencies for Power IR drop analysis, which is the voltage drop due to 

the resistance of interconnects in power network are illustrated: 

• Additional code lines at top level are needed for power grid.  

• IO ring needs to be hooked up to the top level design. 

• All blocks should place their pins only in M3 and M4. 

• The IO pads have to be hooked up to the power rail, to get info about 

external source of power rails. 

• Modules should be power routed in M4 and hooked up to the power grid 

using via M4 and M5.  

• De-coupling capacitor filler cells must be inserted in empty spaces: within 

individual modules and in the full chip level between modules. 

• Design Rule Check should be executed after hooking up power routes. 

• Design decision to make for each individual block: where to put the power 

pins for minimum route to power grid. 

Results from final run of power estimation are shown in Table 3.11. 
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Table 3.11  Power Consumption Values. 

 

Block Activity *(Net Switching Power + Cell Internal Power) + Cell Leakage power 

 

Block 

Activity 

Net Switching 

Power 

Cell Internal 

Power 

Cell Leakage 

Power 
Total Power 

Weighted 

value 

alu 0.4 4.8500E−03 6.1020E−03 1.0290E−07 1.1000E−02 4.3809E−03 

cfgr 0.02 2.4420E−04 3.0160E−04 1.0400E−08 5.4580E−04 1.0926E−05 

ctrl 0.4 1.4490E−03 3.0220E−03 7.0550E−08 4.4710E−03 1.7884E−03 

dc_top 0.5 3.0410E−03 5.9600E−02 1.0080E−05 6.2600E−02 3.1330E−02 

dmmu_top 0.5 1.2410E−03 9.6630E−03 6.0270E−06 1.0900E−02 5.4580E−03 

du 0.01 1.7200E−02 1.9800E−02 6.5830E−07 3.7100E−02 3.7065E−04 

except 0.4 3.1590E−03 1.1200E−02 1.9230E−07 1.4300E−02 5.7437E−03 

freeze 0.4 2.5380E−05 6.8790E−05 1.9090E−09 9.4170E−05 3.7669E−05 

genpc 0.5 3.0450E−03 5.7010E−03 1.2740E−07 8.7470E−03 4.3731E−03 

gpio 0.5 7.4720E−04 2.3390E−03 1.9830E−07 3.0860E−03 1.5432E−03 

ic_top 0.5 1.3880E−03 5.7500E−02 1.0040E−05 5.8900E−02 2.9454E−02 

if 0.5 7.3330E−04 2.2270E−03 3.9420E−08 2.9600E−03 1.4801E−03 

immu_top 0.5 2.3510E−03 1.0600E−02 6.0780E−06 1.3000E−02 6.4815E−03 

iwb_biu 0.1 7.1960E−04 1.4030E−03 8.6690E−08 2.1220E−03 2.1234E−04 

lsu 0.6 5.7150E−03 4.5360E−03 9.4160E−08 1.0300E−02 6.1506E−03 

mult_mac 0.1 6.9460E−03 2.8100E−02 5.1140E−07 3.5000E−02 3.5051E−03 

operandmux 0.4 2.2710E−03 2.6400E−03 6.4490E−08 4.9110E−03 1.9644E−03 

pic 0.01 5.3930E−04 1.1050E−03 3.0240E−08 1.6450E−03 1.6473E−05 

pm 0.01 2.3360E−04 4.0410E−04 9.5910E−09 6.3770E−04 6.3865E−06 

rf 0.5 2.9220E−03 2.6000E−02 7.3280E−07 2.9000E−02 1.4461E−02 

sb 0.2 5.6610E−04 7.5770E−04 1.5890E−08 1.3240E−03 2.6477E−04 

sprs 0.02 5.5530E−03 5.2600E−03 1.3510E−07 1.0800E−02 2.1639E−04 

tt 0.01 9.8770E−04 1.7000E−03 4.6980E−08 2.6880E−03 2.6923E−05 

uart 0.5 4.8040E−04 2.8240E−03 2.8800E−07 3.3050E−03 1.6524E−03 

wb_biu 0.1 5.0040E−04 9.5720E−04 4.9520E−08 1.4580E−03 1.4580E−04 

wbmux 0.4 2.3900E−03 3.6520E−03 7.5520E−08 6.0420E−03 2.4168E−03 

Total 

 

6.9298E−02 2.6746E−01 3.5766E−05 3.3693E−01 1.2349E−01 
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The power consumed by electronic devices has been on a downward path for 

many years as a result of the hard work and creativity of talented engineers. 

Despite the obvious gains, the creation of lower power designs continues to be a 

major concern of modern engineering. There are two facets to this engineering 

problem. One is simply the desire to consume less power; to extend battery life 

and to make wall-powered devices cheaper to operate and ecologically 

friendlier. The other, perhaps less obvious problem, is that all power consumed 

must also be dissipated. Power dissipation has become more difficult as devices 

have become more complex yet smaller. Of course, the best way to help the 

dissipation problem is to consume less power in the first place. This course 

looks at the fundamentals of achieving the low power operation needed with 

nearly all of today's leading-edge chip designs. 

3.6.6  IO Ring 

The Input-Output pad ring on a chip acts as a communication link between 

the chip core and the outside world. IO pad ring is a collection of open metal 

areas usually located at the periphery of the chip. When a chip is being 

packaged a mechanical wire bonder connects the open metal surface of an IO 

pad with the corresponding package pin.  

The circuit functions of an IO pad ring are listed below: 

1. ESD protection – The IO pad ring has diode protection circuitry which 

protects the gates connected to the pads from any external electrostatic 

discharge. 

2. Buffering the output signal – Usually, digital output pads have buffers to 

allow driving huge external world capacitances of the order of 30 pF.  
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3. Buffer the input signal – Digital input pads can have buffers to isolate the 

external input from the signals inside the core chip. A digital input pad can 

also have a noise tolerant functionality which removes any noise that might 

have coupled to the external input. A Schmitt trigger circuit is used to 

perform this function. The circuit generates a cleaner signal, mitigating any 

effect that noise might have on the circuit performance. A tradeoff of using 

Schmitt trigger circuits is the fact that they are power hungry and are slow.  

4. Mixed voltage interface – An IO pad ring usually provides a mixed voltage 

interface. The external IO pads are usually running at higher voltage while 

the cores chip inside run at a smaller voltage, to minimize power. The IO 

pad ring contains Level shifter circuits that perform this function. 

Due to the limitation in resolution of the mechanical wire-bonding tool, a 

minimum open metal surface area and a minimum pad pitch need has been 

maintained. Maintaining a minimum pad pitch resulted in the limitation of the 

number of input/output pins possible for a chip to the minimum presented ahead. 

Table 3.12 shows the final IO pins for the designed SoC. 

Table 3.12  SoC IO Pin List. 

Signal From block Signal From block Signal From block 

clk_i RISC 250MHz iwb_dat_i(31:0) Wishbone pm_ic_gate_o Power 

rst_i RISC rst iwb_cyc_o Wishbone pm_dmmu_gate_o Power 

clmode_i RISC clock control iwb_adr_o(31:0) Wishbone pm_immu_gate_o Power 

pic_ints_i(3:0) PPIC interrupts iwb_stb_o Wishbone pm_tt_gate_o Power 

iwb_clk_i Wishbone iwb_we_o Wishbone pm_wakeup_o Power 

iwb_rst_i Wishbone iwb_sel_o Wishbone pm_cpu_gate_o Power 

iwb_ack_i Wishbone GPIO(31:0) GPIO pm_1volt_o Power 

iwb_err_i Wishbone pm_cpustall_i Power pm_clk_sd_o (3:0) Power 

iwb_rty_i Wishbone pm_dc_gate_o Power   
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The design of the IO ring for this system has been made based on the needed 

pins for this specific application and has been integrated later to the complete 

and routed layout. These pads are available ready-made in TSMC’s digital IO 

pad library. These pads have been piled together in a rectangle to create the pad 

ring. The open metal area surface of the pad has a 50um length. The pad length 

itself is 70um. To keep sufficient spacing between two metal area surfaces -

where the wire-bonder would come to attach the bonding wires-, a spacer of 

10um was inserted between each pad. This increased the pad pitch to 80um. 

The input pads were chosen without Schmitt trigger functionality (PDIDGZ) 

because Schmitt trigger circuits are power hungry and slower. Only general 

purpose IO pads (PRU08SDGZ) had schmitt trigger circuitry inside them. They 

also had control enable based input/output configuration functionality. The 

output pads were chosen based on the current driving capability required from 

the pad. The average current was estimated for the pad assuming a 30pF load 

and a 25% rise time at 62.5MHz. Based on the average current calculation for 

some of the pads, the average current requirement was 4.8mA. An output pad 

(PDO16CGZ) with a current capability of 16mA was therefore chosen to safely 

meet the current requirements. 3.11 shows a close up to the physical IO ring. 

To find out whether the area was pad limited or core chip limited, a very 

conservative area estimate was made by adding the block areas and multiplied it 

by double to account for wire routing overheads. The area assuming a square 

came out to be 0.583976mm2 (0.7mm x 0.7mm) – which denoted severely pad 

limited die size. 
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Figure 3.11  Close-up view of the IO pad ring, pad pitch is 80nm. 

Number of Vdd - Vss pair pin calculation: 

There are two power supply voltages on the chip. The first is 3.3V volt which 

is used for input/output signals from the external world to the IO pads. The 

other voltage is 1.8V which is the Vdd for the core chip. The IO pad ring 

performs the task of converting the voltage levels. 

An adequate amount of Vdd - Vss pins is needed to allow sufficient current 

source and sink-in capability. The more the number of IO pads the larger the 

number of Vdd - Vss pins. For this design a 3.3V Vdd - Vss pair for every 8 IO pins 

was chosen. While two 1.8V Vdd - Vss pairs were placed on each side of the die. 
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There are more 3.3V Vdd - Vss pairs due to the amount of power dissipation of 

the IO pads needed to drive the external 30pF buffers. The core chip itself 

requires less power so fewer IO pins were dedicated to it. 

3.6.7  Clock Tree Synthesis 

Clock tree synthesis (CTS) is a separate design process which consists on 

building a balanced buffer tree from clock input pin to all clock sinks in the 

design blocks. 

Clock design includes clock generation, clock regeneration and clock 

distribution. Tree design, leafs, sinks and location have been set according to 

this chip needs. The input files needed for the clock design are top level DEF 

file and top level Verilog net-lists. 

To do clock tree synthesis SOC Encounter from Cadence has been used. 

When starting from a placed net-list, the flow is to perform CTS, do global 

routing and block level routing. 

Clock Tree design is critical for system synchronization: if clock does not 

arrive on time to each block depending on its location within the data-path, all 

instruction flow gets wrong. 

Clock distribution and Clock pin placement are design placement dependent, 

so every new place and route run requires a new clock tree design. 

Figure 3.12 shows a sample run of the clock tree generation: 
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Figure 3.12  Sample run of the clock tree generation. 

Hardware design in high-performance applications such as communications, 

wireless infrastructure, servers, broadcast video, and test and measurement 

equipment is becoming increasingly complex as systems integrate more 

functionality and require ever-increasing levels of performance. This trend 

extends to the board-level clock tree that provides reference timing for the 

system. A ―one size fits all‖ strategy does not apply when it comes to clock tree 

design. Optimizing the clock tree to meet both performance and cost 

requirements depends on a number of factors, including the system architecture, 

integrated circuit (IC) timing requirements (frequencies, signal formats, etc.) 

and the jitter requirements of the end application. 

3.6.8  Integration 

Integration work is an inter-dependent task, since results from power, timing, 

placement, and routing affect other results, so iterations have been done until 
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satisfactory results in all areas have been reached. First designs for power grid 

and clock tree have been done based on the first preliminary floor-plan 

delivered. As part of integration, different versions of definers’ file, one from 

verification, one from Timing and one from Place & Route have been merged 

into one common file to check and eliminate inconsistencies. 

When cores have not been completely compatible with the bus based 

architecture, wrappers have been needed, since cores are generic open source 

code and customization is needed, especially for hardware integration and       

in-chip communication. A Wishbone compliant wrapper has been added for: an 

8K SRAM for the memory module, a 4x8 bit GPIO core, and a standard UART. 

When synthesizing at top level some signal and bus inconsistencies arose: 

missing pins, incompatible bus widths, and unreferenced instantiations, among 

others. 

Most Verilog sources have gone under editing and current control version is 

maintained for code consistency since it is critical for integration. 

When integrating at chip level, hardware hierarchy has been redefined: block 

level is the open source for each individual block; CPU level is the unit build by 

interconnecting the individual blocks; OR1200 level is the processor built with 

CPU, memories, debug, and system units; SoC level is the system built with 

OR1200 processor, SRMA, ROM, GPIO, UART, power grid, and clock tree. 

Tables 3.13 and 3.14 show details of the tasks performed and results obtained 

during the last two rounds of integration. 
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Table 3.13  Tasks and results, 7th round of synthesis and integration. 

Cluster Tasks/Problems/Results 

P&R 

Preliminary floor-plan has been delivered for power grid design. To be final it needs: resize 

IMMU cache, consider 30% of interleaving space for routing, clock and power lines. Do block 

placement re-runs with different aspect ratio for each block, until better area utilization is 

achieved. 

Timing Worst slack time at -800ps over a 4ns period. That leads to a frequency of 208 MHz. 

Top level 

synthesis 

Synthesis script and netlist for OR1200 top level: ready. Synthesized OR1200_top.v, net-list 

generated. To do: re-synthesize to be consistent with updated defines file, due to 

inconsistencies in source files. 

Integration 

Different versions, one from verification, one from Timing and one from Place & Route of 

definers’ file should merge into one common file. Example inconsistencies: 

"OR1200_ARTISAN_SSP" has been commented out, `define OR1200_ASIC is commented 

out in one version, FPU related macros to be removed. 

