

Integrated Circuit Design Using

Open Cores and Design Tools

Martha Salomé López de la Fuente

Science Publishing Group

548 Fashion Avenue

New York, NY 10018

www.sciencepublishinggroup.com

Published by Science Publishing Group 2015

Copyright © Martha Salomé López de la Fuente 2015

All rights reserved.

First Edition

ISBN: 978-1-940366-44-9

This work is licensed under the Creative Commons

Attribution-NonCommercial 3.0 Unported License. To view a copy of

this license, visit

http://creativecommons.org/licenses/by-nc/3.0/

or send a letter to:

Creative Commons

171 Second Street, Suite 300

San Francisco, California 94105

USA

To order additional copies of this book, please contact:

Science Publishing Group

book@sciencepublishinggroup.com

www.sciencepublishinggroup.com

Printed and bound in India

http://www.sciencepublishinggroup.com/

http://www.sciencepublishinggroup.com III

Preface

This book presents and explains the design of Integrated Circuits using open

cores and open source design tools. It covers design aspects for all of the circuit

elements: a processor (the Open RISC 1200 or OR1200), program memory,

data memory, external address and data buses, communication port, interrupt

controller, internal bus, clock, reset, and GPIO ports. For this purpose, all the

hardware cores are open source and the fabrication technology is low cost.

Detailed aspects of the design process are explained, such as application software

optimization, small memory usage, memory intensive algorithms versus

computation intensive algorithms. Also, an analysis of several application and

research fields is presented, so the designed and implemented circuit used in this

book as an example, can be used in other applications, with little or no

modifications. Besides, a detailed design flow is explained, showing calculations

for every design stage; the design flow covers synthesis process, area optimization,

power and speed calculations, IO ring definition, and Place&route of the

components and conections. Finally, two different implementations are

presented: low-cost high volume, and medium-cost low volume: a) Technical

data of the Integrated circuit implementation is presented and explained. b) An

alternate implementation is also presented, using a development board with an

ARM processor, especially useful for one-shot implementations. We hope that

this books can help those electronic engineers with innovative ideas that can be

implemented in an integrated circuit, without needing a big brand behind them.

http://www.sciencepublishinggroup.com V

Contents

Preface ... III

Chapter 1 Introduction .. 1

1.1 Integrated Circuits .. 3

1.2 Digital and Analog Components ... 5

1.3 Combinational and Sequential Circuits .. 6

1.4 Clocked or Timed Circuits .. 6

1.5 Circuit Size ... 7

1.6 Design Process .. 7

1.7 Simulation Process ... 8

1.8 Implementation ... 9

1.9 Fabrication Process ... 10

1.10 Marketing Process .. 11

Chapter 2 Processor Based Integrated Circuits ... 13

2.1 Relevance and Potential Uses ... 15

2.2 Design Variables ... 17

2.3 Chips and Intelligent Systems .. 17

2.4 Opportunity Areas .. 21

2.5 Systems and Labs on a Chip ... 22

Chapter 3 System Design ... 25

3.1 System Definition and Specifications ... 27

3.1.1 Motivation ... 28

3.1.2 Statement of the Problem .. 29

3.1.3 Proposed System ... 31

3.1.4 Frequency Synthesis .. 33

Contents

VI http://www.sciencepublishinggroup.com

3.1.5 Comprehensive System ... 34

3.1.6 Scope and Limitations ... 35

3.2 Software Architecture ... 37

3.2.1 Processor Based Implementation ... 38

3.2.2 SoC Components ... 39

3.3 Challenges for Variable Optimization .. 45

3.4 System-on-Chip Specifications .. 46

3.5 Signal Generation ... 49

3.5.1 Frequency Synthesis Methodology ... 51

3.5.2 Output Data ... 53

3.5.3 Frequency Sweep and Superposition ... 54

3.5.4 Methodology Software Architecture ... 55

3.6 ASIC Design Flow .. 58

3.6.1 Design Methodology ... 58

3.6.2 CAD Tools ... 59

3.6.3 Synthesis and Timing .. 60

3.6.4 Place and Route ... 65

3.6.5 Power Analysis .. 66

3.6.6 IO Ring .. 69

3.6.7 Clock Tree Synthesis ... 73

3.6.8 Integration .. 74

3.7 Design Evaluation .. 77

3.8 Application Software .. 80

3.8.1 Program Flow .. 80

3.8.2 Standard Version .. 81

3.8.3 Extended Version ... 82

Chapter 4 The Open Source Design Tools .. 85

4.1 Chip Design Flow ... 87

4.2 Open Source Design Tools ... 88

Contents

http://www.sciencepublishinggroup.com VII

4.3 Open Source EDA Tools ... 88

4.4 Open Cores Library .. 89

Chapter 5 Sample Implementation ... 95

5.1 The Running Application Program ... 97

5.2 Experiment Definition .. 99

5.3 Simulations ... 101

5.4 Experimental Environment ... 103

5.5 System Potential ... 108

Chapter 6 Integrated Circuits for Intelligent Systems119

6.1 The Smart Systems and the Integrated Circuits .. 125

6.2 ASIC for Customized Applications .. 127

6.3 Design and Market Trends .. 128

Glossary .. 133

References .. 137

Appendixes ... 139

Chapter 1

Introduction

http://www.sciencepublishinggroup.com 3

1.1 Integrated Circuits

Integrated circuits are based on transistor logic, which means that logic gates

(such as AND, NOT, NOR, EXOR, etc), resistors and other components are

connected and packed together to achieve a specific function. This way we’ve

been achieving, for a long time, small, for a long time, small circuits to build

more complex circuitry using simple functions to build more complex systems.

For learning purposes students use those small circuits to build more complex

systems. An easy example is to use several And Not gates to build an Adder or

a Multiplier (Figure 1.1).

Figure 1.1 Examples of: A) Adder, B) Multiplier, C) Building bigger blocks: Adder and

Multiplier.

In the process of building more complex circuit based on simpler ones,

several questions arise: ―Can all the circuits needed for a specific function be

integrated into one single integrated circuit?‖ And, ―is there a limit, in either

size or technology, to build bigger and more complex integrated circuits?‖

Integrated Circuit Design Using Open Cores and Design Tools

4 http://www.sciencepublishinggroup.com

Well, the answer is yes. You can implement any mix of simple circuits to

develop a more complex function, if you find it useful for a potential application.

And, no, there is no limit for a design system, as long as you are willing to pay

the design price for power consumption, circuit area, and speed.

The original purpose of the integrated circuits was to replace the bulky and

energy hungry bulbs, so the initial functions were oriented to represent logic

decisions, for example ―if the door is open then activate the alarm‖, or ―if the

motor speed is greater than 100, close the valve‖. At this point, logic circuits

have their size and energy consumption, so it was easier to have smaller and

cooler control rooms making decisions over production processes. Then, what

we can call the steady era, during the 80’s and 90’s, when the adders came

along, multiplexers, encoders, memories and micro controllers. Everyone was

fascinated about what they were able to achieve with those circuits. No one

would have predicted what this area could become later, when information

technologies and the internet modified all previous concepts about computing

and processing. With the Information technology boom, came the data

processing boom, in a way that more and more complex operations were needed,

as well as communication protocols and the need for faster processing.

After these rapid growing technologies it is not easy to predict what will come

next, but some approaches can be made. Silicon and transistor technologies are

reaching their limit about minimum size and power consumption, which leads to

other technologies being, explored (Figure 1.2). Maybe a totally new technology

for circuits could come soon, and all of what we’ve known now should be

reconsidered again. But that is what evolution is about.

Chapter 1 Introduction

http://www.sciencepublishinggroup.com 5

Figure 1.2 A) Memory EEPROM series 93C56C-I/P, B) Multiplexor AD8180ARZ,

C) Encoders Priority SN74LS148N and D) Processors TMS320VC5510AGGWA2.

1.2 Digital and Analog Components

There is another classification for circuits according to the kind of signals and

voltages it manages. Digital circuits are those which work on only two voltage

levels, one level to represent a binary 1 and the other to represent a binary 0. All

data and information in these circuits is represented, operated and stored, using

0’s and 1’s. Any value can be represented by a combination of 1’s and 0’s, and

be interpreted back as the original value. Analog circuits contain signals in a

wider and continuous range of voltages and currents, so physical variables such

as temperature, pressure, volume, and speed can be represented by a scaled

value. For example, a Temperature of 50 Celsius can be stated as a value of 10

if a scale of 0 to 50 is used for the range of 0 to 250 Celsius.

In this book most of the signals will be digital, except for some sensors and

actuators that can work with analog signals. Each exception will be stated so

there is no confusion.

Integrated Circuit Design Using Open Cores and Design Tools

6 http://www.sciencepublishinggroup.com

1.3 Combinational and Sequential Circuits

Another circuit classification is based on how outputs are produced.

According to the way a circuit delivers an output, either it is a signal, data, or a

result; they are classified as Combinational and Sequential circuits.

Combinational circuit outputs do not depend on one another for the next

output or result. This means that the moment when a function is performed does

not change the result, because it does not depend on previous results or data

from previous Actions.

Sequential circuits are time dependant; this means the result of their operation

may be different depending on the moment a situation occurs. Specifically, a

circuit that contains a program in the memory executes the program in a

sequential way, and the outputs produced are taken into account for further

operations.

1.4 Clocked or Timed Circuits

A lot of circuits require synchronization between systems or circuits; it means

that several, or all, of the circuits involved in a bigger system should perform

their operations at the same pace or rhythm, since they depend on each other’s

results in order to know what should be done next. In this circuit a clock marks

the pace for the execution. A complex system may have one or several clocks,

just as long as they remain synchronized for the intended purpose.