Verification 

 

 

 

 

Verification 

for Power 

Verification is complete with the new Verilog files, re-do when definers’ file is common to all 

clusters. Use SAIF from Synopsys (1st option, for tool compatibility) or VCD from Model-

Sim to write out activity factor, for a given timing window of simulation. 

SAIF: forward_saif file required for Model-Sim to generate a backward_saif, the required 

output file 

 

VCD: To write out VCD: Read DC synthesized net-list into Model-Sim. Write out a VCD 

from Model-Sim from the designed test bench using time window which power numbers are 

going to be generated; zip VCD: "zip -r DESIGN.vcd.zip DESIGN.vcd" 

To convert between formats: Invoke Synopsys DC and use "vcd2saif" command 

Source 

Wrappers are written for SRMA, GPIO, and UART. These blocks, along with OR1200, will 

build the SoC top level. 

UART and GPIO connect to the data wishbone of the processor. New pins created for GPIO 

wrapper: aux_i, ext_pad_i, ext_pad_o, ext_padoe_o, clk_pad_i, For UART: int_o, stx_pad_o, 

srx_pad_i, rts_pad_o, cts_pad_i, dtr_pad_o, dsr_pad_i, ri_pad_i, dcd_pad_i 

SRAM: Wishbone compliant wrapped 8K SRAM memory module. No syntax errors. Needs 

functional verification, run design compiler to get the gate level Verilog. 
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Table 3.14  Tasks and results, 8th round of synthesis and integration. 

Cluster Tasks/Problems/Results 

P&R 
Re-run the global P&R scripts, since the floor-plan has changed significantly. All of the objects 

are placed. Rebuild each using synopsis/icc/2010 and make the OR1200_top library. 

Power 

As Verilog source files change, new SDC files for the new net-lists are needed for each block. 

After generating sdc files for each block, check for consistency among the gate.v net-list and 

new sdc file. 

Upload new files in the corresponding folder because existing scripts take them from there. 

Results from last run of power analysis are shown in a table below. 

Needs from Global P&R for Power IR drop analysis - Due to the resistance of the interconnects 

in power network, there is a voltage drop -:  

Add code lines for power grid 

IOs still not hooked up in the milky way 

Check all blocks place pins in M3 and M4. 

Hook up the IO pads to the power rail, to get info about external source of power rails 

Modules should be power routed in M4 and hooked up to the power grid using via 4-5 

Insert de-coupling capacitor filler cells in empty spaces: within individual modules and in the 

full chip level between modules 

Design Rule Check should be executed after hooking up power routes 

Timing 

Final run: squeeze out as much extra timing as possible. Reference to: 

For each pass-through in a critical path, a log has been used to show the average path slack, 

average time for the pass-through, and the number of times that pass-through appears in a 

critical path. Locate the pass-through routes in each block that occupy a good amount of time 

in a critical path to tighten while also locating a path with slack to give that you can relax. 

Due to changes in defines file between r6 and r7, the timing became a little worse, now at 

200MHz. Some pins of debug unit and control unit are causing the problem. These pins pop up 

only in this release, probably due to changing of the define file. 

Integration Design decision to make: where and how to put the power grid on blocks? 

Source 

Defines file at processor top level was modified to meet requirements from: cache memory 

blocks (`define OR1200_ASIC and `define OR1200_ARTISAN_SSP 0), register file block 

(Type of register file RAM: `define OR1200_RFRAM_GENERIC), wishbone bus 

(OR1200_CLKDIV_4_SUPPORTED, This will allow us to use 50 MHz for the external 

wishbone bus.), Power management unit (`define OR1200_PM_IMPLEMENTED), and 

eliminated references to floating process unit since it is not implemented. 

3.7  Design Evaluation 

This system design was completed through the stages of the design. The 

hardware architecture was synthesized with Synopsys Design Compiler using 

TSMC Physical Libraries for 180µm technology. RAM and ROM arrays were 
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built with Artisan Memory Generators. Place and Route, Clock Tree synthesis 

and IO Ring design were realized with Synopsys IC Compiler. Power analysis 

and power grid design was made with Prime Time-Px. 

Source cores -Processor, Peripherals, and on-chip Communication Bus- are 

synthesizable cores from OpenCores.org. 

Here are presented the resulting design parameters: 

Timing Analysis was made during synthesis process. Timing parameters like 

system clock frequency, bus clock frequency, and port clock frequency are 

implementation dependent only. Output update rate considers n data samples 

per waveform cycle. Table 3.15 shows operating frequencies per block group. 

Table 3.15  Operating Frequencies. 

Concept Operating Frequency 

System Clock 190 MHz 

Wishbone bus clock 47.5 MHz 

GPIO, 8 bit data L&S 5.94 MHz 

Output data update rate (48/n) MHz 

Execution times were obtained from simulations of the application software 

and from actual execution times on a development board –the LM3S6965-. 

Application functions are grouped to present their execution times: Parameter 

set up function gets the operation parameters from user, and generates related 

data; Data processing function creates temporary and output table generation 

processing two waveforms -frequencies f1 and f2 -, 32 samples each. 

An example where f2= 4f1 is used. Output update function refers to signal 

generation - sending waveform data samples to output port-, and corresponds to 

1 cycle for addressing, 1 cycle for load from memory, and two cycles for store 
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in parallel port. Execution times marked with * do not impact maximum output 

frequency since they are executed during system configuration or data 

processing, i.e. before signal generation begins. 

Table 3.16  Execution Times. 

Function Clock cycles Exec time (ns) 

Parameters setup, 8 parameters, 4 cycles each 4 x 8 168  

Data processing for temporary tables 2 (4 x 32) 1347  

Data processing for output table 5(32)(f2 /f1) 3368  

Output update 4 21  

Delivered Signals The system can deliver any mix of sine, triangle and     

saw-tooth waveforms with different frequencies in single or superimposed 

patterns. 

Power analysis Power analysis was made for individual blocks then grouped 

for simplicity. Power values in Table 3.17 consider full throttle operation for that 

group of blocks and % of total power is calculated considering activity factor. 

Table 3.17  Power Consumption By Block Group. 

Block Power, Watts % of total power 

Processor 0.176965 52.3 

Memories 0.145400 42.97 

Peripherals 0.006385 1.887 

Bus 0.009620 2.843 

Table 3.18  Area Use By Block Group. 

Block Area, (mm2) % of chip area 

Processor 1.4866 25.73 

8K IC RAM 0.9824 17.01 

8K DC RAM 0.9736 16.85 

256 bytes ROM 0.0212 0.37 

Peripherals 0.0522 0.90 
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Bus & Interconnect 1.4694 25.44 

IO Ring 0.7912 13.70 

Areas The minimum total and interconnect areas were achieved by varying 

the aspect ratio of major blocks: memory and processor cores. Area use per 

block group is shown in Table 3.18. 

3.8  Application Software 

Based on the hardware specifications, the application software is developed 

including start up and load procedure, sine/triangle/saw tooth waveform's data 

storage, configuration and operation setting, and frequency synthesis process 

using the novel methodology created for this application. 

Separate application software versions for development board and IC are kept 

due to differences in hardware resources. 

Board version is an extended functionality version where hardware resources 

are only limited by the board features. 

The SoC version is called the standard version: it has less functionality than 

the board's due to area budget, processor, and open source restrictions. 

3.8.1  Program Flow 

Table 3.19 shows a simplification of the application flow by listing only the 

main tasks; secondary tasks as data protection, data scaling and frequency 

synthesis details are not shown. 
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Table 3.19  Application Program Steps. 

1. Configure General Purpose I/O port 

2. Get configuration and operation parameters 

3. Calculate time separation between data and shift factor for data extraction 

4. Prepare temporary and output tables for requested mode 

4.1 Mode 1: 1 8-bit table, single data, for 1 frequency signal output 

4.2 Mode 2: 1 16-bit table, inter lapped double data, for two frequency signal outputs 

4.3 Mode 3: 1 8-bit table, superimposed data, for two frequencies on 1 signal output 

5. Configure four 8-bit GPIO port for output signals. 

6. Send data samples for sine signal to output port, with a load-from-table/store-to-port cycle 

7. Update output port continuously while waiting for stop signal 

8. Restart operation to get new configuration parameters 

3.8.2  Standard Version 

A standard version of the application program has been developed to run on 

OR1200 based architecture; this version is the foundation for the SoC design 

and implementation. The three waveforms can be delivered to output channels 

and dual superimposed frequencies are included if frequencies are exact 

multiples, due to in-chip memory limitations. To be interrupted during 

operation using master reset only. Maximum output frequency is limited by the 

timing constraints of the available physical libraries for implementation and the 

timing optimization of the set of processor source files. Standard version takes 

less than 1 Kbytes of data RAM and less than 2 Kbytes of instruction RAM. 

Table 3.20 shows a description of the routines in the standard version. 

Table 3.20  Routine List and Description, Standard Version. 

Routine Description 

Calculate Data 

Separation 

Desired output frequency and number of voltage steps determine how many data points 

will be extracted from the original sine table in order to construct desired output signal. 

Two data separation parameters are needed for operation modes 2 and 3. 

Calculate base 

time 

According to desired frequency and number of voltage steps, there is a base times that 

indicates the time between data points are sent to output port. 
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Routine Description 

Create Table-

Mode1 

Extract data from original sine table needed to construct 1 output signal, 1 single 

frequency: each 8-bit data from original sine table is stored as the 8 least significant bits of 

the 32-bit output port. 

Create Table-

Mode2 

Extract data from original sine table needed to construct two output signals, two separated 

frequencies: if two 8-bit output ports can be stored at the same time with 32-bit data, two 

data points from original sine tables must be concatenated before stored in buffer memory 

table. 

Create Table-

Mode3 

Extract data from original sine table needed to construct 1 output signal, two superimposed 

frequencies: data points for different frequencies should be added to achieve 

superimposition. 

Output Signal 

Generation 

Continuous, uninterrupted loop, for loading data from buffer memory and storing it on 

output ports. No memory other than buffer is read, no instructions other than those for 

signal generation are executed. 

Start/Stop 

external 

interrupt 

Start/Stop button is enabled as an external interrupt in two execution moments: at startup 

to be ready for accepting configuration and operation parameters, and during Output Signal 

Generation routine to stop signal. 

Timer interrupt 

generation 

Within Output Signal Generation routine: When low frequency output is desired, a timer is 

used to update data to outputs at a base time determined by Calculate Base routine. For 

high frequencies time is achieved by cycle and instruction count. 

See Appendix A1 for Application software C code, standard version.  

3.8.3  Extended Version 

The extended version of the application program was developed to run on an 

ARM9 or Cortex-M3 based development board. A functional implementation of 

this version is presented in chapter 5. Extended functionality is added, such as 

delivering data via an USB port for further analysis of monitored or stored data, 

mixing different waveforms in a superimposed signal for more controlled 

experimental environments and an interactive user interface for configuration 

and operation. Data tables for the three signal wave forms (sine, triangle and 

saw tooth) can be displayed at start-up for demonstration purposes of the novel 

frequency synthesis methodology to show the frequency superposition effect. 

Extended version takes less than 4 Kbytes of data RAM - 1 Kbytes for base data 

and 3 Kbytes for temporary and final data-, and less than 3 Kbytes of instruction 
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RAM. Although the Extended version has additional functionality it fits in the 

original SoC design which has separated RAM blocks of 8KB of data RAM and 

8KB of instruction RAM. 

See Appendix A2 for Application software in C code, extended version. 
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4.1  Chip Design Flow 

As long as the technology and processes involved in circuit design remain 

within the current boundaries, the design variables will remain the same: Circuit 

area, execution speed, and power consumption. If a new and completely different 

technology and materials arrive, this could change. Meantime, the design teams 

will dependently develop their areas, iteratively delivering new versions of them 

until the team achieves a final functional design within the time-to-Market frame. 

The trade-offs. The design team keeps in mind that when you modify the area 

of a circuit it also impacts the power consumption and the execution time. 

Although it is not possible to gain in those three variables: you gain in one, then 

loose in the other two. That is why in these projects the design team needs to 

focus on the final goal, rather than its own specifications, and still, optimize the 

individual parameters to the maximum achievable. 

Time to market. The circuit design field is a fast moving one, with new circuits 

being released every day. Professional design teams always work on a very tight 

time schedule, in order to complete their design, containing what will be a novelty 

in the market, only if it arrives on time to it. At this point is important to note that 

maximum optimization always goes as far as time schedule allows, it means that 

you will see that if you would have more time to work on your design it can be 

smaller, or faster, or may consume less energy. But there is no more time for that, 

or the market will no longer find your design useful. So you need to declare your 

design done, in order to get into the market on time. Of course this applies when 

you are designing for a market, but if you design as a hobby or as part of an open 

cores community, you can have more time. 
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4.2  Open Source Design Tools 

Using open cores in designing independent integrated circuits is a growing 

trend between electronic engineers, and there are large communities focusing on 

open source development, intended for electronic hardware. Designing hardware 

cores by programming them starting from scratch, is not easy, you need to know 

about electronics, programming, and design tools. For instance, many steps need 

to be done to ensure a design can be synthesized and translated to an FPGA or a 

Silicon wafer, through several verification steps. Knowledge on FPGAs and 

standard libraries is needed, and you need to be good at HDL programming. 

4.3  Open Source EDA Tools 

There are plenty of good EDA tools that are available as open source. The 

use of such tools makes it easier for you to take advantage of the resources and 

open cores available in related sites and forums. The larger and most used site 

for this purpose is Opencores.org. You can access there IP cores and scripts for 

an open source HDL simulator. 

Here is a description of the most used terms and tools you will need to know. 

Of course, as any practical tool, there is no other way to be a master than using 

it and practicing. 

Icarus Verilog Simulator. Icarus Verilog is a Verilog simulation and synthesis 

tool. It works like a compiler: when you compile source code written in Verilog, 

you can deliver different formats. For synthesis (the process of generating a 

circuit design from a description language), the compiler generates net lists. These, 
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and other compilers, elaborate design descriptions according to IEEE standards. 