Chapter 1 Introduction

http://www.sciencepublishinggroup.com 7

1.5 Circuit Size

Integrated circuits come in all sizes. The more gates or transistors are inside

the circuit, the more complex the function would be, the larger the circuit looks

on the outside, and the more pins are available on the external packaging. A

general way to classify the circuits by size is as follows, having no precise

boundary between sizes, but: SSI for Small Scale integration, MSI for Medium

Scale Integration, LSI for Large Scale Integration, and VLSI for Very Large

Scale Integration.

Something interesting happens when circuits become bigger and bigger. When

you notice, as a circuit designer, that your circuit and functionality are getting

more complex, you will probably conclude that you need a processor instead of

individual circuits. After that thought, you lead to this next one: if I already have a

processor in my design, could the same circuit be used in other applications other

than the originally intended? The exciting answer is yes! A circuit, when it

contains a processor, can be easily adapted to perform other functions, with small

additions or modifications. Here is where circuit design becomes more interesting:

Once you know how to design and implement a complex function using a

processor within your integrated circuit, you are ready to implement any function

you can imagine.

1.6 Design Process

Designing an integrated circuit starts as any project does: with the idea of what

you want to develop. So you start saying something kind of like this: I want to

have a circuit that takes anyone’s age, weight and height, then it measures his

temperature and blood pressure, and as a result it can predict how long the person

Integrated Circuit Design Using Open Cores and Design Tools

8 http://www.sciencepublishinggroup.com

will live. Once you are able to state your intention in known words and clear

intentions, you are ready to start designing it. The next step is to elaborate what

you will need to measure, capture, calculate and process. For this example you

will need: I will need a temperature sensor, a blood pressure sensor, a keyboard so

the person can type his age and weight, a processor to run the calculations, a

memory to store the calculation program, and a display to show the user the result.

At this point you are describing your project in a very known and used way in this

field: Inputs, functions, outputs. It means that you have acknowledged what data

you need as input, what functions the system will be performing, in any case,

everything will be easier if you can think of your idea in these terms: for each

variable that my project needs, a sensor should be connected to it; the more

complex the functions are, the longer the program will be; the more outputs the

project will deliver, the more complex the display or interface will be. At this

point, the clearer or more specific you can be on those three aspects (inputs,

functions, outputs), the better. You will start from there until you get to the

complete circuit, connections and elements.

A normal design process include iterations between what you want, what you

achieve, what users say they need, and so on. Usually, the final implementation

differs a lot from the initial circuit idea. We will discuss in detail the design

process later.

1.7 Simulation Process

Once you have completed your design in paper, and your hand calculations

show that it works as you want it to, a simulation is needed. You need a

computer aided design tool to prove that what you are hoping to happen will

happen. As in any other engineering field, there are many tools to learn and use.

Chapter 1 Introduction

http://www.sciencepublishinggroup.com 9

For the purpose of this book, we will classify tools in Open source and licensed

tools. Many universities pay licenses to software companies so their students

have access to complex and professional tools. If that is your case, you can

check with the system administrators what software they have for circuit design.

If that is not your case and you are an independent designer, you can rely on

open source code and simulators, since licensed software is never cheap and not

worth it for a single design.

1.8 Implementation

Many enthusiast designers often risk their time and money by implementing

their idea without the certainty that it will work properly, it means, without

simulating it. It is up to you if you want to buy circuit components, sensors, and

such, relying only on your hand calculations. The more complex your design is,

the greater the possibility that it won’t work as you expect it to work. After a

successful simulation you have several options for implementing your design: If

it’s not intended for mass production you can use either the proto board version,

which is cheap and good for prototyping, but only for small to medium circuits,

or the FPGA version (Field Programmable Gate Array) which lets you know in

a more accurate way the size, power consumption, transistor count, and speed of

your circuit, when it becomes an integrated circuit. The development board

version, allows you to store and run your program, check the output, connect

your sensors, and test your program over and over until you are satisfied with

the result. In the market you can find development boards for as low as 40 US

dollars. The last option for implementing your circuit is to pack everything it

needs into one single integrated circuit. This is what this book is all about: how

to get a whole idea into one single integrated circuit. The best option for mass

Integrated Circuit Design Using Open Cores and Design Tools

10 http://www.sciencepublishinggroup.com

production is an integrated circuit that contains everything it needs to perform

its function. As you may notice, an integrated circuit is a final version of an idea,

which you cannot modify it, has been fabricated. Nevertheless the circuitry and

connections cannot be modified, but remember that if you put a memory inside

your integrated circuit, and the memory has a program, and you were careful

enough to consider a programming interface then you can modify the program

in your circuit. Even it can serve as with different purposes if your design is

made open enough.

1.9 Fabrication Process

Once you’ve finished your integrated circuit design you need to have the

design in standard format files, so you can send these files to a fabrication

company and then receive from them your shiny and brand new integrated

circuits. Fabrication processes uses silicon wafers, and stamp your circuit on the

silicon, so transistors and connections are made as you specified. Then the small

piece of silicon is packed to protect it, adding pins for you to connect the circuit to

whatever other system, sensors, or components it will be connected. Most of the

well-known fabricants have University programs, in which they charge less for

university projects, or let you join teams in order to split the fabrication costs. The

fabrication process (Figure 1.3) involves ―clean rooms‖ and very expensive

equipment, as any dust particle, even if it is as small as a few nanometers, can get

into the circuit, and produce a malfunction.

Chapter 1 Introduction

http://www.sciencepublishinggroup.com 11

Figure 1.3 Fabrication process.

1.10 Marketing Process

In the beginning you intended your circuit for one purpose, so by now you

probably know if it will be the main module of a stand-alone device, such as a

microwave oven or a dishwasher machine. Having stated that integrated circuits

that perform a specific function are intended for a specific device, you will need

to get your circuit to the market, maybe not directly to the consumer, but to the

device manufacturer.

Chapter 2

Processor Based Integrated Circuits

http://www.sciencepublishinggroup.com 15

You may start as circuit designer using gates, adders, multiplexers and so, but

soon you will find that it is better to include a processor and a memory in your

design, so additions in functionality are easy to integrate. Here is where you

notice the hardware versus software implementation advantages. Let’s explain

how hardware and software are involved in your design decisions: Any project

idea can be implemented completely using hardware, it means that every single

decision is made by a transistor or set of transistors, connected in a way that

will result in a voltage indicating what will happen with an output signal. If

your project has many decisions to make, data to store, operations to make, you

can use the simulator, estimate how many transistors the circuit need. On the

other hand, if all the decisions your project is making are translated into a

programming language, you can estimate how much memory the program will

need to be stored. And the memory size can be easily translated into transistor

count. This way you can compare if your hardware based version is

smaller –using less transistors- than your software based version. We will get

into this subject with more detail ahead.

2.1 Relevance and Potential Uses

Stimulation systems provide signals and test patterns to be used in a variety

of applications. Potential uses and applications for stimulation systems

constantly increase as existing tests and lab procedures are desired to be

miniaturized or new tests are conceived, whether they are for Lab analysis,

prosthetic testing, pollution analysis, or point-of-care.

Current experiments need a stimulation system so tests can be repeatedly

performed in order to store results, perform analysis, and obtain statistics and

finally report state of the art conclusions and results. On-going experiments

Integrated Circuit Design Using Open Cores and Design Tools

16 http://www.sciencepublishinggroup.com

whose focus is to obtain novel results on a specific research area should be

supported by a stimulation system that eases the experiment and allows

researchers to define and change the stimulation patterns and tests.

Once stimulation systems are found useful in a specific application, the next

natural step is to add intelligence to the system, so it can precisely reproduce

test procedures, improve performance by learning from previous results, and

evolve according to upcoming needs. Potential uses for this stimulation system

include a wide range of experiments, from detecting pathogenic cells in fluid

samples, bacteria or viruses in blood and urine droplets, microbes or fungi in

food items and water, and also target agents in the environment, the human

body, or industrial processes.

Specifically, particle manipulation experiments are expected to become part

of the everyday life, so usual lab tests can be performed by a miniature device,

in site, and by non-specialized personnel. In characterization efforts, all kind of

particles and cells are separately stimulated in order to determine their

characteristics so manipulation and test procedures become known and can be

used in future tests.

Current research is also going to automated tests using stimulation systems,

where prosthetic devices are analyzed to check if they react as their human

counterpart does; a set or sequence of signals, similar to those generated by the

brain in order to control or to sense that body part, is applied to the prosthetic

part to determine if proper behavior has been achieved and the body part is

ready to use.

Chapter 2 Processor Based Integrated Circuits

http://www.sciencepublishinggroup.com 17

Besides, when a stimulation system is configurable as the one presented here,

its use may extend to related applications, such as cell disruption, embryo

viability tests, DNA manipulation, and serial/automated medical lab tests.

2.2 Design Variables

As circuit designers learn along their experience, there are trade-offs between

design variables. The most important of these variables are: circuit speed, circuit

area, and power consumption. Secondary variables are pin-out and time to market.

Circuit speed involves how fast the used processor and peripherals will run; area

is the space the circuit will take in the silicon wafer; power consumption refers to

how much battery power will take to fully and continuously execute the

application program. All these variables are discussed in detail ahead.

2.3 Chips and Intelligent Systems

Early designs and implementations for portable labs are initially prototyped

on development boards, printed circuits, or FPGAs, and there are some design

efforts to produce a miniature device which may eventually lead to low-power

Lab-on-chips and portable labs. Along with miniaturization efforts, intelligent

testing goes its own way on current research work; it will become part of the

future fully automated lab processes and tests, so it has to be defined in general

terms and be able to be programmed for complex future tests.

About miniaturization and intelligence current developments, several works

are referenced here: reviews of stimulation experiments using proposed or

designed integrated systems, automation of effective and programmable particle

Integrated Circuit Design Using Open Cores and Design Tools

18 http://www.sciencepublishinggroup.com

manipulation using MEMS and a bio-cell processor, DEP filters which could

continuously eliminate cells suspended in water, and so on.

An early chip proposal was the engine for a micro-fluidic Lab-on-Chip

system; it was presented by Gascoigne as a high voltage integrated circuit which

transports droplets on programmable paths; it creates forces over multiple

droplets while varying electrode excitation voltage and frequency. Electrodes

are driven with a 100Vpp periodic waveform; the maximum waveform

frequency is about 200Hz. This prototype chip has a 32x32 array of 100V

electrode drivers. Fabricated in a 130V SOI CMOS technology dissipates

1.87W max, in a 10.4x 8.2 mm2. The chip is programmable: the routes of

multiple droplets may be set arbitrarily within the bounds of the electrode array

and the stimulation waveform amplitude, phase, and frequency may be adjusted.

Newer proposals present designs for Lab-on-a-chip integrating one or several

sub-systems: Delizia proposes a large array of capacitor sensors for detecting

dielectric permittivity variation. It uses an 11-bit resolution ADC at a sampling

rate of 100 Kilo-samples/sec; it is implemented in 0.35 µm CMOS technology.

The noise coupled to the signal at the chip pad is reduced by using an on-chip

analog-to-digital converter. Simulation results show a SNR=65.7 dB and an

ENOB value of 10.6b. Its power consumption is about 150 mW. Readout chain

is implemented in 0.35 µm CMOS technology with a 3.3 V supply voltage.

Keilman presents a proposal of a bio-analysis system that may be part of

future low-power bio-analysis platforms. The analysis technique uses the electro

kinetic phenomenon for noninvasive biological cell manipulation. This work

generalizes the concept of test micro-structures using standard CMOS process

by providing a generic electrode structure, which, when integrated with a

Chapter 2 Processor Based Integrated Circuits

http://www.sciencepublishinggroup.com 19

processor, is capable of generating an arbitrary electric field shape, thus

facilitating a programmable sequence of different cell manipulations.

Shih et al proposes an adaptive biochip integrating DEP traps and a

programmable array for the multi-sorting applications of bio-molecules. The

magnitude and direction of the DEP force are controlled via the distribution of

time-variant non-uniform electric fields. The voltage on each individual

electrode of the multi-sorting array is programmable.

When a programmable or configurable system is desired, a user interface

comes in hand for operation, since it allows repeatable and reliable setting of

test parameters. There is on-going work on programmable and configurable

testing, although it does not come together with miniaturization efforts. A

device presented by Manaresi is a 64 mm2 chip implemented in a two-poly

three-metal 0.35 µm CMOS technology, featuring an array of 320x320

actuation electrodes, 20µm x20µm micro sites, including addressing logic, an

embedded memory for electrode programming, and an optical sensor. The chip

enables software-controlled displacement of living cells, and the manipulation

does not damage the viability of the cells.

Similarly, Jungyul Park presents an integrated MEMS-based bio-cell

processor; the purpose is the automation of transporting, isolating and

immobilizing individual embryo cells for effective manipulation.

An interesting topic on SoC is that modular designs should be able to integrate

between them by using standard existing interfaces so a complex system is built

by connecting several simple functional blocks. New developments of digital

blocks or cores should take integrated systems for particle manipulation to the

next level: future designs should include in one design the stimulation system, the

Integrated Circuit Design Using Open Cores and Design Tools

20 http://www.sciencepublishinggroup.com

fluidic device, the actuating elements, the sensing circuitry, the data collecting

system, the analysis system and the storage device.

As an early example, there is a software configurable architecture able to

implement a variety of AC electro-kinetic techniques. The architecture is

developed as a flexible IP block and in conjunction with integrated micro fluidic

devices and other third-party IP blocks, form the analysis function. This design is

basically a two dimensional randomly addressable electrode array being driven by

one of four sinusoidal analog signals. The so called Lexel™ array and supporting

circuitry are designed on a single chip using a standard 0.18μm CMOS process.

Table 2.1 Referenced works on Intelligent Labs-on-Chip and Bio-Chips.

Year Category Application Focus Integration Intelligence
Implementation

Specifications

2003

Proof of

concept/ DEP

processor

Droplet

manipulation

Droplet based

chemistry

No, all

external

elements

Application

dependent

Proposal, fluidic

processor

versatile

platform

2004

Proposal/

Particle

manipulation

Diagnostic

instrument

Stimulation,

circuit,

electrodes

array

No No

2004
Design / Bio-

cell processor

MEMS,

embryo cell

Manipulation

automation,

MEMS based

bio-cell

processor

Processor,

DEP valves
Automated tests

MEMS based

bio cell

processor

2005

Implementation/

Low power bio-

analysis

platform

Bio Analysis

Stimulation

system,

fluidic device,

2D electrode

array.

SW configurable,

IP modularity, four

output channels

IC

2007

Design/

Stimulation

chip

Lab-on-chip

Stimulation

systems for

electrode

arrays

Electrode

array,

excitation

circuit,

drivers,

Programmable

droplet routes and

waveform

parameters.

Expandable

architecture

Fout=200 Hz;

demo chip in a

130-V 1.0 µm

SOI CMOS.

1.87 W, 10.4 x

8.2 mm2

2007

Design/

Programmable

Bio chip

Bio-

molecules

multi-sorting

DEP traps,

programmable

array.

Programmable

stimulation
IC

Chapter 2 Processor Based Integrated Circuits

http://www.sciencepublishinggroup.com 21

Year Category Application Focus Integration Intelligence
Implementation

Specifications

2008

Design/

Stimulation and

read-out Chip

Lab-on-Chip

Capacitor

sensors and

actuators array

Sensors array,

ADC,

Amplifiers,

Readout chain

Programmable gain

Simulation for

actuators.

Implemented in

0.35 µm CMOS

2009

Design/ Field

array micro-

system

Bio-medical
Sensors,

actuators
No

Integrated

circuit (IC)

Table 2.1 summarizes the work done by referenced research works that go on

the line of Systems-on-a-chip and Lab-on-a-chip. Scope refers to the level

achieved in that work: a novel proposal, a detailed design, or a finished and

tested implementation. Category refers to the target element in a Lab-on-chip

structure; it can be a fluidic device, a stimulation chip, an actuator/sensor set,

etc. Focus summarizes de orientation of the work so it shows that it is specific

for a particular experimental environment. Intelligence refers to the capabilities

of the system to be considered intelligent: programmable functions, uses a

processor, configurable operation, includes user interface. Integration refers to

the elements covered by the design and the possibility to integrate it into other

existing modular designs: a fluidic device, sensors and actuators, stimulation

circuitry, a standard user interface, and modularity or IP blocks usage.

Implementation (intended or developed) for that proposal or design: printed

circuit, integrated circuit, or simulation only. Application refers to the expected

or target application, such as air and water pollution, lab test and analysis,

medical treatment, or generic particle manipulation.

2.4 Opportunity Areas

The detailed analysis of the state of the art on this area allows us to determine

the need of a system like the one presented in this work. A wide range of

Integrated Circuit Design Using Open Cores and Design Tools

22 http://www.sciencepublishinggroup.com

applications are using electrical signals to stimulate a fluidic device for

experimentation on particle manipulation. The majority of those tests are

performed manually controlling the parameters of the applied signals. Also,

most of the experiments are specific for a certain type of particle, using certain

waveform within a narrow frequency range. This design tackles the need for

automated test procedures, configurable operation, miniaturization of the design

and a modular design style to ease integration of this system into existing or

future designs.

Existing stimulation systems are about using limited logic to synthesize a

desired frequency and deliver it to an experimental device; from there, a

specific and non-configurable signal or pattern is obtained, and it can be used

only for that specific purpose.

The system in this work is a processor based design that can execute a variety

of application programs, a memory system that is optimally used to contain

program and data while delivering a variety of signals and patterns in a wide

frequency range, and the configuration capabilities to allow users to adapt it to

specific tests and applications with no modifications to the hardware or software.

The automation of testing and stimulation procedures obtained from this

system can speed up current research work by providing a reliable way of

repeating, configuring and adapting the system to a specific application, whether

it is used as an autonomous system or integrated to an existing Lab-on-a-chip.

2.5 Systems and Labs on a Chip

The integration in one chip of all the components needed for an application,

known as System on a Chip (SoC), has been the optimal implementation for

Chapter 2 Processor Based Integrated Circuits

http://www.sciencepublishinggroup.com 23

many embedded systems. In functionality it can go as far as designers’ dream of

it, from containing a little logic up to a processor and peripherals that can be

programmed to perform multiple functions.

A SoC containing a set of components like processor, memory system,

peripherals and configurable application software can lead to a design that is

reliable, modular, programmable and easy to integrate into other designs.

A generic diagram for a design can be presented as in Figure 2.1: a user

interface configures, programs, and operates a stimulation system; this system

delivers selected electrical signals and patterns to a fluidic device containing the

sample and particles to be manipulated; a sensing system can collect info from

the stimulation effect and, either go directly back to the interface, or pass

through a characterization system where it can be useful for identifying a

specific type of particles.

Figure 2.1 The electric stimulation system in a particle manipulation environment.

Chapter 3

System Design

http://www.sciencepublishinggroup.com 27

3.1 System Definition and Specifications

Based on referenced research works, the definition of what a stimulation

system should be and how should it be implemented was achieved, in order to

cover particle manipulation tests and procedures over a wide range of

applications. Research areas include:

Frequency range: Based on the state of the art in particle manipulation,

define and justify a frequency range eligible for a wide range of applications in

manipulation procedures and tests.