You can surf the internet to download the Icarus Verilog simulator. 

Verilator. Verilator is a free Verilog HDL simulator. It compiles 

synthesizable Verilog into an executable format and wraps it into a SystemC 

model. Keep in mind that the resulting circuit after compilation greatly depends 

on how you programmed it, so, the execution speed of the resulting model can 

widely vary. Since Verilator has been used to simulate many very large multi-

million gate designs with thousands of independent modules, it is often chose as 

part of several verification environments. You can also surf the web to find the 

site for Verilator. 

GUI-based design tools. For those not used to code by lines, there are GUI 

tools (Graphic User Interface). Of course, the more easy and graphic the tool is, 

the less control you have on the final representation of your design. A sample of 

a GIU design tool is Fizzim, but there are several more. The advantages of using 

a GUI tool are that they run in Windows or Apple, or anything with Java. 

4.4  Open Cores Library 

There are several internet sites where you can find circuit cores developed by 

experienced designers. One of the most popular sites is www.OpenCores.org, 

where you can find from the simple circuits, as adders and multipliers, to complex 

designs as processors and memories. Even more, you can find complete systems 

of hardware IP cores that you can download and use as open source. You can find 

them in several Hardware description languages, such as VHDL, Verilog, Verilog, 

SystemC, Bluespec, and C/C++. The developing stage or status of each core is 

indicated, so you know how trust worthy or reliable a core is; the stages or 
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versions of these projects can be Planning, Mature, Alpha, Beta and Stable. 

Within the open source community, there are different licenses that apply to each 

product; the licenses you will find are GPL, LGPL, BSD, among others. 

A list of example core and projects is presented here, but it is very dynamic 

so you can check recent cores on the website. The cores are grouped by purpose, 

for instance: Arithmetic, Processors, Memories, Systems-on-a-Chip, and so on. 

a) Arithmetic cores: 

• Anti- Logarithm (square-root), base-2, single-cycle 

• Discrete Cosine Transform core 

• Elliptic Curve Group 

• Floating Point Adder and Multiplier 

• Gaussian Noise Generator 

• Random number generator 

• Maximum/Minimum binary tree finder 

• Signed integer divider 

• Sine and Cosine Table 

• Trigonometric functions (degrees) in double fpu 

b) Processors: 

• ARM-compatible cores 

• R6502 Processor 

• Educational 16-bit MIPS Processor 

• FORTH processor with Java compiler 
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• HIVE- 32 bit, 8 thread, 4 register 

• Leros: A Tiny Microcontroller for FPGAs 

• 8051 compatible CPU 

• MCPU- A minimal CPU 

• Wishbone High Performance Z80 

• ZPU- the world’s smallest 32 bit CPU with GCC toolchain 

c) Memory cores: 

• 8/16/32 bit SDRAM Controller 

• Functional simulation models for commercially available RAMs 

• High Performance Dynamic Memory Controller 

• High Speed SDRAM Controller with Adaptive Bank Management and 

Command Pipeline 

• Parametrized FIFO based on SRL16E 

• Single Port ASRAM 

• Synchronous reset fifo memory 

• Wishbone Flash Interface for Parallel FLASH 

d) Communication controllers: 

• 10, 100, 1000 Mbps Ethernet MAC 

• 8b10b Encoder/Decoder 

• A VHDL CAN Protocol Controller 

• Ethernet MAC 10/100 Mbps 
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• Ethernet Switch on Configurable Logic 

• USB Device Core 

• Wishbone SD Card Controller 

• Space Wire Light 

• Serial Port Interface Flash controller 

e) System-on-Chip:  

• Embedded FPGA Core 

• Arm core 

• RFID Transponder 

• I2C Controller 

• Real-time image processing unit 

• OR1200 SoC 

• Opens ARC-based SoC 

• Soft Multiprocessor on FPGA 

• MP3 Decoder 

• NoC Network on chip 

f) Other cores: 

• 16x2 LCD controller  

• 8254 Timer  

• Alternative Oscilloscope 

• Adjustable Frequency Divider 
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• Keypad scanner 

• DDS Signal generator 

• Date time 

• FM Receiver 

• General purpose IO 

• Sound Encoder 

• PWM controller 

• Multiple Switch Debouncer 

• OpenRisc 1200 Graphic Configuration Tool  

• Programmable Interval Timer 

Licenses. Although the open source code is free software, there are 

differences among the different license agreements that you accept when 

downloading and using it. Here is a brief explanation of several licenses, and 

you should check extensively the kind of license you are agreeing to. According 

to the Open Source Initiative, an Open source license ―shall not restrict any 

party from selling or giving away the software as a component of an aggregate 

software distribution containing programs from several different sources. The 

license shall not require a royalty or other fee for such sale. The program must 

include source code, and must allow distribution in source code as well as 

compiled form. Where some form of a product is not distributed with source 

code, there must be a well-publicized means of obtaining the source code for no 

more than a reasonable reproduction cost preferably, downloading via the 

Internet without charge. The source code must be the preferred form in which a 

programmer would modify the program. Deliberately obfuscated source code is 
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not allowed. Intermediate forms such as the output of a preprocessor or 

translator are not allowed‖. 

LGPL. The GNU Lesser General Public License (LGPL) is a free software 

license published by the Free Software Foundation (FSF) that allows developers 

and companies to use and integrate LGPL software into their own software 

without being required by the terms of a strong license to release the source 

code of their own software-parts. For proprietary software, LGPL-parts are in 

the form of a shared library so that there is a clear separation between the 

proprietary and LGPL parts. The LGPL is primarily used for software libraries. 

GPL. The GNU General Public License is a free license mostly used for 

software and it is intended to guarantee your freedom to share and change all 

versions of a program, to make sure it remains free software for all its users. So, 

you need to check carefully the version you are using, since it can come from a 

developer that has made a lot of changes to the original version. 

BSD. The BSD license is a simple and liberal license for software. The 

restrictions to users are that if they redistribute such software in any form, with 

or without modifying it, they must include the original copyright notice, a list of 

restrictions, and a disclaimer of liability. The restrictions are: one should not 

claim that they wrote the software and should not sue the developer if the 

software does not function as expected. 
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A functional implementation has been developed as a prototype of the 

stimulation system by integrating a user interface, the application software 

running in a processor based board, and a signal conditioning circuitry that 

delivers to the fluidic device signals, patterns and sequences selected by the user. 

The user interface allows the selection of signal and operation parameters, the 

based board system runs the extended version of the application software and 

shows the functionality of the multi-frequency synthesis methodology, and the 

conditioning circuitry allows the system to deliver analog voltages in a range 

that is needed in the majority of AC based electro-kinetics in micro fluidic 

devices. This prototype implementation include all the configurable parameters 

for a flexible setting that meets the functional requirements described in the 

standard extended versions, and is also a portable prototype that can be easily 

moved to different places or labs. 

This chapter details the functionality of the extended version of the 

application software, defines an experiment to be performed with this prototype, 

show simulation results for a specific type of particles being manipulated, 

describe and illustrate the experimental environment and, most important, 

present the potential of this system in referenced research works about 

experiments and devices where this stimulation system could be used, as a 

stand-alone stimulation module or as a block to be integrated at chip level. 

5.1  The Running Application Program 

The extended version of the application program, developed to run on an 

arm9 or Cortex-M3 based development board –the LM3S6965-. Extended 

functionality is added, such as delivering data via an USB port for further 

analysis of monitored or stored data, mixing different waveforms in a 
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superimposed signal for more controlled experimental environments and an 

interactive user interface for configuration and operation. 

Data tables for the three signal wave forms (sine, triangle and saw tooth) are 

displayed at start-up for demonstration purposes of the novel frequency synthesis 

methodology to show the frequency superposition effect. A requirement for lower 

frequencies was fulfilled by adding a new routine for frequencies smaller than 

400 Hz, where a counter creates wait cycles so the time between samples in the 

output port is extended. A cyclic delivering of same or different signal patterns 

are delivered for a specific and individual period of time, is also available in the 

extended version: multiple tests can be done with sequenced stimulation patterns 

where each pattern may have different parameters such as frequency, samples per 

cycle, and exposure time. Additionally, when a particular stimulus pattern is 

found useful, it can be stored and re-used later so the experiment is repeated 

without having to set the operation parameters. 

Table 5.1 presents a routine list and description of the extended version. The 

appendix A2 presents a documented version of the program code. 

Table 5.1  Routine List and Description, Extended Version. 

Routine Description 

Store waveform 

data tables 

Stores 256 8-bit values for each of the three waveforms: Sine, Triangle and Saw tooth. 

See Appendixes A for table content. 

Get operation 

parameters 

Get operations parameters via the user interface. Displays parameter list and gets input 

values. 

Validate input 

values 

Check for frequency multiplicity in operation mode 2, check for 2-multiple number of 

data samples, check for frequency out of range. 

Check frequency 

range 

Separate operation into low and frequencies at 400 Hz. Low frequencies use up to 256 

data samples per waveform cycle; high frequencies use up to 32. 

Calculate Data 

Separation 

Desired output frequency and number of voltage steps determine how many data points 

will be extracted from the original sine table in order to construct desired output signal. 

Two data separation parameters are needed for operation modes 2 and 3. 
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Routine Description 

Calculate base 

time 

According to desired frequency and number of voltage steps, there is a base times that 

indicates the time between data points are sent to output port. 

Create Table-

Mode1 

Extract data from original sine table needed to construct 1 output signal, 1 single 

frequency: each 8-bit data from original sine table is stored as the 8 least significant bits 

of the 32-bit output port. 

Create Table-

Mode2 

Extract data from original sine table needed to construct two output signals, two 

separated frequencies: if two 8-bit output ports can be stored at the same time with 32-bit 

data, two data points from original sine tables must be concatenated before stored in 

buffer memory table. 

Create Table-

Mode3 

Extract data from original sine table needed to construct 1 output signal, two 

superimposed frequencies: data points for different frequencies should be added to 

achieve superimposition. 

Time match 
When in superposition mode, does a time match between data samples for frequencies f1 

and f2, since period and time between samples are different. See appendix A. 

Clock set Set clock for system and parallel port control from board main oscillator. 

Configure port Enable and configure parallel port A as output, as 8-bit set, output driving current. 

Off-line monitor 
When in off-line mode, data in final output table is displayed to monitor frequency 

superposition methodology. 

Output Signal 

Generation, High 

frequencies. 

Continuous, uninterrupted loop, for loading data from buffer memory and storing it on 

output ports. No memory other than buffer is read, no instructions other than those for 

signal generation are executed. 

Output Signal 

Generation, Low 

frequencies. 

Loading data from buffer memory and storing it on output ports uses a counter to create 

wait cycles and extend the time between samples. In this mode of slow output 

frequencies, the restriction of no computation during synthesis is not necessary. 

Generate multiple 

sequences 

When selected on user interface, cyclic delivering of same or different signal patterns is 

delivered for a specific and individual period of time. Multiple tests can be done with 

sequenced stimulation patterns. 

Start/Stop 

external interrupt 

Start/Stop button is enabled as an external interrupt in two execution moments: at startup 

to be ready for accepting configuration and operation parameters, and during Output 

Signal Generation routine to stop signal. 

5.2  Experiment Definition 

A Carbon-DEP fluidic device is used for these experiments. The fluidic 

device has 3-dimensional carbon electrodes above a comb-like planar array of 

electrodes in a chess board arrange. This device was fabricated by pyrolysis of 
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SU-8 structures defined by a two-step photolithography process following 

standard C-MEMS techniques. 

The electrodes are used to apply an electric potential to the micro-channel in 

order to produce a non-uniform electric field distribution that will generate DEP 

traps. The 3-Dimensional carbon structures are 40 µm high with a 12.5 µm 

radius and a center to center separation of 45 µm and 100 µm in the X and Y 

axis, respectively. 

Deionized water with K2HPO4 as buffer solution with a final conductivity of 

21 µS/cm was employed. Conductivity was measured with a multi-parameter 

bench meter, Model HI 255 from Hanna Instruments. 

Fluid sample preparation. Saccharomyces cerevisiae, 24858 yeast cells from 

ATCC - a global nonprofit bio-resource center and research organization that 

provides biological products, technical services and educational programs to 

industries and labs- were growth in Yeast Malt Broth at 30° C for 18 hours until 

late log phase. Cells were then centrifuged and re-suspended with deionized 

water to remove the excess of culture media within the cells to a final 

concentration of 6x107 cells/mL. Cells were labeled with Syto® 9 fluorescent 

(490/520) green stain. For the non-viable yeast cells, a sample of cells from the 

culture media is centrifuged and washed with deionized water, later to be heated 

up to 80° C for 20 minutes. Non-viable cells are then labeled with propidium 

iodide fluorescent (490/635) color red. Carboxylated fluorescent polystyrene 

particles with a diameter of 10.14 and Dragon green color (480/520) were 

employed in this work. Particles were prepared in the buffer solution to a 

concentration of 2x106 spheres/mL. 
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Two mixtures, the first containing viable and non-viable yeast cells for 

experiment 1, and the second containing 10.14 µm polystyrene particles and 

viable yeast cells for experiment 2, were employed to evaluate the performance 

of the signal excitation source. 

The sample mixtures were introduced into the fluidic micro device using a 

micropipette. The micro device was mounted under an inverted epifluorescence 

video microscope for micro fluidics SVM340 from Lab Smith. A personal 

computer was employed to manipulate the communication and operation of the 

microscope. 

5.3  Simulations 

Simulation of crossover frequency spectra for different experimental settings 

was performed using MATLAB. This allowed for the selection of the best 

suspending medium conductivity, as well as for the selection of the most 

adequate AC frequencies to be used on the experiments. Dielectric properties 

for yeast cells were extracted from and from for polystyrene particles. To 

compute the equivalent complex permittivity of yeast, the multi-shell model 

presented in was used. 