Frequency synthesis methodology: Explore existing implementations,

examine their applicability to this work and decide if the output frequency to

system clock ratio can be achieved with them or if a novel methodology is

needed to generate data for single and superimposed frequencies.

System design: Explore the design options for the system in this work and

justify the selection, from logic-only, programmable array based, and processor

based implementation.

Optimization and modularity: Analyze the trade-offs of the selected design

scheme about performance (output frequency to clock frequency ratio), circuit

size, and power consumption considering portable applications as the target.

Explore the trends on intelligent systems about modularity, re-usability,

integration and interconnection capabilities. Explore the core-based design

methodology.

Integrated Circuit Design Using Open Cores and Design Tools

28 http://www.sciencepublishinggroup.com

Configurability: Define and justify the parameters that should be open and

configurable in order to obtain an electric stimulation system that covers the

majority of electro-kinetically driven micro-fluidic devices.

Prototype implementation: Define a feasible prototype hardware

implementation to run the application program so functional specifications and

frequency synthesis methodology can be evaluated.

3.1.1 Motivation

Existing systems for manipulation and separation of particles depend on

previously known information about the type of target particles or by

experimenting on them; such experiments consist of controlling and changing

or repeating electrical stimulation, analyzing response and sweeping signal

parameters until desired results are achieved. An automated, programmable,

configurable system is needed where reliable stimulation is needed for efficient

and faster advances on research work about particle manipulation. Advantages

of an automated, programmable, intelligent manipulation system:

• Multiple tests can be done and repeated by programming test sequences.

• Previously programmed test parameters for a known test sequence can be

stored, accessed, and repeated.

• More reliable data results are obtained due to precise reproduction of test

parameters.

• User interface allows rapidly configuring and operating the system for

new tests and procedures.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 29

• An intelligent design targets future Lab-on-chip implementations and

portable Lab devices.

• A programmable system allows to run original application or to load a

new one.

• A scalable design provides interconnection and communication channels

so it can be integrated to other systems.

3.1.2 Statement of the Problem

There are current problems and limitations in particle manipulation

procedures and research works, so present needs should be detected and solved;

overcoming the state of the art and anticipate for future needs in stimulation

systems would allow researchers to speed up experiments and results.

The trends show that experiments need more controlled testing environments

by using more complex electric stimulation, which only programmable systems

can deliver, like signal composition, dual frequency signals, traveling wave fields,

mixing sine with square and triangle signals, and what may come in the future.

Besides, if frequency range of output signals could cover a wide spectrum of

particle types, sizes, and shapes, research work would be more efficient and

might reveal results from previously unknown experimental circumstances.

Last but not least, current implementation schemes for digital frequency

systems should take as primary goals a low power, minimum size, and high

performance design.

Integrated Circuit Design Using Open Cores and Design Tools

30 http://www.sciencepublishinggroup.com

Figure 3.1 illustrates how the research work in all the related disciplines and

the corresponding tasks lead to specific outcomes and contributions of this work

in each of the four related research areas: the effect of electric fields in

electro-kinetically driven fluidic devices, frequency synthesis methodologies,

Lab-on-Chip systems, and System-on-Chip design.

Figure 3.1 Performed tasks, achieved outcomes and contributions made

in the four research areas.

The overall goal is to specify, define, design, and implement an open

processor-based system that allows users from different areas to configure and

automate their tests over a specific target particles or cells to obtain reliable and

repeatable results in order to achieve the desired mobility effect. It is also

desirable to have configurable system variables and test parameters that can be

selected or programmed before the experiment or test is executed.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 31

3.1.3 Proposed System

This work presents a processor-based stimulation system to generate signals

and configurable tests for stimulation of micro-fluidic devices. It delivers multiple

waveforms and patterns to cover a wide range of experiments and applications.

Specific tests or sequence of tests that should be made on specific particles

may not be known by publication time since this is a developing area, so this

system is designed to be configurable and to deliver a variety of signal patterns

and combinations within a frequency range. The design consists of a set of cores

integrated as a System-on-Chip (SoC) to configure, operate, and execute a

stimulation system which delivers desired data.

This stimulation system includes user interface capabilities for configuration

and operation, a memory system to upload and contain the application software

for frequency synthesis, a processor to execute the program, and output ports to

deliver data from synthesized frequency as shown in Figure 3.2.

Figure 3.2 Proposed systems.

This system is also designed to favor an easy integration to existing or

on-going designs of Lab on a chip: it provides input/output Wishbone buses for

data and instructions so the system can be application independent by using a

Integrated Circuit Design Using Open Cores and Design Tools

32 http://www.sciencepublishinggroup.com

ROM based Bios that loads the selected application software depending on the

desired use. Existing or proposed Lab-on-chip systems to be connected to this

stimulation system, which is using another standard communication bus like

AMBA, can use a converting bridge for interconnection without changing the

current design.

One of the possible implementations presented, shows how a different

application program can be uploaded before operation, so modifications and

additions to the program can be made and tested outside the system and later

uploaded to an in-chip memory for operation. This capability, besides making the

system adaptable to future applications, makes possible its integration to existing

systems.

The user interface allows configuring the system, select mode of operation,

select desired type of signal, selecting single or superimposed frequencies, and

visualizing data being delivered. User interface interacts with the system via a

standard serial port.

The memory system consists of a ROM to contain the boot-loader which

uploads the application software at the beginning of operation and Harvard

architecture of RAM to contain the program and the data for operation. The

processor selected for the SoC design, the OR1200, is the best option from the

available open source cores, and its corresponding instruction set covers the

needs for this application software.

The on-chip communication is achieved using the Wishbone bus, which is

the standard bus for open source cores, and allows a smooth integration of all

the components in the system. Two Wishbone buses, one for data and one for

instruction, are taken outside the chip so it can be integrated to other systems.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 33

The hardware architecture for the chip is oriented to low power, low area, and

low execution times, and by using open source cores this is a design that can be

completed with no licensing cost during design and fabrication stages.

The application software implements the novel frequency synthesis

methodology designed during this work, so it optimizes hardware resources

such as memory map, instruction set, and system clock, in order to achieve

maximum output-frequency/system-clock rate in output signals. The software

can be tested on development boards based on the same or similar processor.

This system is also designed on a modular basis so it can be integrated, as is,

into Lab-on-Chip systems or by adding new driver cores and the application

software is designed in an open-source style so it can be configured or extended

for future applications.

3.1.4 Frequency Synthesis

The novel frequency synthesis methodology developed for this system

integrates the advantages of both, memory intensive and computation intensive

approaches into one new synthesis methodology while keeping a low

implementation area, low power, and high performance design.

For this system a look-up table is used to store base sine sampled data for a

complete sine cycle. As any digital design the best tradeoff between hardware

and software implementation should be selected: hardware is used for data

storage and software for data processing computation. A software implemented

algorithm is defined to select data from look-up table for target frequencies and

store it in temporary tables; process data from temporary tables to get single or

dual frequency data samples, and store them in output buffer tables.

Integrated Circuit Design Using Open Cores and Design Tools

34 http://www.sciencepublishinggroup.com

Finally, and most important, a computation-free algorithm loads data from

output buffer table and stores it in one or more output ports depending on the

operation mode. An external conditioning circuitry including a DAC, a current

to voltage converter and a voltage amplifier converts sampled data into the

finally delivered analog signal.

3.1.5 Comprehensive System

As state of the art, research shows highly controlled experiment environments

can be achieved when using more complex stimulation, so this system needs to

deliver configurable multi-waveform, dual-frequency signals to speed-up

research work on multi-particle manipulation tests. The system architecture has

the foundation for control purposes, data storage and signal processing; it can be

customized to achieve particular control and operation purposes of stimulation

systems.

The mix of single-frequency signal generation along with signal

superposition and system configuration capabilities, allows a wide control range

on stimulation tests. Besides, with minimal modifications other waveforms and

patterns can be obtained. A frequency range sweep can be run as a sequence of

several user selected exposure times to analyze results under several stimulation

conditions on the same experiment.

Execution times are lowered to its minimum so maximum output frequency is

dependent only on the processor specification. Besides, a size optimized routine

does not change for different generation modes or for different waveforms, so

memory usage is kept at a minimum regardless the operation mode.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 35

Memory architecture is designed for minimum area: data samples for sine,

triangle and saw tooth waveforms are stored in base data tables using them,

temporary tables are constructed based on selected output frequency and desired

number of voltage steps; output or buffer tables are finally calculated after a

time match operation depending of the number of channels to be updated

simultaneously.

Data pre-processing and table preparation reduces computation instructions

during signal generation achieving maximum output frequency to clock

frequency ratio. The system can generate any periodic waveform as long as it is

stored in memory data tables.

For signal updating, multiple simultaneous writes to output port are made so no

loss in output frequency occurs when two or more signals are being delivered

simultaneously. This port partitioning scheme is particularly convenient for this

application.

The proposed system combines efficient use of hardware and software

resources: minimum generation code, no computation during synthesis, and

minimum memory access times.

3.1.6 Scope and Limitations

About research, the commitment is to review the state of the art on the four

areas mentioned to identify the common ground for electric stimulation of

fluidic devices, to keep-up with trends, and to anticipate to future stimulation

needs. About new developments the challenge is to deliver a flexible and

programmable system which runs a novel signal generation methodology and to

prove its functionality.

Integrated Circuit Design Using Open Cores and Design Tools

36 http://www.sciencepublishinggroup.com

About system design: the goal is to identify the system requirements, to

define its functional specifications, for System-on-Chip -standard functionality

version- and for development board -extended functionality version-, and to use

available software and hardware resources to implement the design.

Limitations are related to time and to available resources: time because

design decisions for this system are made based on what current research work

shows and what can be identified as a trend; and resources are related to budget

dependencies and access to licensed or open CAD tools to achieve the intended

design.

Implementation on development board is limited to available processor,

instruction set and communication ports specifications for that board. For chip

implementation, system specifications like circuit area, power consumption and

maximum output frequency are defined and limited by three factors: fabrication

technology, physical libraries available, and efficiency of application software;

the first two are resources dependent and the third is designer dependent.

Signal waveforms to be delivered are sine, triangle, and square and saw tooth

wave. For dual superimposed frequencies the ratio between frequencies define

the memory size needed for temporary and buffer tables: if frequencies are not

exact multiples a hyper-cycle for resulting signal is not possible or very large,

and that leads to unfeasible, large or infinite, memory needs.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 37

3.2 Software Architecture

Figure 3.3 System-on-Chip block diagram for the platform based design.

The hardware architecture of the SoC is a platform and bus based architecture;

it uses a selected set of open source cores and the Wishbone on-chip

communication bus. The selection of the OR1200 processor is selected due to

its previously demonstrated implementations in FPGAs and to its open

instruction set. The on-chip memory array may contain the application software

developed specifically for stimulating fluidic devices or a boot-loader to up-load

different applications. In chip data, memory contains a complete cycle of the

three base waveforms in 256 samples of 8-bit data each. A UART port is used

to configure operation, to program sequence tests, to control operation and to

visualize data during execution. The four 8-bit GPIO ports deliver processed

data points for output signals, which may be, according to selection made in

configuration: sine, triangle, or saw tooth and presenting single, dual or

superimposed frequencies. Figure 3.3 shows interconnection between in-chip

blocks; processor and Bus Interface Units connect directly to Wishbone

Integrated Circuit Design Using Open Cores and Design Tools

38 http://www.sciencepublishinggroup.com

instruction and data buses, and memories peripherals connect via wrappers.

Table 3.1 details the function of each primary block in the SoC.

Table 3.1 Function description for primary system blocks.

Element Description

CPU (OR1200)
RISC CPU, Harvard architecture, cache memory for data and instructions, operates at

250 MHz max using 180 nm standard cells TSMC technology.

Wishbone Bus On-chip bus for cache, main memories and interface peripherals

GPIO
Grouped in four I/O 8-bit ports, from open source cores: used as inputs for

configuration and operation, as outputs for data

Clock and Reset
Receives clock from crystal oscillator, generates clock and reset signals for system

operation, base clock for processor blocks and ¼ base clock for Wishbone bus.

UART
Serial port controller provides connection for external configuration and operation

device. Open core source is used.

RAM and ROM
Memory blocks built with Artisan memory generators for verilog, vclef and gdsII

views.

Interrupt controller Exceptions handler from open cores included in OR1200 architecture.

3.2.1 Processor Based Implementation

This particular implementation for the processor was based on the open

source files of the OR1200. The Open RISC 1200 is a synthesizable CPU core

from Open Cores.org; it is a configurable open source Verilog implementation

of the Open RISC 1000 architecture. The OR1200 is intended to be used in a

variety of embedded applications. Some open source software, such as Linux,

has been ported over to the OR1200 platform.

The GNU tool chain, including GCC, has also been ported to the architecture

to aid in software development. The clock cycle for the OR1200 is 250 MHz at

a 0.18 µm, 6ML fabrication process.

Estimated power consumption of this processor running at 250 MHz and

implemented in 0.18µm technology is less than 1W at full throttle.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 39

Available libraries: 180nm from TSMC will be used for this design. System

specifications will meet application software requirements for standard version.

Components: Processor has been selected from available open source cores.

Memories have been obtained through memory generators, Peripherals have

been selected from open source cores.

Design constraints: Constraints are considered in this order: Performance, Area

and Power. Target clock frequency is around 250MHz for an 180nm technology

implementation. Processor area budget is less than 2mm2; on-chip memory area is

less than 3mm2. Power budget for OR1200 processor in this technology is 1W at

full throttle, added blocks should not exceed that by more than 20%.

3.2.2 SoC Components

The OR1200 is a RISC, Harvard Architecture processor with basic DSP

capabilities. As an open source, customizable, core it is not optimized for power

or size. This particular implementation for the processor was based on the open

source files of the OR1200.

The Open RISC 1200 is a synthesizable CPU core from OpenCores.org; it is

a configurable open source Verilog implementation of the Open RISC 1000

architecture.

It specifies a Central CPU/DSP block, Direct mapped data cache, Direct

mapped instruction cache, Data MMU based on hash-based DTLB (Translation

Lookaside Buffer), Instruction MMU based on hash-based ITLB, Power

management unit and power management interface, Tick timer, Debug unit and

development interface, Interrupt controller and interrupt interface, Instruction

and Data WISHBONE interfaces, and a MAC unit. Peripherals and a memory

Integrated Circuit Design Using Open Cores and Design Tools

40 http://www.sciencepublishinggroup.com

subsystem may be added using the implementation of a standardized 32-bit

Wishbone bus interface.

Figure 3.4 OR1200 Architecture.

Figure 3.5 OR1200 internal cores.

The CPU is an implementation of the 32-bit ORBIS32 Instruction Set

Architecture. It has five instruction formats and supports two addressing modes;

it has a single-issue 5-stage pipeline, single cycle execution on most instructions.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 41

It uses a Harvard architecture with separate MMUs for data and instruction

memories, with support for virtual memory, a hash-based 1-way direct-mapped

TLB with page size of 8 KB and a default size of 64 entries, and one-way

direct-mapped D-Cache and I-Cache, 8 KB each.

Table 3.2 Specifications of the OR1200.

Concept Specification

Architecture 32-bit scalar RISC, Harvard

Pipeline 5 stage, 32-bit integer instructions

DSP Basic capabilities

Caches Separate instruction and data, 1-way direct mapped. Configurable to 1, 2, 4, 8KB

Virtual memory 64-entry hash based 1-way direct mapped TLB for data and instruction MMU

Speed
Worst case: 150 dhrystone 2.1 MIPS at 150MHz (typical corner 250MHz)

Best case for 180nm implementation: 300 dhrystone, 2.1MIPS at 300MHz

Size Default configuration about 40K ASIC gates, 1M transistors

RTL status Not optimized for speed or area

Instruction Set
Instruction unit handles only ORBIS32 instruction class. ORFPX32/64 and

ORVDX64 instruction classes are not supported.

Configurable Major characteristics can be set by user (see Core HW configuration table)

Communication bus Wishbone, internal and for SoC interconnection

GPRs
General Purpose Register file is implemented as two synchronous dual-port

memories, 32 words, and 32 bits per word.

Exceptions
Transparent to user software, same mechanism to handle all types of exceptions,

control is transferred to an exception handler. See Exceptions table.

Interrupt controller Direct enabled Int0 and Int1, Masked Int [31:2]

Tick timer Clocked by RISC clock, re-start able, mask interrupt, Max count 2^32

Power management Dynamically activated modes: slow and idle, Doze, Sleep, and Clock gating

Debug unit Basic debugging; No watch points, break points or program flow control registers.

Clock & Reset

Core has several clock inputs: clk_cpu, clk_dc, clk_ic, clk_dmmu, clk_immu,

clk_tt; all clocks must be in phase and as low skew as possible. Reset signal rest

reset all flip flops when asserted high; when not asserted reset exception start.

Wishbone interface
Rev. B compliant, 32-bit bus width may connect to external peripherals and

external memory subsystem.

Integrated Circuit Design Using Open Cores and Design Tools

42 http://www.sciencepublishinggroup.com

Table 3.2 and 3.3 summarizes the specifications of the OR1200 selected for

the design; Figures 3.4 and 3.5 shows the processor architecture.

Table 3.3 List and description of the processor cores and the

peripherals for the System-on-Chip.

Core Block description Core Block description

OR1200_alu Arithmetic and Logic Unit OR1200_lsu Load and Storage Unit

OR1200_cfgr Configuration Registers OR1200_mult_mac Multiply and MAC Unit

OR1200_ctrl Control Unit OR1200_operandmuxes Operand Mixes

OR1200_dc_top Data Cache OR1200_pic
Programmable Interrupt

Controller

OR1200_dmmu_top
Data Memory Management

Unit
OR1200_pm Power Management Unit

OR1200_du Debug Unit OR1200_rf Register File

OR1200_except Exceptions Unit OR1200_sb Store Buffer

OR1200_freeze Freeze Unit OR1200_sprs Special Purpose Registers

OR1200_genpc General Program Counter OR1200_tt Tick Timer

OR1200_gpio General Purpose Input Output OR1200_uart
Universal Asynchronous

Rec/Trans

OR1200_ic_top Instruction Cache OR1200_wb_biu Wishbone Bus Interface Unit

OR1200_if Instruction Fetch OR1200_wbmux Wishbone Mux

OR1200_immu_top
Instruction Memory

Management Unit
- -

Communication Bus. The wishbone bus has become the standard

communication bus for the open source cores. It serves as the in-chip bus and as

the interface bus for the SoC with the external world, and as for Harvard

architecture there are separated buses for data and for instructions.

Instruction interface is used to connect OR1200 core to memory subsystem

for purpose of fetching instructions or instruction cache lines. Data interface is

used to connect OR1200 core to external peripherals and memory subsystem for

Chapter 3 System Design

http://www.sciencepublishinggroup.com 43

purpose of reading and writing data or data cache lines. Table 3.4 lists signals

for instruction lines (data lines are named dwb_xxx).

Table 3.4 The Wishbone instruction bus.