Finite element method based simulations were carried out using COMSOL 

Multiphysics in order to obtain predictions of the experimental results. An array 

of 4x5 electrode posts was considered on a plane located at 30 µm above the 

channel floor. At this height the effect of the planar electrodes located at the 

bottom of the channel are negligible. The channel geometry is shown in  

Figure 5.1. Boundary conditions were set to electric insulation at the channel 
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walls, and uniform AC electric potential at the electrode posts. The mesh for 

this geometry consisted of 14,208 elements. 

Two different experiments were planned: separation of live and dead yeast 

cells using an AC signal of Vpeak to peak with a frequency of 100 Hz, and 

separation of live yeast cells and polystyrene beads using an AC signal of          

5 Vpeak to peak with a frequency of 28 kHz. The geometry section from which this 

curves were obtained is represented by the red line plotted on Figure 5.1. 

 

Figure 5.1  Geometry section of the fluidic device. 

Simulations were performed and estimations of the experimental results are 

shown in Figure 5.2 where it can be observed that dead cells will experience a 

positive DEP force, causing the dead cell population to be attracted to the 

electrode posts. On the other side, live cells will experience a negative repulsive 

force. However, since the magnitude of this negative DEP force is low, live 

cells are expected to be found near the posts but not in touch with them. For the 

second experimental setup, live cells will now experience a strong positive DEP 

force, while polystyrene beads are expected to be repelled from the posts. 
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Figure 5.2  Simulation of dielectrophoretic forces. 

5.4  Experimental Environment 

To define reliable experiments the user started by defining test parameters 

from a previous known base used in manual experiments, like the frequency 

value known to be effective for a particular manipulation experiment on a 

specific type of particle. From there, the user can modify parameters such as 

waveform, frequency, exposure time, or sequence of patterns. These parameters 

can be changed one at a time or as a set for each test run. Once a set of 

parameters is found to be effective for a specific manipulation experiment, that 

test can be precisely repeated with no manual intervention. 

This implementation shows a configurable system which delivers single, dual 

and superimposed 30Vpp output signals with sinusoidal, saw-tooth and triangle 

waveforms on frequencies going from 0.01 kHz to 40 kHz. The design is an 

original application specific architecture which implements a programmable and 
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configurable dual-frequency and multi-waveform signal generation system. The 

instrument presented was implemented as a set of components: An application 

specific user interface, a processor based prototyping board, and a signal 

conditioning circuit. The C language user interface program was developed to 

configure the experiment and to control the operation; the processor based 

development board –the LM3S6965 with an ARM Cortex-M3® processor – 

runs the application program that generates the electric stimulation signals; the 

conditioning circuit takes digital data and finally delivers analog signals to a 

fluidic device. 

 

Figure 5.3  Elements of the board based implementation. 

The core of this instrument is the application software that has been designed 

specifically for electrical stimulation purposes and has configuration capabilities 

that allow users to adapt the system to specific tests and applications with no 

modifications to the hardware or the software. This design can be used as an 

autonomous stimulation system or can be integrated into Lab-on-Chip designs. 

Figure 5.3 shows how this stimulation system fits into a particle manipulation 

setting: the stimulation system running on the LM3S6965 board takes operation 
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parameters from the User Interface, delivers sine, triangle, and saw tooth wave 

digital data to the signal conditioning circuitry, which sends analog signals to 

the micro-fluidic device. 

A description of the instrument components is presented: 

User interface. Has been developed to define the experiment environment by 

selecting several operation parameters: select the operation mode between three 

output options (One single frequency, Two separated frequencies, and Two 

superimposed frequencies); set the frequencies (base and superimposed) for the 

experiment; select the number of data samples desired for each frequency; select 

the exposure time for the test, and start operation when ready for the experiment. 

Figure 5.4 shows the options for setting operation parameters in the user interface: 

 

Figure 5.4  User Interface for the board based implementation. 

Development board. The LM3S6965 - an ARM Cortex-M3® processor based 

board, shown in figure 5.5 - runs on a 50 MHz clock, has a 256Kb flash 

memory, 64Kb of SRAM, and up to 42 general purpose output bits grouped in   

8-bit output channels. The LM3S6965 stores and runs the application program, 
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stores processed data needed for the signal generation, and delivers final data to 

output ports. It has a USB port for the user interface and for re-programming the 

board. Parallel 8-bit GPIO ports are used to deliver waveform ś data to the signal 

conditioning circuitry. The whole system operation is done through the user 

interface so no manual operation is regularly needed. An emergency start/reset 

button can be used if an experiment needs to be interrupted before normal 

operation finishes (Figure 5.5 d). 

 

Figure 5.5  The LM3S6965 prototyping board: a) ARM® Cortex-M3 Processor,  

b) GPIO port for output digital data, c) USB port for system programming and 

debugging, and for connecting User interface when in running mode, d) Reset button,  

e) Memory card slot for extra data and program storage. 

Application Software. Designed for this flexible stimulation environment, it 

includes the program code and the data tables for the three waveforms. The 

program contains a frequency synthesis methodology specifically designed for 

this system, so it can deliver single and dual frequency signals for a more 

controlled test environment. The program executes operation according to the 

set of parameters defined by the user and pre-stored data defines the selection of 

available waveforms. Although, program and data can be modified according to 
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new users or new needs. Figure 5.6 shows a screenshot of the software 

development environment, Red code suite ®. 

Signal Conditioning. Consists of a digital to analog converter -DAC902- and 

two AD811 as current-to-voltage converter and voltage amplifiers. Digital data 

coming from the LM3S6965 board represents single or dual frequency 

waveforms and are finally converted into a +/-15V analog signal to meet most 

requirements of current test procedures. The system delivers 2-line analog signals 

to be applied to the electrodes or stimulation spots in the micro fluidic device. 

 

Figure 5.6  The user interface allows programming, running and debugging the 

application. 

This system has automated operation: stimulation parameters are selected 

once, no intervention is needed during execution, and operation can be 

automatically repeated. This is a programmable implementation since modified 
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or new applications can be loaded into it. The advantages of this automated, 

programmable, and intelligent manipulation system are: a) User interface allows 

to configure and to operate the system for new tests and procedures,                   

b) Previously programmed test parameters for a known test sequence can be 

stored and accessed later, c) More reliable data results are obtained due to 

precise reproduction of test parameters, d) Multiple tests can be done and 

repeated by programming test sequences, e) It can run the current application 

with the current waveforms or to load and run a different program, and f) It can 

be integrated to Lab-on-chip implementations or to portable Lab devices. 

For experiment continuity, a relevant set of operation parameters can remain 

loaded in the system for future use: the last set of parameters used for a 

stimulation experiment is stored in flash memory so the system will perform the 

last stimulation pattern the next time the system is used, even if it is turned off. 

5.5  System Potential 

Besides the simulations and experimental results presented, this stimulation 

system has the potential to be used in a variety of particle manipulation systems. 

The flexibility of its operation allows users from different application areas to 

define a specific stimulation pattern by selecting signal parameters such as 

frequency, waveform type, superposition, samples per cycle, time of exposure, 

and sequence. 

To show the potential of this system, possible applications have been 

organized in four types: 
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• Electric stimulation already in use on particular experiments. Specific 

experiments from research work that currently use manual or limited 

electric stimulation show the type of signals used to achieve a particular 

manipulation effect over a specific type of particles; it is shown here how 

this system can substitute their stimulation means and improve their 

research procedures.  

• Integrated electric stimulation that can be used in devices currently at 

proposal or design level. Published particle manipulation systems presented 

as proposed or demonstration designs that integrate electric stimulation and 

expose the need of automated stimulation; it is shown here how this system 

can fulfill those needs by selecting the appropriate set of operation 

parameters. 

• Stimulation presented by theory on ACEK (Alternate Current Electro 

Kinetics). Existing theory about electric stimulation for particle 

manipulation presents the possible applications in a variety of fields by 

using simulations or theoretical demonstrations; it is shown here how this 

system can be used to comply with almost every application area that needs 

electric stimulation.  

• Applications which use electric stimulation, even if it is not directly 

related to fluidic systems. Such potential applications go from impedance 

spectrometry for cell characterization, dielectrophoretic characterization, 

signal generation for DNA hybridization, or electro-rotation based 

systems, to completely different research areas such as implantable 

prosthetics, where new designs of prosthetic devices need to be tested 

with electric stimulus similar to those received from a live nervous system.  
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Tables 5.2, 5.3 and 5.4 show referenced research works that could use this 

stimulation system. For each experiment or device, it can be seen in the tables 

whether the system can be used as it is or if modifications in the program 

application are needed to fit in that particular experimental setting. 

Experiments. Experiments extracted from the reference list expose a specific 

manipulation purpose over a particular type of cells or particles, so a specific 

frequency value or a limited frequency range is used for a particular experiment. 

Table 5.2 presents the electric stimulation used in actual experiments to show 

that the stimulation system presented in this work can be used as the stimulation 

module instead of generic signal generators and manual procedures. Regarding 

the Voltage amplitude all the experiments require values within the range 

delivered by this system. Even if higher voltages were needed they could be 

achieved with additional amplifying stages in the signal conditioning circuitry 

without modifying the SoC or the platform based design. 

Table 5.2  Particle manipulation experiments. 

Reference Experiment Electric stimulation used Purpose 

1992 

Experiment: Dual-frequency 

dielectrophoretic levitation of 

Canola protoplasts 

Sine, f < 1kHz 
Compare Single vs. Dual 

Frequency effect. 

2003 

Separation of bioparticles using 

the travelling wave 

dielectrophoresis with multiple 

frequencies. 

+-6V, 200kHz, 

2 superimposed frequencies 

Separate red cells from 

lymphocytes T in a blood 

sample, simultaneous PDEP 

and NDEP. 

2005 

Study of two-frequency 

dielectrophoresis effects on a 

linear array. 

2 superimposed frequencies: 

10Kz+500 Hz, 10- 20 Vpp. Large 

particles NDEP & small particles 

PDEP. F1<100kHz, f2>300kHz 

Main f+low f broaden 

frequency range for particle 

separation. T from red 

blood cells. 

2008 

Real-time continuous 

dielectrophoretic separation of 

malignant cells. 

7Vrms, 30-50 kHz 
Separate MD231 breast 

cancer cells in blood. 

2008 

Micro fluidic Device for DEP 

Manipulation and Electro-

disruption of Respiratory 

Pathogen Bordetella pertussis. 

Sine, 10V, 1 MHz AC and DC 

sequence patterns. 

Manipulation of respiratory 

pathogens. 
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Devices. As seen from the State of the Art section in chapter 1, published 

research works that involve a manipulation device, even if the work is at proposal 

or design stage, they do not integrate the electric stimulation circuitry in the 

design, or they talk about a limited integration proposal or a partially configurable 

demonstration chip. From those device proposals a set of functionality and 

stimulation parameters were extracted and presented in Table 5.3 to determine if 

the system presented here can apply to those proposed devices. It was found that 

the electric stimulation conformed by the signals and patterns delivered by this 

system are useful in most of the proposed devices. In those cases where V and –V 

are needed for the device an external high frequency inverter can be used to 

obtain –V from the original +V.  

Table 5.3  Particle manipulation Devices. 

Reference Device Electric Stimulation Purpose 

2000 

Micro fabricated multi-

frequency particle impedance 

characterization system 

100kHz-10MHz, Sine signal, 

frequency sweep. 

Resistive and reactive impedance 

measure for characterization of 

particles and cells 

2003 

A CMOS Chip for Individual 

Cell Manipulation and 

Detection. 

2 Sine voltages, phase and 

counter-phase v1=-v2. 

Stop and go stimulation for 

grab & drag. 3.3-9.9Vpp, in 

kHz range. 

Detect and manipulate 

Eukaryotic cells 20-30µm. 

2003 

A SoC bio-analysis platform 

for real-time biological cell 

analysis-on-a-chip. 

Typical DEP stimulation 

within a frequency range 
Multi Bio-analysis. 

2003 

A programmable 

dielectrophoretic fluid 

processor for droplet-based 

chemistry. 

Up to 180Vpp, 5-500kHz, 

varying voltage and 

frequency 

Manipulate contaminants, 

chemical reagents, virus, and 

cells. 

2005 

All CMOS Low Power 

Platform for 

Dielectrophoresis Bio-

Analysis. 

one of four sine signals, 8 

different phases, frequency 

sweep 1kHz-5MHz 

Show effect on poly-styrene 

beads. 

2007 

A High-Voltage SOI CMOS 

Exciter Chip for a 

Programmable Fluidic 

Processor System Current. 

100Vpp, up to 200Hz, sine, 0 

& 180º phase. Varying phase, 

amplitude, and frequency 

Use multiple droplets, set a 

particle route for different 

particles. 
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Reference Device Electric Stimulation Purpose 

2007 

A Programmable Biochip for 

the Applications of Trapping 

and Adaptive Multi-sorting. 

Sine, 8Vpp, 1MHz, V1=-V2, 

Lab-view controlled 

Multi-sorting of proteins and 

DNA 

2009 

A robust electrical micro-

cytometer with 3-dimensional 

hydro-focusing. 

Sine, 4Vrms, 50kHz 

Electrical impedance sensing to 

detect T cells in blood, for HIV 

diagnosis. 

Theory. From the early research works on particle manipulation to recent 

publications about more complex stimulation for highly controlled environments, 

a summary of the AC signals and patterns needed for stimulation are shown in 

Table 5.4 to illustrate that the mathematical proof and simulations also lead to 

signals and frequency ranges be covered by this system. Travelling Wave 

Dielectrophoresis is a specific sequence of Sine signals synchronized to form a 

travelling electric field that produces a drag effect on the particles within a sample. 

Table 5.4  Particle manipulation Based on Background Theory. 

Reference Device Electric Stimulation Purpose 

2003 
AC Electro-kinetics—Colloids 

and Nanoparticles. 

Single frequency DEP, TWD, 

4 phase Sine 

Show mobility effects of AC 

stimulation 

2004 

Dielectrophoresis-based 

programmable fluidic 

processors. 

40V-100V, 1kHz, 2KHZ. 0 

and 180º phase to 

neighboring electrodes. 

Titrating, moving and 

mixing polar and non-polar, 

conductive or not, droplets 

2004 

Sample handling in general-

purpose programmable 

diagnostic instrument. 

4 de-phased sine to repel & 

attract, TWD to concentrate 

particles in a spiral electrode 

array. 

If f>200kHz all viable cells 

can be 

Trapped 

2007 

Interactions of electrical fields 

with fluids: laboratory-on-a-

chip applications. 

2.2Vrms, 100 Hz, 500Hz, 

1kHz, 35Vpp @ 100kHz, 

24Vpp @ 1kHz 

Describes ACEK 

experiments: ACEO, 

ACDEP, & ACET. 

2010 

Controlled micro-particle 

manipulation employing low 

frequency alternating electric 

fields. 

0.2-1.25Hz, 750V 

Show the potential of 

manipulation using AC 

fields. 

Following Table 5.5 allows visualizing a variety of experimental settings. An 

experimental setting is defined by selecting the operation parameters for a 
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specific manipulation purpose. Note that changes in one or several parameters 

define a whole new experiment setting and purpose.  

Parameters that can be changed:  

Operation mode: Single or Dual frequency. Waveform type: Sine, Triangle, 

Saw tooth. Separate or superimposed frequencies. Frequency values for one or 

two signals. Number of data samples per waveform cycle. Waveform selection 

for superimposed frequencies. 

Table 5.5  Samples of Experimental Settings. 

Setting 
Output 

channels 
Operation mode Frequencies Waveform 

1 1 Single 50 Hz Sine 

2 1 Dual Superposition, 10 Hz + 200 Hz sine over sine 

3 2 Dual Separate, 5 Hz, 400 Hz Sine and sine 

4 1 Single 300 kHz Triangle 

5 1 Dual Superposition, 2kHz, 10kHz Saw tooth over saw tooth 

6 1 Single 8 kHz Sine 

7 1 Dual Superposition, 1 kHz + 5 kHz Triangle over sine 

8 2 Dual Separate, 5 kHz, 10 Hz Sine, sine 

9 1 Single 15 kHz Saw tooth 

10 1 Dual Superposition, 1kHz, 7kHz Triangle over saw tooth 

Set an experiment through the user interface. 

Defining a specific experiment consists of selecting the appropriate set of 

operation parameters in the user interface. Parameter values can be known from 

previous experiments or from simulations. At least an idea of the convenient 

frequency and voltage range is needed. Once the fluid sample has been prepared 

and put in the fluidic device, the terminals that will carry the electric stimulation 
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have to be connected to the device. Microscope and camera set have to be ready 

too. 

Here is presented the parameter selection, accessed through the user interface: 

Operation Mode. 1 For Single frequency output, 2 for Dual superimposed 

frequencies, and 3 for Dual separate frequencies. 

Waveform for Signal 1. Choose between sine, triangle, and saw-tooth. 

Frequency for Signal 1, f1. Signal 1 is the low frequency signal for the 

superposition mode. 

Number of samples for Signal 1, n1. The higher the number the less harmonic 

components are found in the output signal and the lower output frequency can 

be achieved. 

Waveform for Signal 2, requested only if operation mode = 2 or 3. 

Frequency for Signal 2, f2. Is the high frequency to be superimposed on the 

low frequency Signal 1. 

Number of samples for Signal 2, n2. The amount of memory space needed for 

the final output table containing sample with both superimposed frequencies 

could increase significantly if f2 >>f1. The amount of needed memory space for 

output buffer table: 

2
size 2

1

f
M n bytes

f

  
   
   

 

It is recommended that n2 <n1 to prevent that. 
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The exposure time for the stimulation, texp. The exposure time is achieved by 

defining the number of waveform cycles to be delivered, N. Since f1 is the base 

frequency in the case of superimposed frequencies, then  

 1 exp
N f t  

If a sequence of a different stimulation signal is needed, a similar set of 

parameters has to be provided. 

If the same test or sequence has to be repeated, the same set of parameters is 

automatically used by the system if re-run. 

A set of experiments is described to show the flexibility of this stimulation 

system. 

A specific manipulation experiment. 

As shown in tables above, some experiments have already defined the 

particular set of parameters needed to manipulate a specific type of particles or 

cells. This set of parameters is introduced once in the user interface and 

execution are repeated over new fluid samples without changing the parameter 

set. Another scenario is that the user has an idea about the parameters to be used 

in an experiment, but not the exact values. In this case user can play with the 

parameters until the appropriate set of parameters is found. 

Once the exact set of parameters is known by achieving the desired 

manipulation effect, the values can be stored and accessed later to precisely 

reproduce the experiment. 

A particle characterization experiment. 
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Particle characterization experiments may need a frequency sweep in x10 

steps to first determine a smaller range to work. A set of sequences can be 

defined, and a special case were fnew= 10*fold can be defined in program to cover 

all the frequency range, going through 0.1 Hz, 1 Hz, 10 Hz, 100Hz, 1kHz, 

10kHz, …up to the maximum output frequency. 

For example, in a sensor measures resistive and reactive impedance of 

circulating particles. Particle impedance is measured at three or more 

frequencies simultaneously, enabling the derivation of multiple particle 

parameters such as blood granulocyte radius, membrane capacitance, and 

cytoplasmic conductivity. 

A frequency sweep experiment. 

Some experiments require observing the mobility effect under different 

frequencies. In those cases the whole frequency range delivered by this system 

can be swept in user defined steps. An initial fi frequency is selected, a 

frequency step fs is defined, and a time period tr for each repetition is introduced. 

This way each following tr a new frequency fi+1=fi+fs is delivered during tr 

seconds. In a feasible procedure that uses DEP phenomenon as a method of 

separation of the abnormal cells from the blood stream is presented. 

Negative and positive DEP (NDEP and PDEP) forces generated by a           

non-uniform electric field are engaged to separate the normal blood cells from the 

malignant ones. By fine tuning the parameters of the electric field different types 

of abnormal cells are isolated. It is noticed that at a frequency of 30 kHz all blood 

cells and the cancer cells experienced a PDEP, and the cells started accumulating 

in the area of low electric field. Increasing the AC frequency to 50 kHz, the 

cancer cells experienced PDEP and gathered over the tip of the electrodes array 
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where the maximum electric filed is present. At the same time the blood cell still 

with from the electric field. To perform a similar procedure for different cell types 

within a blood sample, a frequency sweep experiment can be used. 

A dual frequency experiment. 

If two different particles are present in the same fluid sample, they can be 

separated by applying two frequencies simultaneously. Particles can be different 

in type, size, or of the same type but different because one are alive and the 

others are dead, or because they present a different development stage. In there 

is an analysis for a mixture of two different types of particles: they choose an 

angular frequency, w, such that the real parts of the Clausius Mossotti function 

at U (or Re[G(jw)]) of the two different types of particles have different signs). 

Then an electric field produces time-averaged dielectric forces in such that the 

particles with Re[G(jw)]> 0 get attracted to the maximum points of the field, 

and the particles with Re[G(jw)]< 0 get repelled away from those points. 

In a similar analysis they consider an example where the goal is to separate 

two types of latex balls with a very small difference between both cross-over 

frequencies, so that the electric field of single frequency is not effective. 

A saw-tooth waveform experiment. 

It has been shown in previous table that saw-tooth waveforms are useful in a 

drag-trap effect; during the linear voltage rise the particles are moved to a 

certain point, and once the voltage exceeds certain level they remain trapped. 

An interesting effect can be achieved when a saw-tooth over a sine signal is 

used, because two different types of particles are manipulated, and the more 

distant the two frequencies, the more different the particles. 
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The term Intelligent System is being used in a more extensive and inclusive 

way. It covers systems that perform intelligent functions, understanding by 

intelligent that it seems to think and decide, based on information it has and 

information it takes from the environment. An easy example to understand this 

concept is a Smartphone’s. They are called smart because they read the 

environment and take actions based on what they find: they detect if Wi-Fi 

networks are available, they use the GPS to know where they are, and so on. In 

consequence of those readings it can tell the user what to do or use. The decision 

making process involves hardware and software within the smart device. A robot 

is also smart, in the way its software and hardware allows him to be. The more 

sensors it has, and the more complex its program is, it will be more intelligent and 

can be able to control more output elements and perform more actions. 

Nowadays people are more familiar with intelligent systems and, by now, 

people born in this decade cannot imagine a functioning world without them. 

We all now count and rely on intelligent systems for everyday activities such as 

electronic banking, automated parking, electronic document sharing, and 

permanent communication capabilities, among others. 

More recently, connectivity capabilities are becoming the more important 

feature of an intelligent device or system. Specific functionalities of each device 

can still grow and innovate, but it is more and more important that a device can 

connect with other, similar or different, devices and systems. 

This is how the concept of smart cities, smart grid, and smart cars has been 

defined. A smart system consists now on a set of interconnected devices, either 

they are of the same nature and purpose, or not. 
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The following examples, although its outside is known by everyone, show 

that all systems are the same inside: they have a processor to execute the 

instructions, a memory to store that instructions, sensors to detect what they 

need from the environment, actuators to perform the functions, and 

communication capabilities to connect with others. 

Smart house: The control system includes light sensors, motion sensors, 

proximity sensors, temperature sensors, timers, in order to operate the lighting 

network, the alarm system, the air conditioning system, the access doors, and so 

on. The more elements it has, the smarter it looks. 

Smart building: Same idea than the smart house, and additionally it may 

include collective access control, separated areas air conditioning, access record, 

access reports, energy efficiency programs, personnel data base. You can notice 

that sensor and actuators sound similar than those in smart houses, but 

processing and storage capabilities need to be larger. 

Smart parking: Commercial centers, Corporate buildings and Residential 

complexes use to have access control, assigned placement, and space 

optimization. For this, they need a smart control, like the ones mentioned in 

previous smart systems: sensors, actuators, program, data management and 

storage, user interface. The administration of space, maintenance cost, users and 

rates are now common elements in parking systems. And what if you need to 

know in advance, prior to your arrival to the parking lot, if they have spaces 

available and what is the current rate? The system should be available through a 

web page or an app, so users do not discard this parking from their options by 

not having that information available anytime and anywhere. 
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Smart grid: As the green movement becomes more important and global 

impact on energy resources is a regular element in business decisions, also is 

becoming important the smart grid concept in large cities. The grid that supplies 

energy to the city (cables, stations, transformers, and measuring devices) can be 

aware of the user’s consumption habits and needs. The energy demand of a city, 

and of every city district or area, depends on the season, the time of the day, and 

the day of the week, among other factors. It is useful for the energy provider to 

know the demand patterns so they can manage the energy distribution, 

maintenance tasks, rates, and so. A smart greed consists of a regular energy grid 

plus the needed sensors and measurement devices to know and predict the 

energy patterns and take decisions for energy optimization and use. 

Smart cars: People still use to name the smart system of a car as the ―car 

computer‖. It was a proper name when the concept began, because the first cars 

used to have one system that received signals from simple sensors like rpm 

readers, impact sensors, and proximity detectors. With this signals and a simple 

program, a central computer decided things like activate the airbags when an 

impact occurred, activate the ABS when the regulars breaks were not enough 

for an efficient speed reduction, and to activate a bip signal if the car was too 

close to the next car, the sidewalk, or an object behind. But, as processes 

became more complex, the need for independent controls arose and cars had 

more than one computer. For instance, a state of the art car, these days, has 

more than 60 independent intelligent controls or ―computers‖: one for the fuel 

injection system, one for ABS, one for the security tasks, one to collect and 

store all the info needed for the maintenance procedures (have you noticed that 

today’s mechanics is not about checking under the car to find out what the 

malfunction comes from, but to download the computer information to analyze 

the sensor’s measurements over time, and what the system is concluding the 
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problem is), one for entertainment, and the list of new needs will never stop. 

And of course, all the systems need to know what is going on with the other 

sub-systems, as their decisions depend on the other’s decisions. At this point, 

the need for a local network between subsystems is needed, so all of them 

require communication or interconnection capabilities, and a central system to 

coordinate the operation between them. 

Smart city: What will happen next, after many of the systems living in a city 

have their own intelligence? The obvious next step is to connect them all 

together and see what additional intelligence can result from that. The smart 

grid can know the energy consumption patterns from the smart houses, smart 

buildings and smart parking. The smart cars can take advantage from the traffic 

information collected from the City Traffic System. All the smart systems in the 

city can be accessed using a data center, so any store, service center, weather 

center, manufacturer and user, can access information in real time and take 

smart decisions. 

Smart manufacturing: When a company already has stable in quality control 

schemes and lean manufacturing, decides to move towards smart Manufacturing. 

We are accustomed to using terms like Smartphone, Smart TV and Smart 

Cars; soon it will be Smart House, Intelligent Building, Smart City and finally, 

intelligent planet, meaning that an intelligent system uses its resources to create, 

manage, and use information to help you make decisions and actions wisely. 

Referring to the context of manufacturing, it covers to have information in 

real time, ensuring its flow and access, and maintain integrated and scalable on 

which to base all business decisions. This will fundamentally change the way 

products are invented, manufactured, transported and sold. 
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When a company decides to join the Smart Manufacturing trend, it will 

inevitably find other issues when integrating intelligence: Safety and 

interoperability of data, modeling of production, simulation market, Sustainable 

Production, Integrated processes, Sensor Networks, Knowledge Management, 

Zero emissions and, of course, cloud Computing. These terms are not new, but 

now they must be integrated into a system that includes planning, production, 

operation, and vision of the company. 

Now, if we understood the idea of system intelligence, and we were convinced 

that we must make the transition, we can classify the next steps into 3 phases: 

Integrate into one system all the information from all lines, processes and 

products of the company. It will take time but it is essential. Since IT resources, 

sensors, motors, automatic controls, and software to manage production, but 

each is an efficient island. 