Signal Width I/O Description

iwb_CLK_I 1 I Clock input

iwb_RST_I 1 I Reset input

iwb_CYC_O 1 O Indicates valid bus cycle (core select)

iwb_ADR_O 32 O Address outputs

iwb_DAT_I 32 I Data inputs

iwb_DAT_O 32 O Data outputs

iwb_SEL_O 4 O Indicates valid bytes of data bus (during valid cycle it must be 0xf)

iwb_ACK_I 1 I Acknowledgment input (normal transaction termination)

iwb_ERR_I 1 I Error acknowledgment input (abnormal transaction termination)

iwb_RTY_I 1 I In OR1200 treated same way as iwb_ERR_I.

iwb_WE_O 1 O Write transaction when asserted high

iwb_STB_O 1 O Indicates valid data transfer cycle

Memory System: As Harvard architecture, Instruction memory and Data

memory are kept separated. Instruction Memory stores the application program

for System configuration, System operation, Frequency Synthesis, and Output

data delivering. Data Memory stores data samples for required waveforms:

look-up tables containing sine, triangle, and saw tooth wave signal data;

Temporary tables for processed data, and Buffer output tables for final processed

data.

Possible implementations are explored: storing application software in on-

chip ROM adds circuit area and restrain functionality to what's stored; loading

application software to RAM using a boot-loader reduces memory area and

allows additions to application software to be made and debugged in

development board before being loaded into the chip.

Integrated Circuit Design Using Open Cores and Design Tools

44 http://www.sciencepublishinggroup.com

A similar concept was developed for waveform data tables: data can be stored

in on-chip ROM with fixed data width and samples per waveform cycle, this

increases in-chip data memory space and reduces flexibility to change data size

and samples per cycle. Otherwise sample data can be modified outside the chip,

as well as the number of data samples per cycle, and then uploaded to RAM

using the boot-loader. This shows the trade-off between fully customized

designs versus a configurable programmable circuit design.

User Interface. A UART port has been selected for system configuration and

operation. It was selected over a USB port since it takes less circuit area and

speed is not important during configuration and operation setting. For extended

interfacing capabilities, Wishbone data and instruction buses have been added,

they can be used for external memory access and to connect this system to

external peripheral systems, drivers or bridges.

User interface functionality has been summarized in Table 3.5 according to

the system configuration and operation needs:

Table 3.5 User interface: primary functions.

Function Description

Load Load application software from available selections

Select Define waveform to be used for next experiment

Configure
Select waveform, samples per cycle, output frequencies, operation mode, and exposure time for

signal generation.

Operate
Start signal generation disabling other functionalities to maximize output frequency. Keep

continuous operation until exposure time finishes or stop request is received.

Monitor
Displays feedback info from operation and data being sent to output port. This function can be

disabled to eliminate execution time for monitoring and maximize output frequency.

Output Ports: Parallel ports have been used as output channels: a 32 bit

(4x8 bit) GPIO port is used to deliver output data. Standard data is 8 bit wide,

so up to four channels are available. Output data is delivered in one of this

Chapter 3 System Design

http://www.sciencepublishinggroup.com 45

forms depending on operation mode: in mode 1, 8-bit data samples containing

one single frequency are delivered; in mode 2, 16-bit data samples containing

two separate frequencies are delivered in two 8-bit channels, 8-bit each; in

mode 3, 8-bit data samples containing two superimposed frequencies are

delivered in one 8-bit channel.

3.3 Challenges for Variable Optimization

Here are shown the major challenges to be faced in the definition and design

stages of the system; also is presented the decision to be analyzed and justified

at each concept.

To obtain the maximum output frequency from a base operation frequency on

the value you need. Variable optimization: processor selection, design and

fabrication models availability.

1. To minimize execution code when in signal generation routine, so nominal

output frequency is not reduced. Decision: Base data tables storage scheme,

output memory buffer use, only one executing thread when running signal

generation.

2. To define a data selection algorithm for waveform construction to reduce

harmonic addition. Decision: Define an algorithm to select a set of data

that minimizes gap between voltage steps.

3. To optimize code for minimum execution time on procedures like:

• Select data from tables. Variable optimization: Equally time separated

data or equally voltage separated data for harmonic reduction.

Integrated Circuit Design Using Open Cores and Design Tools

46 http://www.sciencepublishinggroup.com

• Addressing memory and load data from memory. Decision: schemes for

storing and addressing original waveform data, in cache or external

memory.

• Buffer memory table construction. Variable optimization: separate,

continuous, adjacent or superimposed memory segments when

generating more than 1 signal, to reduce access times and maximize

output frequency.

4. To keep power consumption low. Variable optimization: Consider the

system as a whole or by operating mode, since most of the time the system

will be in stand-by or configuring mode.

• Software related consumption. Application routines should be minimized

on code size and execution time, in all operating modes: stand-by mode,

configuring mode, pre-processing mode, and signal generation mode.

• Hardware related consumption. Determine power consumption for:

• Processor, in all operating modes.

• Memory, in read and write access.

• For every core include activity factor in power estimation.

3.4 System-on-Chip Specifications

The bus based architecture has been defined, and four implementation options

have been explored, in order to compare performance and circuit size for each of

those implementations. Since main impact in circuit area is due to instruction and

data memory, this has been the parameter to be set first, keeping the configurable

Chapter 3 System Design

http://www.sciencepublishinggroup.com 47

and programmable capabilities in focus. Option 4 from Table 3.6 has been

selected for the SoC implementation; for the development board implementation

there were less memory restrictions and load-store-execute flow was defined by

software development tools.

1. Parameters:

• Instruction and Data Cache size: 2 K-bytes blocks, up to 8 K-bytes total.

• Instruction on-chip RAM: 2 K-bytes blocks, up to 8 K-bytes total.

• Instruction on-chip ROM: 256 bytes for boot-loader or 2 K-bytes

blocks, up to 8 K-bytes total for on-chip application.

2. Application Software functionality.

• Standard implementation on SoC. Program size < 4Kb. Data size < 1Kb.

Output data: two output channels; Operation: resolution from coarse

8bit data. Output patterns: sine, triangle and saw tooth for single or

superimposed frequencies.

• Extended implementation on development board. Program size < 8Kb.

Data size < 4Kb. Number of output channels is board dependent.

Output patterns: sinusoidal, triangle, and saw tooth, for single or any

mix of two superimposed waveforms of different frequencies. A

sequence of user defined test with different time exposure.

3. Variables

• Circuit Area.

• Processor area: ALU, Registers, MMU, Exceptions, Control.

Integrated Circuit Design Using Open Cores and Design Tools

48 http://www.sciencepublishinggroup.com

• On-chip memory area: Instruction and Data RAM, Instruction ROM.

• Total chip area: processor, memories, peripherals.

4. Performance

• Pre- processing times: time to store processed and buffer data tables.

• Execution times: for each functional module in application.

• Time between samples: maximum time between stores to GPIO port,

minimum output frequency.

5. Hardware configurations. The way to load and store application software,

along with the selected functionality for it, can fit into several architectures.

Application software can be stored and modified on external flash or

EEPROM memory, and loaded into in-chip RAM using a small boot-loader.

6. Possible implementations: select block size for Instruction cache memory,

Data RAM, and ROM.

7. Operation Flow. Application software may be stored in on-chip ROM

with no further modification or debugging capabilities after fabrication, or

stored in external memory for debugging, modifications, and up-grade test

in development board, to be loaded into chip during boot-load. A top-level

operation flow is shown in Table 3.6 for four possible implementations.

Table 3.6 Possible implementations, shown at top-level operation.

Application Software stored

in in-chip ROM

Application Software loaded

from external Flash

In-chip RAM

size is

smaller than

application

software size

Option 1

Go to program Start instruction.

Load pre-processing program from in-chip

ROM into I Cache.

Option 3

Start boot loader.

Load external pre-processing program into in-

chip RAM.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 49

Application Software stored

in in-chip ROM

Application Software loaded

from external Flash

Read operation parameters from interface.

Load data from in-chip ROM into D

Cache.

Generate and store temporary and buffer

data tables in D Cache.

Load data generating program from in-chip

ROM into I Cache.

Store data in buffer tables from D Cache to

output port.

Read operation parameters from interface.

Load external data into in-chip RAM.

Generate and store temporary and buffer data

tables in D Cache.

Load external data generating program into in-

chip RAM.

Generate and store temporary and buffer data

tables in D Cache.

Store data in buffer tables from D Cache to

output port.

In-chip RAM

size is larger

than

application

software size

Option 2

Go to program Start instruction.

Load program from in-chip ROM into I

Cache.

Read operation parameters from interface.

Load data from in-chip ROM into D

Cache.

Generate and store temporary and buffer

data tables in D Cache.

Store data in buffer tables from D Cache to

output port.

Option 4

Start boot loader.

Load external program into in-chip RAM or I

Cache.

Read operation parameters from interface.

Load external data into in-chip RAM or D-

Cache.

Generate and store temporary and buffer data

tables in D Cache.

Store data in buffer tables from D Cache to

output port.

3.5 Signal Generation

A goal of this work is to achieve the maximum output frequency for a given

architecture, processor speed, and memory access times. The key tasks for this

achievement have been: a) data pre-processing, b) the signal generation scheme,

and c) the memory access routine.

The equation for output frequency in the selected waveform is:

0

1
F

tbs spc




Where Fo is the output frequency, tbs is time between samples (the time

between two consecutive data samples to be sent to the output port), and spc is

Integrated Circuit Design Using Open Cores and Design Tools

50 http://www.sciencepublishinggroup.com

the number of samples per cycle (the number of data samples used to build a

complete cycle of the selected waveform).