Make models and simulations that allow flexible manufacturing, demand 

production and product customization when markets change rapidly. 

When the previous phases progress, create scenarios for innovation, and 

manage to break the paradigms of today's markets. These breaks are generated 

by innovative technologies in processes and products. This phase will reverse 

the traditional chain where the consumer was forced to buy what it was mass 

produced. 

6.1  The Smart Systems and the Integrated Circuits 

Having said that, a question arises: What’s the link between Smart systems 

and Integrated circuit design? The answer is that the core of an intelligent is, 
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mostly for sure, an integrated circuit. Not a generic or over-the-counter circuit, 

but an Application Specific Integrated Circuit. 

If you were able to open a smart phone, or the car computer, or the robot brain, 

you will find, at the end, an integrated circuit specifically designed for that 

purpose. More often than not, it will be only one integrated circuits that includes 

processor, memory, communication ports, and even sensors and actuators. 

What is important about this book is that the design procedures described here 

are universal and non-dependant of the application or need you want to solve. 

ASICs for commercial products. ASIC stands for Application Specific 

Integrated Circuit, so it means somebody detected an opportunity to develop an 

original circuit to attend a specific need, and then developed a circuit 

specifically for that purpose. Examples of this are: A commercial brand for 

refrigerators decides, for the first time, that it will be useful to have internet 

connection available in its refrigerators, so the customer can connect from any 

place and check what’s in the fridge, or to send a list to the store every weekend 

of what is missing and have it delivered to your home. The circuit designer 

starts from the previous circuit (not from scratch) and adds the needed circuitry 

to complete the monitoring and detection tasks. If successfully designed, it will 

lead to what is called an intelligent system, because it apparently understood 

what happened in your refrigerator, decided that you needed more bananas and 

milk, and ordered them for you. In this example, you design a circuit 

specifically intended for that application. The understanding and decision 

making was made by the carefully designed combination of circuit and program. 

By the way, if you take this same circuit and connect it to your microwave oven 

it will not know what to do or will do something wrong. So, this is an 

Application Specific Integrated Circuit. 



 

Chapter 6  Integrated Circuits for Intelligent Systems 

 

http://www.sciencepublishinggroup.com 127 

It may have sounded casual, but the fact that you should not start a design 

from scratch, but from what has been already designed before, is one of the 

main rules of circuit design: You should never start a new design assuming 

nothing like it has ever been done before. If you start from zero, it will take you 

more time than other designers to get your idea implemented, and by then you 

will be out of the competition for your idea’s market. 

In this time and age where there is a solution for almost everything, you may 

think: what can I design if everything is already done. Nothing more wrong than 

that. The more complex our environment is, the more opportunities for ideas we 

have. 

6.2  ASIC for Customized Applications 

There are design opportunities that may find broader fields of application, 

meaning that you want to design a circuit that has some of the functionality 

defined and limited by the cores it has inside, but other functionalities can be 

defined by the final user. Which is final by design is the hardware, of course, 

but you can load a small operative system or a program application that allows 

the user to program his own application, purpose specific, and can load it in the 

memory Space, you as the designer, left available for that. 

In the same sense, a designer can provide external access to the modules 

inside the integrated circuit, by having the in-chip address bus, available on 

external pins. This will increase the pin out of the IC, the packaging and will 

move the place-and-route, but the benefit of an open system supersedes the 

design difficulties. The sample application presented in this book shows how 

this can be done. It illustrates concepts like: 
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Open architecture: the integrated circuit has the address bus available in the 

external pin out, so other devices using the same bus can be connected to it. As 

long as address assignment stays compatible, the interconnection of other 

devices has no limit through this bus. 

Programmable: a memory space is reserved to download a different 

application program, or additional functions to those already loaded. 

Configurable: Many functions are preloaded in the memory chip, by design, 

but in the user interface of the application some of those functions can be 

disabled, so they do not take execution time. 

6.3  Design and Market Trends 

The integrated circuit market have been revolving around developing faster, 

smaller, and less power consuming components, and it will continue to do so 

unless a completely different technology is developed. 

Each of the 3 variables depends on two factors: the technology and tools 

available at the moment, and the designer technical capabilities and knowledge. 

None of them completely compensates the other, so both, the technology and 

the developer, need to be good to achieve a usable product. 

Faster: As silicon transistor based technologies became smaller, they are also 

faster. That way we went from tenths of nanometers to a single digit figure. As 

for edition time of this book, smaller has always been more expensive to 

fabricate, so older machines working with larger transistor sizes are cheaper but 

no big companies want cheaper and slower circuits. That way, the cheaper 

fabrication options are good for beginners or universities on small budgets. The 
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developer competences come in play when designing the HDL program: a 

designer needs to keep in mind that loops, variable assignment, variable sizes, 

data transfers and so, will finally translate into circuits. And circuits can be 

efficient in their implementation or not. A simple example to understand this 

idea is to think on a simple adder being implemented in a protoboard by 2 

students; each of them can have a different idea on how to do it, then use 

different gates or array of gates, or use multiplexers. At the end, the two circuits 

will be different in appearance, in size, in gate count and, consequently, in 

response time. This illustrates how your programming style impacts your design 

size and speed. Besides, your programming language is also a factor: designers 

who prefer to program in C see this idea clearly: when a C program is 

transferred to HDL the sizes are completely different meaning there is no 

optimization possible when you program in a high level language that does not 

allow you to see how your program will look when in the final language. 

Smaller: As mentioned in the paragraph above, silicon based technologies 

became smaller over the years. There is a size limit as connections and 

transistors need to transport electrons, and electrons have dimensions. Under 

this idea, the smallest a wire or transistor can be, is related to the electron size, 

so it can freely transit through it without reducing its speed or overheating the 

wire. About the designer skills, core size and placement are the main issues in 

circuit size. Core size comes from the synthesis process, where HDL design is 

translated into circuits, and the programming style impacts the resulting circuit. 

Once each core is size optimized, the pin placement determines where each core 

is going to be placed within the integrated circuit; space between cores is 

needed for interconnections, so you want to be safe and leave more space than 

needed, but external pin-out may demand that cores be placed differently than 

interconnections suggest. There is no single solution for a good route and 
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placement, which is one of the more careful design processes, other than the 

cores design. 

Less power: Power consumption by an integrated circuit is separated in two 

types: active and passive consumption. Passive is the power it takes to keep the 

circuit ON even if it is not running the application or any part of the program; 

this state could be named as Stand-by. Active consumption is when the circuit is 

operating or running. Of course active consumption is larger than passive, but 

active is not a fixed or constant figure: Not all parts of the hardware and 

software architecture are being used in every function of the system, so the 

power consumption rate depends on the function currently executed or 

performed by the circuit. In a simple integrated circuit, as a 4-NAND gate 

circuit, it is easy to estimate the amount of power being consumed if one, or two, 

or four gates are ON. For an integrated circuit that has a running processor 

executing a complex application program, a power simulation is needed to 

determine the low and high consumption peaks. 

Modularity is also a trend, meaning that a complete system is built over 

interchangeable blocks that can define capabilities and functionality using a 

common platform. Modular systems are upgradeable by definition, as the user can 

change the processor, the memory or storage capabilities, the communication 

components, and so on. 

Modularity in hardware, for circuit designers, is a constant in any design, as no 

one starts a new design from scratch, but from the previous product or from 

something similar. Design teams work by developing independent and coherent 

blocks that will finally complete the hardware architecture. But for the final user 

of a product, like a cell phone, a computer or a tablet, the product is a closed 
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hardware architecture where the user chooses the architecture when buying a 

product, and can do nothing or just a little to add or upgrade circuits or blocks in it. 

Modularity in software has been here for a long time, as it is the concept 

behind Apps: the main operative system is the foundation, and the apps are the 

added blocks to complete a different software system based on the preferences 

of each user. 

Figures 6.1 to 6.4 show examples of applications for embedded and intelligent 

systems, in every day uses. 

 

Figure 6.1  Example of embedded systems in automotive. 

 

Figure 6.2  Example of embedded systems in aeronautics. 
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Figure 6.3  Example of embedded systems in safety monitoring. 

 

Figure 6.4  Example of embedded systems in home appliances. 
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Glossary 

ASIC: An integrated circuit designed for one particular use, such as 

substituting many small integrated circuits with a larger but specific one. 

Address bus: A unidirectional set of signals used by a processor to point to 

memory locations in which it interested, in a certain device or circuit. 

Analog: A continuous value that most closely resembles the real world and 

can be as precise as the measuring technique allows. 

Analog circuit: A collection of components used to process or generate 

analog signals. 

Bit: A zero or one value or representation in the binary language of computers. 

Byte: a package of 8 bits. 

Clock tree: This refers to the way in which a clock signal is routed 

throughout a chip. This structure is used to ensure that all of the flip flops see 

the clock signal as close together as possible. 

Custom circuit: An Integrated circuit designed and manufactured for a 

particular customer.  

Data Bus: A bidirectional set of signals used by a computer to convey 

information from a memory location to the central processing unit and vice versa. 

Design flow: Design flows are the explicit and graphic combination of 

electronic design automation tools and representation to accomplish the design 

of an integrated circuit. 
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Die: The small piece of the wafer on which an individual semiconductor 

device has been formed. 

Digital Circuit: A collection of logic gates used to process or generate digital 

signals. 

Diode: A two terminal device that conducts electricity in only one direction. 

EDA: Electronic design automation is a category of software tools for 

designing electronic system such as printed circuit boards and integrated circuits.  

Hardware: Generally understood to refer to any of the physical portions 

constituting an electronic system, circuit boards, power supplies and monitors. 

Hertz: Unit of frequency. One hertz equals one cycle or one oscillation per 

second. 

IC layout: Also known as mask design, it is the representation of an IC in 

terms of planar geometric, so components can be visualized and placed. 

Integrated circuit: A complete electronic circuits composed of interconnected 

diodes and transistors on a single semiconductor substrate. 

IP Core: Reusable unit of cell or chip layout. IP cores are used as building 

blocks within chip designs. 

Micros: A micrometer, or one-millionth of a meter. 

RAM: A data storage device from which data can be read out and into, which 

new data can be written on. 
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Semiconductor: A material (silicon or germanium) that has four electrons in 

its outer ring and is a poor conductor of electricity.  

Silicon: The basic material used to make the majority of semiconductor wafer. 

SRAM: A type of RAM that has self contained memory circuitry. Memories 

are categorized by speed and by storage capacity. 

Transistor: A three terminal semiconductor device used mainly to amplify. 

Via: A hole filled or lined with a conducting material, which is used to link 

two or more conducting layers in a substrate. 

Wafer: A thin disk, from 3 to 8 inches in diameter from silicon or other 

semiconductor material. The same or different integrated circuits can be printed 

in one wafer. 
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Appendixes 

This section has been constructed for easy access to the most relevant 

information about the developed work. Here is found the application program 

for the standard and extended versions, an illustration of the signal 

superposition methodology, the content of the base, temporary, and output data 

tables, a summary of the user interface, a compact description of the SoC design 

flow, and the final SoC parameters. 

 A.1  Application Program: Standard Version 

The standard version has been developed for the SoC design. It can be stored 

in in-chip ROM or uploaded to chip RAM at boot time. 

/* Name: boardv2.c 

Author: Martha Lopez 

Version: Board_Extended_v2, 256 data sine samples, buffer table OK, all 

frequencies, three operation modes 

Copyright: (C) Copyright 

Description: Board version, standard functionality, sine, saw-tooth, triangle */ 

// include files 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

//definitions and declarations 
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#define Pi 3.14159265358979323846264338327 

static unsigned int sinedatint[256] = 

{ 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 

172, 175, 178, 181, 184, 186, 189, 192, 194, 197, 200, 202, 205, 207, 209, 212, 

214, 216, 218, 221, 223, 225, 227, 229, 230, 232, 234, 235, 237, 239, 240, 241, 

243, 244, 245, 246, 247, 248, 249, 250, 250, 251, 252, 252, 253, 253, 253, 253, 

253, 254, 253, 253, 253, 253, 253, 252, 252, 251, 250, 250, 249, 248, 247, 246, 

245, 244, 243, 241, 240, 239, 237, 235, 234, 232, 230, 229, 227, 225, 223, 221, 

218, 216, 214, 212, 209, 207, 205, 202, 200, 197, 194, 192, 189, 186, 184, 181, 

178, 175, 172, 169, 166, 163, 160, 157, 154, 151, 148, 145, 142, 139, 136, 133, 

130, 127, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78, 

75, 72, 69, 67, 64, 61, 59, 56, 53, 51, 48, 46, 44, 41, 39, 37, 35, 32, 30, 28, 26, 

24, 23, 21, 19, 18, 16, 14, 13, 12, 10, 9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 23, 24, 

26, 28, 30, 32, 35, 37, 39, 41, 44, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 

75,78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123 }; 

static unsigned int toothsawdat[256] = 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 

106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 

138, 139, 140, 142, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 

154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 

170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 

186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 

202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 

218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 
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234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 

250, 252, 252, 253, 254, 255 }; 

static unsigned int triangdat[256] = 

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 

46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 

88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 

122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 

154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 

186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 

218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 

250, 252, 254, 255, 254, 252, 250, 248, 246, 244, 242, 240, 238, 236, 234, 232, 

230, 228, 226, 224, 222, 220, 218, 216, 214, 212, 210, 208, 206, 204, 202, 200, 

198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 174, 172, 170, 168, 

166, 164, 162, 160, 158, 156, 154, 152, 150, 148, 146, 144, 142, 140, 138, 136, 

134, 132, 130, 128, 126, 124, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104, 