The value of tbs depends on the system clock cycle and the instructions that

take for the signal generation routine to get a new data sample from the output

table and send it to the output port:

  tbs # of instructions clock period

For example, for a system clock of 100 MHz, using 12 samples per sine cycle,

and a simple load-store routine of 6 instructions, the cycle period would be

1/100E+6 = 10 ns and the Output frequency:

   0

1
1 388

6 10 9 12
F . MHz

E
 



As can be seen from (3), to get higher frequencies a tradeoff can be made by,

e.g., using fewer samples per waveform cycle, eliminate check-for-stop during

generation or change instruction counting for timer operation.

A precise count for clock cycles between output data samples, and therefore

maximum output frequency, can be calculated after compiling the application

software for the target processor, the OR1200, based on execution cycles per

instruction type shown in Table 3.7.

Table 3.7 Instruction Set Architecture execution times.

Instruction type Cycles to execute

Load 2, if cache hit

Store 1, if cache hit

Integer arithmetic 1

Multiply 3

Compare, logical 1

Rotate, Shift 1

Chapter 3 System Design

http://www.sciencepublishinggroup.com 51

Another way to look at output frequency is to calculate from processor speed

and from cycles per instruction in the signal generation cycle:

min

Cycles between samples
T

Pr ocessor speed


For OR1200 running @ 200MHz:

10
0 05 s

200MHzmin
.   

If 10 data samples for the sinusoidal signal are desired, then:

  10 0 05 s 0 5 ssin . .    

0

1 1
2

0 4
F MHz

sin . s
  



Which, according to the ―Nyquist–Shannon sampling theorem‖, states that

perfect reconstruction of a signal is possible when the sampling frequency is

greater than twice the maximum frequency of the signal being sampled. In this

case minimum execution time is 0.05 μs, so the system could generate, at most,

10 MHz signals. At this sampling rate an external filter will be needed to improve

spectral purity.

3.5.1 Frequency Synthesis Methodology

Frequency synthesis has been historically achieved using several analog and

digital approaches. The digital approach favors miniaturization and additional

functionalities such as data storage and data processing. Actual devices which

deliver output signals for a wide frequency range can be found already in wireless

communications, but they are application specific and do not allow additional

http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem

Integrated Circuit Design Using Open Cores and Design Tools

52 http://www.sciencepublishinggroup.com

functions. A variety of signals and patterns have been found to be useful in the

mentioned range of applications, where researchers currently work with manual

procedures using regular equipment as signal generators or oscillators. A more

controlled experiment setting is desired so research results can speed up, and it

can be achieved by having complex electric stimulation and varying signal

parameters such as frequency, waveform, superimposed patterns, etc.

Besides the problem of delivering complex signal patterns, electric stimulation

has to be implemented in a small size device because typical applications demand

portable stimulation and test instruments, our approach integrates frequency

synthesis, with multi-waveform generation, multi-waveform superposition, and

operation configurability, so the implementation can be customized for multiple

applications and processes. Besides, as a modular processor based solution is

implemented, the methodology takes advantage of it by remaining generic and

open to modifications, additions, and upgrades.

At the end, a small, low power implementation was achieved. Original digital

frequency synthesis schemes calculate sine values on the fly (computation

intensive scheme) or access pre-stored values from memory (memory intensive

scheme). None of both schemes are useful by themselves in this system due to

the goal of maximizing output frequency to clock frequency ratio, and to the

memory and speed optimization tradeoffs between both schemes.

For performance optimization in this system the main intention of pre-

processing the base sine data sample is to reduce computation during signal

generation (i.e. while sending processed data to the output port); this way pre-

processing times does not impact maximum output frequency. Computation

intensive versus Memory intensive schemes are shown in Figure 3.6:

Chapter 3 System Design

http://www.sciencepublishinggroup.com 53

Figure 3.6 DDFS: Memory intensive versus Computation intensive methodologies.

3.5.2 Output Data

Available signal waveforms for board implementations are sine, triangle, and

saw tooth. Preprocessing base data into temporary and into output buffer tables

allows application software to do computation intensive tasks before operation

and simple address-load-store operations during signal generation: Data input for

pre-processing algorithm comes from base data samples tables. Selected samples

are extracted by translating temporal spacing into memory spacing to achieve

target signal frequency. Number of data samples per cycle is user defined.

When superimposed frequencies are desired pre-processing is executed twice

with correspondent time-space parameters. Intermediate data is stored in

separate temporary tables for each processed frequency.

Final processed data is stored in one output buffer table for simple access,

low execution times.

Figure 3.7 shows data processing for one single frequency, and 9b for two

single frequency outputs – the last step would be add for superposition and

concatenate for separate frequencies-. See appendix A2 for the complete data

Integrated Circuit Design Using Open Cores and Design Tools

54 http://www.sciencepublishinggroup.com

tables of base waveforms and an example of data processing for superimposing

two frequencies.

Figure 3.7 a) Data processing for one single frequency. b) Data processing for two

single frequency outputs. Last processing step is Add for frequency superposition or

Concatenate for separate frequencies.

3.5.3 Frequency Sweep and Superposition

Preprocessed data from temporary tables are superimposed by time matching

of data samples from both separate frequencies. Data samples are added when

time matches among samples and time holes due to frequency difference is

filled with last data. Output data is stored into buffer tables. If there is no

common factor between frequencies, buffer table size can grow indefinitely.

A set of sequenced tests can be programmed to be executed when

characterization test need to go through a frequency range to identify particle's

properties or behavior. These sequenced tests can sweep a desired frequency

Chapter 3 System Design

http://www.sciencepublishinggroup.com 55

range in user defined steps, for example, a 1 MHz signal is delivered for 30

seconds and a 10 MHz signal is delivered for 60 seconds after the first one, and

so on. This frequency sweeps are useful when the particle's behavior is

unknown or when running a characterization experiment.

3.5.4 Methodology Software Architecture

Application software is developed to perform four main tasks: Define and

store waveform data samples, get configuration and operation parameters from

user, process data to obtain selected output signals, and execute frequency

synthesis to deliver processed output data samples.

Waveform data samples for a complete cycle are pre-calculated and stored as

integer numbers in a 0-255 scale, being 0 the lowest peak value of the

waveform (-V), 127 the mid-value (0), and 255 the highest peak value (+V).

Values are stored in data RAM to reduce ROM needs. For the three stated

waveforms 3 x 256 bytes of data space is needed. As these values are stored into

RAM along with the program code uploading, new data tables with different

waveforms can be included in the source files of the application and the

software architecture remains unchanged.

Configuration and operation parameters are for user to select the type of

waveform desired, the operation mode to be executed, and the time period to

deliver the outputs.

When operation mode users select 1 out of 3: one output signal with one

single frequency, two separate output signals with two different frequencies, or

one output signal with two superimposed frequencies.

Integrated Circuit Design Using Open Cores and Design Tools

56 http://www.sciencepublishinggroup.com

Data processing takes base waveform data to generate a temporary table

containing selected data to form the desired frequency. Temporary tables for

two different frequencies are generated for modes 2 and 3. Temporary tables in

modes 2 and 3 are processed to form one output table containing two separate or

superimposed frequencies. Values for temporary and output tables are stored in

RAM during processing.

Output data delivering, to complete frequency synthesis process, takes data

from processed output table and sends it to output port, using 8 bits for modes 1

and 3, or 16 bits for operation mode 2. Figure 3.8 shows application software

flow:

Application functionality is achieved by independent tasks. Table 3.8

presents function description for detailing software execution.

Table 3.8 Application Software, Function Description.

Function Description

Get operation parameters. Configure

operation.

Gets operation parameters: frequency for output signals,

samples per cycle, operation mode

Generate data samples for waveforms Calculates and stores base sine data into memory table.

Calculate time and space between samples

to construct desired frequency, mode 1.

Calculates time and space intervals to extract data from base

table to construct one desired frequency.

Mode 1: generate output table for selected

frequency

Process data from base table and store into temporary table.

Calculate time and space between samples

for two frequencies, modes 2 and 3.

Calculates time and space intervals to extract data from base

table to construct two different desired frequencies.

Modes 2 and 3: generate separate

temporary tables for each frequency

Process data from base table and store into two separate

temporary tables.

Mode 2: generate output table for selected

concatenated frequencies

Process data from temporary table and store into one output

table containing two frequencies in two separate signals.

Mode 3: generate output table for selected

superimposed frequencies

Process data from base table and store into one output table

containing two frequencies in one signal.

Send data from output table to output port Take processed data from output table and store it into output

port. 8 bits for modes 1 and 3, 16 bits for mode 2.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 57

Function Description

Format data to 8 bits in base waveform

tables

Scale base sine data from -1 to 1 to 0-255 (8bits).

Continuous cycle of signal generation Deliver output data continuously until stop requested or

sequence time finished.

Non-multiple frequencies protection Eliminates remaining cycle data for superimposed frequencies

when no hyper-cycle is possible.

Variable size protection during data

processing

Scale to 8 bits intermediate data resulting from operations to fit

temporary and output tables.

Transmit output data for record and re-use Transmit delivered data to serial port to be displayed or stored

by user interface for visualization, record,, or future use.

Scale data, modes 1 and 3 Scale output data in modes 1 and 3 to 8 bits

Scale data, mode 2 Scale output data in mode 2 to 16 bits

Figure 3.8 Application Software Flow.

Integrated Circuit Design Using Open Cores and Design Tools

58 http://www.sciencepublishinggroup.com

3.6 ASIC Design Flow

In this section are presented a description of the design methodology, the

CAD tools used in the chip design flow, and the procedures and results on the

clusters involved in the design: synthesis, timing, memory blocks generation,

place and route of the system cores, power consumption analysis, IO ring

design, and integration at chip level.