102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64, 62, 

60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 

18, 16, 14, 12, 10, 8, 6, 4, 2 }; 

unsigned int timeindex1int[256], timeindex2int[256], timeindexbuffint [256]; 

unsigned int TempTable1int[256], TempTable2int[256]; // Temporary tables 

//modes 2 & 3, scale 0 to 255 

unsigned int BuffTable[256]; // Output table, data to port 

double trunc(double arg); 

float tbs, tbs1, tbs2; // time between samples, signal 1 and 2 

int dat_samples_buff1, dat_samples_temp1, dat_samples_temp2; //number of 

//samples in output table 

int opmode; //operation mode: 1 single signlal, 2 superimposed, 3 separate 

//signals 
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int signaltype; //signal type: 1 sine, 2 saw-tooth, 3 triangle 

float freq1, freq2; //selected frequency for outputs 1 and 2 

int N, n1, n2; //samples per waveform cycle, signal 1 and 2 

void GetOperParam() 

{ 

printf ("Operation mode: 1, 2 or 3:\n "); 

scanf ("%d", &opmode); 

//printf ("Selected Operation mode = %d\n", opmode); 

printf ("Signal type, 1 sine, 2 tooth, 3 triang:\n "); 

scanf ("%d", &signaltype); 

//printf ("Selected signal type = %d\n", signaltype); 

printf ("Output single/low frequency in KiloHertz:\n "); 

scanf ("%f", &freq1); 

printf ("Samples per cycle: \n"); 

scanf ("%d", &n1); 

if (n1<9) n1=8; 

if (n1>8 & n1< 17) n1=16; 

if (n1>16 & n1< 33) n1=32; 

if (n1>32 & n1< 65) n1=64; 

if (n1>64 & n1< 129) n1=128; 
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if (n1>128) n1=256; 

printf(" %d\n", n1); 

if (opmode>1) 

{ 

printf ("Output high frequency2 in KiloHertz:\n "); 

scanf ("%f", &freq2); 

printf ("Samples per cycle 2: \n"); 

scanf ("%d", &n2); 

if (n2<9) n2=8; 

if (n2>8 & n2< 17) n2=16; 

if (n2>16 & n2< 33) n2=32; 

if (n2>32 & n2< 65) n2=64; 

if (n2>64 & n2< 129) n2=128; 

if (n2>128) n2=256; 

printf(" %d\n", n2); 

printf ("Leaving function GetOperParam\n"); 

} 

} 

void SineDisplay(int N) 

{ 
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unsigned int iter; 

printf ("Entering function SineDisplay ORIGINAL SINE TABLE \n"); 

for (iter = 0; iter < N; iter++) 

{ 

printf("[%d] ", iter); 

printf(" %d\n", sinedatint[iter]); 

} 

} 

void BuffTableGen(int N, int n) 

{ 

unsigned int dsepi; 

double dsepd; 

unsigned int iter; 

unsigned int i; 

unsigned int j; 

printf ("Entering function BuffTableGen mode 1\n"); 

i=0; 

dsepd=N/n; 

dsepi=dsepd; 

j=dsepi; 



 

Appendixes 

 

http://www.sciencepublishinggroup.com 145 

printf("data separation int, mode1 = %d\n ", dsepi); 

for (iter = 0; iter < N; iter=iter+dsepi) 

{ 

/*printf("Data number = %d\n ", iter);*/ 

if (signaltype == 1) BuffTable[i]=sinedatint[iter]; 

if (signaltype == 2) BuffTable[i]=toothsawdat[iter]; 

if (signaltype == 3) BuffTable[i]=triangdat[iter]; 

/*printf("Original data = %.6ef\n ", sinedat[iter]);*/ 

printf("%d\n ", BuffTable[i]); 

dat_samples_buff1=i; 

i=i+1; 

} 

printf("Amount of data samples in buffer table = %d\n ", dat_samples_buff1); 

printf ("Leaving function BuffTableGen mode 1\n"); 

} 

void TempTable1Calc(int N, int n1)//prepare temp table signal 1, modes 2 

& 3 

{ 

unsigned int dsepi; 

double dsepd; 

unsigned int iter; 
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unsigned int i; 

float t; 

printf ("Entering function TempTable1Calc, modes 2 & 3\n"); 

i=0; 

dsepd=N/n1; 

dsepi=dsepd; 

if ((dsepd-dsepi)>0.495) 

{dsepi++; //if separation is 12.5 round up to 13 

printf ("Table 1 separation %d \n", dsepi); 

} 

//printf("data separation in TEMPORARY TABLE 1 = %d\n ", dsepi); 

printf ("it time out data\n"); 

for (iter = 0; iter < N; iter=iter+dsepi) 

{ 

t=tbs1*i; 

printf("[%d] >", iter); 

printf("[%d] ", i); 

//printf("%.3ef ", t); 

if (signaltype==1) TempTable1int[i]=sinedatint[iter]; 

if (signaltype==2) TempTable1int[i]=toothsawdat[iter]; 
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if (signaltype==3) TempTable1int[i]=triangdat[iter]; 

timeindex1int[i]=100000*t; 

printf("t=%d ", timeindex1int[i]); 

printf("%d ", TempTable1int[i]); 

printf("%x\n ", TempTable1int[i]); 

dat_samples_temp1=i; 

i=i+1; 

} 

//printf("Data samples in temporary table1 = %d\n ", 

// ( at_samples_temp1+1)); 

//printf ("Leaving function TempTable1Calc, modes 2 & 3\n"); 

} 

void TempTable2Calc(int N, int n2)//prepare temp table signal 2, modes 

2&3 

{ 

unsigned int dsepi; 

double dsepd; 

unsigned int iter; 

unsigned int i; 

float t; 

printf ("Entering function TempTable2Calc, modes 2 & 3\n"); 
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i=0; 

dsepd=N/n2; 

printf(" %.2ef ", dsepd); 

dsepi=dsepd; 

if ((dsepd-dsepi)>0.495) 

{dsepi++; 

printf ("Table 2 separation %d \n", dsepi); 

} 

//printf("data separation in TEMPORARY TABLE 2 = %d\n ", dsepi); 

printf ("it time out data\n"); 

for (iter = 0; iter < N; iter=iter+dsepi) 

{ 

t=tbs2*i; 

printf("[%d] >", iter); 

printf("[%d] ", i); 

//printf("%.3ef ", t); 

if (signaltype==1) TempTable2int[i]=sinedatint[iter]; 

if (signaltype==2) TempTable2int[i]=toothsawdat[iter]; 

if (signaltype==3) TempTable2int[i]=triangdat[iter]; 

timeindex2int[i]=100000*t; 
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printf("t=%d ", timeindex2int[i]); 

printf("%d ", TempTable2int[i]); 

printf("%x\n ", TempTable2int[i]); 

dat_samples_temp2=i; 

i=i+1; 

} 

} 

void BuffTableSuperposition()////prepare output table, mode 2 

{ 

unsigned int i, j, k, l, m, dato1, dato2; 

float t, tbsmin, tmax; 

unsigned int tint, auxt1, auxt2; 

printf ("Entering function BuffTableSuperposition, mode 2\n"); 

if (tbs1<tbs2) 

tbsmin=tbs1; 

else 

tbsmin=tbs2; 

if (freq1<freq2) 

tmax=1/freq1; 

else 



 

Appendixes 

 

150 http://www.sciencepublishinggroup.com 

tmax=1/freq2; 

t=0; i=0; j=0; k=0; 

dato1=TempTable1int[i]; 

dato2=TempTable2int[i]; 

BuffTable[k]=dato1+dato2; 

printf("%d ", k); 

printf(" %.2ef ", t); 

printf(" %x ", dato2); 

printf("+ %x ", dato1); 

printf("= %d ", BuffTable[k]); 

printf("= %x\n ", BuffTable[k]); 

do{ 

t=t+tbsmin; 

tint=t*100000+1; 

auxt1=timeindex1int[i+1]; 

auxt2=timeindex2int[j+1]; 

m=0; 

if (tint<auxt1) 

l=0; 

else{ 
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m=1; 

i=i+1; 

//printf("new data table111, index %d \n", i); 

dato1=TempTable1int[i]; 

} 

//printf("m value after checking table1 %d \n", m); 

if (tint<auxt2) 

l=0; 

else{ 

m=2; 

j=j+1; 

if (j==n2) j=0; // return to begin of temp table for low frequency 

dato2=TempTable2int[j]; 

} 

if(m>0) 

{ 

k++; 

if (opmode==2) BuffTable[k]=(dato1+dato2)/2; 

if (opmode==3) BuffTable[k]=dato1+dato2*256; 

timeindexbuffint[k]=tint; 
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printf("[%d] ", k); 

printf("t= %d ", tint); 

printf(" %x ", dato2); 

printf("+ %x ", dato1); 

printf("= %d ", BuffTable[k]); 

printf("= %x\n ", BuffTable[k]); 

} 

} 

while (t<tmax); 

dat_samples_buff1=k; 

printf("Amount of data samples in BUFFER TABLE = %d\n", k); 

} 

void tbsCalc(float freq, float n)//calculate time for requested frequency // 

and number of samples 

{ 

printf ("Entering function tbsCalc\n"); 

tbs=1/(freq*n); 

} 

void WriteToOut()//load data from output table, write to output port 

{ 

unsigned int i; 
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unsigned int j; 

unsigned int k; 

float t; 

printf ("Entering function WriteToOut\n"); 

printf("Time running between samples buffer1 = %.2ef\n", tbs1); 

printf ("it time out data\n"); 

for (i = 0; i < dat_samples_buff1-1; i=i+1) 

{ 

for (j = 0; j < tbs1*1e+5; j=j+1)// 1e+5 proportional to time // between 

samples 

k=k+1; 

t=tbs1*i; 

printf("[%d] ", i); 

printf(" %d ", timeindexbuffint[i]); 

printf(" %x\n ", BuffTable[i]); 

} 

printf ("Leaving function WriteToOut\n"); 

} 

int main(void) 

{ 

N=256; 
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GetOperParam(); //Get operation parameters 

//SineDisplay(N); //Display data samples for sine waveform 

if (opmode==1)// operation mode = 1? 

{ 

tbsCalc(freq1, n1); //calculate separation between samples 

tbs1=tbs; 

BuffTableGen(N, n1); //generate buffer table extracting samples 

} 

if (opmode>1) 

{// operation mode= 2 or 3? 

tbsCalc(freq1, n1); //calculate separation between samples, signal 1 

tbs1=tbs; 

TempTable1Calc(N, n1); //generate temp table for signal 1 

tbsCalc(freq2, n2); //calculate separation between samples, signal 2 

tbs2=tbs; 

TempTable2Calc(N, n2); // generate temp table for signal 2 

BuffTableSuperposition(); // generate buffer table modes 2 & 3 

} 

WriteToOut(); //write to output port 

return 0 ; 



 

Appendixes 

 

http://www.sciencepublishinggroup.com 155 

} 

A.2  Application Program: Extended Version 

The extended version of the application program has been developed for the 

board based prototype implementation. It has added functionality compared to 

the SoC based design. Additional functions were defined and implemented 

according to experimental needs and developing research work in the particle 

manipulation area. 

// Uses Luminary Driverlib for parallel port use 

// Version date: Feb the 3rd, 2011 

// Details: separates frequency ranges in low (<400 Hz) and high (>400Hz) 

// Delivers superimposed frequencies in any mix of available waveforms 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include "hw_memmap.h" 

#include "hw_types.h" 

#include "sysctl.h" 

#include "hw_sysctl.h" 

#include "gpio.h" 

#include "hw_gpio.h" 
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//#define PORT_DATA(GPIO_PIN_0 |GPIO_PIN_1 | GPIO_PIN_2 | 

GPIO_PIN_3 | //GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7) 

#ifdef DEBUG 

void 

__error__(char *pcFilename, unsigned long ulLine) 

{ 

} 

#endif 

#define Pi 3.14159265358979323846264338327 

static unsigned int sinedatint[256] = 

{ 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 

172, 175, 178, 181, 184, 186, 189, 192, 194, 197, 200, 202, 205, 207, 209, 212, 

214, 216, 218, 221, 223, 225, 227, 229, 230, 232, 234, 235, 237, 239, 240, 241, 

243, 244, 245, 246, 247, 248, 249, 250, 250, 251, 252, 252, 253, 253, 253, 253, 

253, 254, 253, 253, 253, 253, 253, 252, 252, 251, 250, 250, 249, 248, 247, 246, 

245, 244, 243, 241, 240, 239, 237, 235, 234, 232, 230, 229, 227, 225, 223, 221, 

218, 216, 214, 212, 209, 207, 205, 202, 200, 197, 194, 192, 189, 186, 184, 181, 

178, 175, 172, 169, 166, 163, 160, 157, 154, 151, 148, 145, 142, 139, 136, 133, 

130, 127, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78, 

75, 72, 69, 67, 64, 61, 59, 56, 53, 51, 48, 46, 44, 41, 39, 37, 35, 32, 30, 28, 26, 

24, 23, 21, 19, 18, 16, 14, 13, 12, 10, 9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 23, 24, 

26, 28, 30, 32, 35, 37, 39, 41, 44, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 

75,78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123 }; 

static unsigned int toothsawdat[256] = 
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{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 

106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 

138, 139, 140, 142, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 

154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 

170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 

186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 

202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 

218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 

234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 

250, 252, 252, 253, 254, 255 }; 

static unsigned int triangdat[256] = 

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 

46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 

88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 

122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 

154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 

186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 

218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 

250, 252, 254, 255, 254, 252, 250, 248, 246, 244, 242, 240, 238, 236, 234, 232, 

230, 228, 226, 224, 222, 220, 218, 216, 214, 212, 210, 208, 206, 204, 202, 200, 

198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 174, 172, 170, 168, 

166, 164, 162, 160, 158, 156, 154, 152, 150, 148, 146, 144, 142, 140, 138, 136, 

134, 132, 130, 128, 126, 124, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104, 

102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64, 62, 

60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 

18, 16, 14, 12, 10, 8, 6, 4, 2 }; 

unsigned int timeindex1int[256], timeindex2int[256], timeindexbuffint[256]; 
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unsigned int TempTable1int[256], TempTable2int[256]; // Temporary tables, 

//modes 2 & 3, scale 0 to 255 

unsigned int BuffTable[4096]; // output table, all modes 

double trunc(double arg); 

float tbs, tbs1, tbs2; // time between samples, para senal 1 y 2 

int dat_samples_buff1, dat_samples_temp1, dat_samples_temp2; //data 

samples 

int opmode; //operation modes: 1 single signal, 2 superposition, 3 separate 

//signals 

int signaltype, signaltype2; //signal type: 1 sine, 2 saw-tooth, 3 triangle 

float freq1, freq2; //frecuency for output signals 1 & 2 

int N, n1, n2; //samples per waveform cycle 

void GetOperParam() 

{ 

//printf ("Operation mode: 1, 2 or 3:\n "); 

// scanf ("%d", &opmode); 

opmode=2; 

//printf ("Selected Operation mode = %d\n", opmode); 

//printf ("Signal type, 1 sine, 2 tooth, 3 triang:\n "); 

//scanf ("%d", &signaltype); 

signaltype2=2; 

signaltype=2; 
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//printf ("Selected signal type = %d\n", signaltype); 

//printf ("Output single/low frequency in KiloHertz:\n "); 

//scanf ("%f", &freq1); 

freq1=500; 

//printf ("Samples per cycle: \n"); 

//scanf ("%d", &n1); 

//if (freq1>399) { 

//n1=240000/freq1; //write to port, high frequencies 

//n2=16; 

//} 

//if (freq1<400) { 

//n1=64; 

//n2=64; //write to port, low frequencies 

//} 

n1=64; 

if (n1<9) n1=16; 

if ((n1>8) & (n1< 17)) n1=16; 

if ((n1>16) & (n1< 33)) n1=32; 

if ((n1>32) & (n1< 65)) n1=64; 

if ((n1>64) & (n1< 129)) n1=128; 
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if (n1>128) n1=256; 

//printf(" %d\n", n1); 

if (opmode>1) 

{ 

//printf ("Output high frequency2 in KiloHertz:\n "); 

//scanf ("%f", &freq2); 

freq2=5000; 

//printf ("Samples per cycle 2: \n"); 

//scanf ("%d", &n2); 

n2=64; 

if (n2<9) n2=8; 

if ((n2>8) & (n2< 17)) n2=16; 

if ((n2>16) & (n2< 33)) n2=32; 

if ((n2>32) & (n2< 65)) n2=64; 

if ((n2>64) & (n2< 129)) n2=128; 

if (n2>128) n2=256; 

//printf(" %d\n", n2); 

//printf ("Leaving function GetOperParam\n"); 

} 

} 
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void SineDisplay(int N) 

{ 

unsigned int iter; 

// printf ("Entering function SineDisplay ORIGINAL SINE TABLE\n"); 

for (iter = 0; iter < N; iter++) 

{ 

//printf("[%d] ", iter); 

//printf(" %d\n", sinedatint[iter]); 

} 

} 

void BuffTableGen(int N, int n) 

{ 

unsigned int dsepi; 

double dsepd; 

unsigned int iter; 

unsigned int i; 

unsigned int j; 

//printf ("Entering function BuffTableGen mode 1\n"); 

i=0; 

dsepd=N/n; 
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dsepi=dsepd; 

j=dsepi; 

// printf("data separation int, modo1 = %d\n ", dsepi); 

for (iter = 0; iter < N; iter=iter+dsepi) 

{ 

// /*printf("Data number = %d\n ", iter);*/ 

if (signaltype == 1) BuffTable[i]=sinedatint[iter]; 

if (signaltype == 2) BuffTable[i]=toothsawdat[iter]; 

if (signaltype == 3) BuffTable[i]=triangdat[iter]; 

// /*printf("Dato original = %.6ef\n ", sinedat[iter]);*/ 

// printf("%d\n ", BuffTable[i]); 

dat_samples_buff1=i; 

i=i+1; 

} 

// printf("Amount of data samples in buffer table = %d\n ", 

//dat_samples_buff1); 

//printf ("Leaving function BuffTableGen, mode 1\n"); 

} 

void TempTable1Calc(int N, int n1)//prepare temp table, signal 1, modes 

2&3 

{ 
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unsigned int dsepi; 

double dsepd; 

unsigned int iter; 

unsigned int i; 

float t; 

// printf ("Entering function TempTable1Calc, modes 2 & 3\n"); 

i=0; 

dsepd=N/n1; 

dsepi=dsepd; 

if ((dsepd-dsepi)>0.495) 

{dsepi++; //if separation es >. 495 round up to next integer 

// printf ("separation table 1 %d \n", dsepi); 

} 

//printf("data separation in TEMPORARY TABLE 1 = %d\n ", dsepi); 

//printf ("it time out data\n"); 

for (iter = 0; iter < N+1; iter=iter+dsepi) 

{ 

t=tbs1*i; 

// printf("[%d] >", iter); 

//printf("[%d] ", i); 
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//printf("%.3ef ", t); 

if (signaltype==1) TempTable1int[i]=sinedatint[iter]; 

if (signaltype==2) TempTable1int[i]=toothsawdat[iter]; 

if (signaltype==3) TempTable1int[i]=triangdat[iter]; 

timeindex1int[i]=100000*t; 

//printf("t=%d ", timeindex1int[i]); 

//printf("%d ", TempTable1int[i]); 

//printf("%x\n ", TempTable1int[i]); 

dat_samples_temp1=i; 

i=i+1; 

} 

//printf("Data samples in temporary table1 = %d\n ", 

(dat_samples_temp1+1)); 

//printf ("Leaving function TempTable1Calc, modes 2 & 3\n"); 

} 

void TempTable2Calc(int N, int n2)//prepare temp table signal 2, modes 

2&3 

{ 

unsigned int dsepi; 

double dsepd; 

unsigned int iter; 
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unsigned int i; 

float t; 

//printf ("Entering function TempTable2Calc, modes 2 & 3\n"); 

i=0; 

dsepd=N/n2; 

//printf(" %.2ef ", dsepd); 

dsepi=dsepd; 

if ((dsepd-dsepi)>0.495) 

{dsepi++; 

// printf ("separation table 2 %d \n", dsepi); 

} 

//printf("data separation in TEMPORARY TABLE 2 = %d\n ", dsepi); 

//printf ("it time out data\n"); 

for (iter = 0; iter < N; iter=iter+dsepi) 

{ 

t=tbs2*i; 

// printf("[%d] >", iter); 

//printf("[%d] ", i); 

//printf("%.3ef ", t); 

if (signaltype2==1) TempTable2int[i]=sinedatint[iter]; 
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if (signaltype2==2) TempTable2int[i]=toothsawdat[iter]; 

if (signaltype2==3) TempTable2int[i]=triangdat[iter]; 

timeindex2int[i]=100000*t; 

//printf("t=%d ", timeindex2int[i]); 

//printf("%d ", TempTable2int[i]); 

//printf("%x\n ", TempTable2int[i]); 

dat_samples_temp2=i; 

i=i+1; 

} 

} 

void BuffTableSuperposition()////prepare output table mode 2 

{ 

unsigned int i, j, k, l, m, dato1, dato2; 

float t, tbsmin, tmax; 

unsigned int tint, auxt1, auxt2; 

//printf ("Entering function BuffTableSuperposition, mode 2\n"); 

if (tbs1<tbs2) 

tbsmin=tbs1; 

else 

tbsmin=tbs2; 
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if (freq1<freq2) 

tmax=1/freq1; 

else 

tmax=1/freq2; 

t=0; i=0; j=0; k=0; 

dato1=TempTable1int[i]; 

dato2=TempTable2int[i]; 

BuffTable[k]=(dato1+dato2)/2; 

//printf("%d ", k); 

//printf(" %.2ef ", t); 

//printf(" %x ", data2); 

//printf("+ %x ", data1); 

//printf("= %d ", BuffTable[k]); 

//printf("= %x\n ", BuffTable[k]); 

do{ 

t=t+tbsmin; 

tint=t*100000+1; 

auxt1=timeindex1int[i+1]; 

auxt2=timeindex2int[j+1]; 

m=0; 
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if (tint<auxt1) 

l=0; 

else{ 

m=1; 

i=i+1; 

//printf("new data table111, index %d \n", i); 

dato1=TempTable1int[i]; 

} 

//printf("m value after checking table1 %d \n", m); 

if (tint<auxt2) 

l=0; 

else{ 

m=2; 

j=j+1; 

if (j==n2) j=0; //returns to beginning of temp table, low frequency 

dato2=TempTable2int[j]; 

} 

if(m>0) 

{ 

k++; 
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if (opmode==2) BuffTable[k]=(dato1+dato2)/2; 

if (opmode==3) BuffTable[k]=dato1+dato2*256; 

timeindexbuffint[k]=tint; 

// printf("[%d] ", k); 

// printf("t= %d ", tint); 

// printf(" %x ", dato2); 

//printf("+ %x ", dato1); 

//printf("= %d ", BuffTable[k]); 

//printf("= %x\n ", BuffTable[k]); 

} 

} 

while (t<tmax); 

dat_samples_buff1=k; 

//printf("Amount of data samples in BUFFER TABLE = %d\n", k); 

} 

void tbsCalc(float freq, float n)//calculates time between samples 

{ 

// printf ("Entering function tbsCalc\n"); 

tbs=1/(freq*n); 

} 
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void WriteToOutLow()//load data from buffer table, write to output port 

{ 

unsigned int i; 

unsigned int j; 

unsigned int k; 

//float t; 

// printf ("Entering function WriteToOut\n"); 

// printf("Time running between samples buffer1 = %.2ef\n", tbs1); 

//printf ("it time out data\n"); 

// delayed cycle for slow signal generation 

k=11000/freq1; // k in inverse proportion of desired frequency 

for (;;) 

for (i = 0; i < dat_samples_buff1+1; i=i+1) 

{ 

for (j = 0; j < k; j=j+1) {} // generates time between //samples for slow 

frequencies running k wait cycles between output updates 

// printf("[%d] ", i); 

// printf(" %d ", timeindexbuffint[i]); 

// printf(" %x\n ", BuffTable[i]); 

GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_0 |GPIO_PIN_1 | 

GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 

GPIO_PIN_7, BuffTable[i]); 
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} 

// printf ("Leaving function WriteToOut\n"); 

} 

void WriteToOutHigh()//load data from buffer table, write to output port 

{ 

unsigned int i; 

//unsigned int j; 

// printf("Time running between samples buffer1 = %.2ef\n", tbs1); 

//printf ("it time out data\n"); 

for (;;) 

for (i = 0; i < dat_samples_buff1+1; i=i+1) 

{ 

//for (j = 0; j < tbs1*12; j=j+1)//con 1e+5 is time between //samples 

// t is accumulated time in cycle, last values is period T of //waveform 

//t=tbs1*i; 

// printf("[%d] ", i); 

// printf(" %d ", timeindexbuffint[i]); 

// printf(" %x\n ", BuffTable[i]); 

GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_0 |GPIO_PIN_1 | 

GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 

GPIO_PIN_7, BuffTable[i]); 
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} 

// printf ("Leaving function WriteToOut\n"); 

} 

int main(void) 

{ 

// 

// If running on Rev A2 silicon, turn the LDO voltage up to 2.75V. //This is a 

workaround to allow the PLL to operate reliably. 

// 

if(DEVICE_IS_REVA2) 

{ 

SysCtlLDOSet(SYSCTL_LDO_2_75V); 

} 

// 

// Set the clocking to run directly from the crystal. 

// Default values assume an external crystal of 6MHz. See Luminary 

// driverlib documentation for other values. 

// Clock source can be: 

// 'SYSCTL_USE_OSC | SYSCTL_OSC_MAIN' - use the xtal without PLL 

// 'SYSCTL_USE_PLL | SYSCTL_OSC_MAIN' - use the xtal with PLL 

// If using the PLL, the oscillator runs at 200MHz and then you select 
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// a division of this frequency to clock the core. Otherwise the //divider just 

//directly divides the XTAL frequency. 

// Use a 6MHz external XTAL directly with no division 

//printf ("Entering sysctlclokset \n"); 

SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | 

SYSCTL_OSC_MAIN | SYSCTL_XTAL_6MHZ); 

// Use the XTAL directly to clock the PLL with division by 4 

//SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | 

SYSCTL_OSC_MAIN | 

// SYSCTL_XTAL_6MHZ); 

// printf ("Entering sysctlperipheralenable \n"); 

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); 

//printf ("Entering define gpio as output \n"); 

GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_0 

|GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | 

GPIO_PIN_6 | GPIO_PIN_7); 

//printf ("Entering write to port \n"); 

GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_0 |GPIO_PIN_1 | 

GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 

GPIO_PIN_7,0x55); 

// printf ("Leaving write to port \n"); 

// Use the XTAL directly to clock the PLL with division by 4 
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// SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | 

SYSCTL_OSC_MAIN | 

// SYSCTL_XTAL_6MHZ); 

N=256; 

GetOperParam(); //Get operation parameters 

//SineDisplay(N); //Display data samples for sine waveform 

if (opmode==1)// operation mode = 1? 

{ 

tbsCalc(freq1, n1); //calculate separation between samples 

tbs1=tbs; 

BuffTableGen(N, n1); //generate buffer table extracting samples 

} 

if (opmode>1) 

{// operation mode= 2 or 3? 

tbsCalc(freq1, n1); //calculate separation between samples, signal 1 

tbs1=tbs; 

TempTable1Calc(N, n1); //generate temp table for signal 1 

tbsCalc(freq2, n2); //calculate separation between samples, signal 2 

tbs2=tbs; 

TempTable2Calc(N, n2); // generate temp table for signal 2 

BuffTableSuperposition(); // generate buffer table modes 2 & 3 
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} 

if (freq1>399) WriteToOutHigh(); // write to output port, high //frequencies 

if (freq1<400) WriteToOutLow(); //write to output port, low //frequencies 

while(1); 
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