3.6.1 Design Methodology

Figure 3.9 Chip design flow on four areas: Timing, Power, IO pins, Area.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 59

Open source cores have been used to integrate a modular architecture over an

open source bus. The design flow has been followed for optimal performance,

minimum chip area and minimum power consumption, in that priority order

when a compromise was needed. Work on all the areas relevant to physical

design has been done: timing optimization, power estimation and grid design,

IO pin selection and ring design, block placement and pin optimization for

routing, and layout generation for minimal area.

3.6.2 CAD Tools

During the design flow, CAD tools have been used and the design process is

not seamless due, mostly, to input-output file formats and compatibility between

tools. As a reference, a tutorial on design flow was reviewed. Table 3.9 shows the

tools used for each of the main design tasks. Tasks have been performed

sequentially in the first design steps; in the later design steps they were performed

in parallel and iteratively to work on the trade-offs of the design: chip area, power

consumption, and system timing/performance. Figure 3.9 illustrates the design

flow.

Table 3.9 CAD Tools Used in design flow.

Concept Tasks Tools

Timing

Synthesis process at block level and at processor level.

Set initial time constraints at block level.

Iteratively push timing constraints at block and chip level.

Deliver block and global timing analysis.

Synopsys, Design Compiler (DC)

Place and

Route

Initial area estimations at block level.

Deliver an initial floor plan for routing.

Placement and routing at block level.

Global routing.

Placement optimizations.

Synopsys, Design Compiler (DC)

Synopsys, Integrated Circuit

Compiler (ICC)

Memories

Generate logical and physical views for RAM and ROM

blocks. Generate different aspect ratio implementations for

placement optimization.

Create memory wrappers for integration.

Artisan, Memory Generators

Synopsys, Design Compiler (DC)

Power
Initial power estimations at block level.

Iterative Power Grid Design.

Synopsys, Design Compiler

Synopsys, PrimeTime PX

Integrated Circuit Design Using Open Cores and Design Tools

60 http://www.sciencepublishinggroup.com

Concept Tasks Tools

IO Ring Iterative IO Ring design.
Synopsys, Integrated Circuit

Compiler (ICC)

Clock Clock tree synthesis at chip level.
Synopsys, Integrated Circuit

Compiler (ICC)

Integration

Integrate Power grid to floor plan.

Integrate IO ring to floor plan.

Integrate memory blocks at chip level.

Integrate clock tree at chip level.

Synopsys, Integrated Circuit

Compiler (ICC)

JupiterXT, Synopsys

Verificatio

n
Functional verification at block and processor level Mentor Graphics, ModelSim

3.6.3 Synthesis and Timing

During the synthesis process the local and global timing has been optimized

and initial area and power estimations have been done. Eight rounds of

synthesis have been performed until timing convergence and closure have been

achieved. Synthesis rounds to get minimum slack time, area estimations, and

power estimations have been done with Design Compiler from Synopsys.

Selected processor cores from Open Cores have been used for bus compatibility

and minimum edition of source codes. The available versions of these open

source cores are not optimized for performance or area, so optimization in these

areas have been done during this design process.

A simulation for functionality, at processor level, has been done before

starting synthesis process, using ModelSim from Mentor Graphics.

The tasks performed and the obtained results from the rounds of synthesis were:

Round 0: Estimate initial timing constraints for each core based on gate count,

estimated size and worst case data path.

1st to 4th first rounds: Run synthesis at block level pushing timing constraints;

consider adjacent blocks in data path to push constraints for required arrival

times and arrival times.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 61

5th and 6th rounds: Run synthesis at top level. Identify critical paths. Push

timing constraints on critical paths. Use new version of open core source repeat

from round 5.

7th and final 8th rounds: Update CVS tree (source version control) to match

last rounds. Round 8 was the final round for pushing the block and global

timing constraints.

The global path delay at top level synthesis has been calculated by:

Global path delay= Arrival time + Pass-through + (cycle time – Required

arrival time) + interconnect delay

Where the first three terms depend on both, block level synthesis and top

level synthesis, and the last term depends on floor-plan and time of flight for

metal 3 and metal 4.

Final results show that the minimum clock cycle is the requested 4 ns plus the

worst slack time achieved of -0.978 ns, which leads to a minimum required clock

cycle of 4.978 ns, equivalent to a processor frequency of 200.8 MHz; Figure 3.10

shows the occurrence distribution of the single and double cycle paths in the

architecture, being the ones on the left the worst slack times observed.

Table 3.10 Results from the rounds.

Round Slack Action taken Improvement

1 -7.9ns

2 -6.4ns Iterate timing constraints at block level 1.5ns

3 -4.5ns Consider pin info in constraints 2.1ns

4 -4,3ns

5v1 -2.3ns Push synthesis effort 2ns

5v2 -1.2ns Identify multi-cycle paths 1.5ns

5v3 -0.75ns

6 -1.0ns Source files change -0.25ns

Integrated Circuit Design Using Open Cores and Design Tools

62 http://www.sciencepublishinggroup.com

Round Slack Action taken Improvement

7 -0.82ns Source files change 0.18ns

8 -1.1ns -0.28ns

Final -0.978ns Consider interconnect delay 0.12ns

Figure 3.10 Occurrence distributions of the single and double cycle paths in the

architecture.

Memory blocks.

Memories for this system (instruction cache, data cache, in-chip RAM and

in-chip ROM) have been generated using a Memory Generator tool from

Artisan which takes as input an abstract description of the memory blocks and

produces several memory formats suitable for various tools and purposes. Using

a memory generator instead of synthesizing a memory can optimize speed, for

density and for power, can control the memory blocks aspect ratio for efficient

floor planning, deliver timing and power models for integrate to other design

tools, allow configurable word-write mask and redundancy options.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 63

Memory blocks of 2 K bytes, 4 K bytes and 8 K bytes have been generated to

facilitate block placement and routing in chip.

A set of views can be generated: PostScript data sheet, ASCII data table,

GDSII layout file, LVS netlist, Synopsys model, PrimeTime models, TLF models,

VCLEF footprint, Verilog model, and VHDL model. The Relative footprint

shows how the aspect ratio of the memory changes as the words, bits, and Mux

parameters are varied. The instance and the power ring are included in the

footprint.

RAM architecture, timing specifications, and physical characteristics:

1. Synchronous Random Access Memory is triggered by the CLK rising edge.

2. Pins: CLK, CEN, WEN, OEN, A[m-1:0], D[n-1:0], output Q [n-1:0].

3. Memory blocks are cut in symmetrical sides to easy clock distribution and

layout.

4. Dual port memories provide dual ports for all, input and output signals.

5. Power rings. Power rings can be generated around the SRAM, size them

properly. Size depends on the chip-level power distribution, the number,

width, and placement of supply wire connections to the power rings, and

the current consumption. Recommendation: supply current evenly at the

edge of the instance where the pins are located.

6. Top metal layer: metal1 to metal4 are used in the design and blocked for

routing. Layers above m4 can be routed over the memory.

Integrated Circuit Design Using Open Cores and Design Tools

64 http://www.sciencepublishinggroup.com

7. I/O pins are located along the bottom edge of the memory block on any of

the metal layers, and they are large enough to accommodate a

pre-determined on-grid width wire connection.

8. Verification: The views produced by the generator can be verified with

standard tools.

ROM architecture, timing specifications, and physical characteristics:

1. Synchronous Read Only Memory is triggered by the CLK rising edge.

2. Pins: CLK, CEN, A[m-1:0], Q [n-1:0]. If CEN is high then memory is in

standby mode and Q has last data, if CEN is low memory is in read mode

and Q has data from address A.

3. Memory blocks include Row and column decoders, Clock generator,

Memory array and Amplifiers/IO buffers for the outputs.

4. Power rings: multiple, evenly spaced connections have been used from

core Vdd and Vss to the rings around the instance on the side where the I/O

pins are located.

5. I/O pins are located along the bottom edge of the memory block on any of

the metal layers.

6. ROM code File. An Artisan format ROM code file must be provided for

each generated instance.

• Format: Code file contain only 0s and 1s.

• The line number in the file is equivalent to (address-1).

Chapter 3 System Design

http://www.sciencepublishinggroup.com 65

• Each character of a line corresponds to the bits of a word. Character in

column 1 of a line is the most significant bit.

• Address goes from m to 0, bits and columns go from n to 0.

• This file is needed for behavioral or physical views such as Verilog,

VHDL, Tests can, Sunrise, GDSII and LVS Netlist.

Tool Verification. Views and files generated have been verified with Synopsys

Design Compiler.

Before Place and Route, a FRAM view has been created for all memories in

the design by importing the VCLEF and running the Blockage, Pin and Via

(BPV) to create the FRAM.

3.6.4 Place and Route

P&R, the process of placing each individual block within the top level design,

has a major impact in chip area: it must use the area optimized netlist for each

block and use the interconnect area efficiently for routing.

Several iterations for P&R have been made due to changes in synthesis, pin

placement and block aspect ratio impact placement and routing results.

Integrated Circuit Compiler (ICC), from Synopsys, has been used to route

signals within blocks, to place blocks within layout, to route signals between

blocks, and to optimize block and pin placement for optimal routing.

A preliminary floor-plan has been delivered for power grid design. Block

placement re-runs have been made with different aspect ratios for each block,

until better area utilization is achieved.

Integrated Circuit Design Using Open Cores and Design Tools

66 http://www.sciencepublishinggroup.com

About 30% of space is left between blocks for interconnect routing, clock

tree and power grid.

3.6.5 Power Analysis

To estimate and analyze the power consumption for this system, a sequence

of iterative tasks have been performed: estimate each block power using Design

Compiler from Synopsys, include activity factors in power calculations,

calculate Switching Power, Cell Internal Power and Cell Leakage power for

each block, design a power grid using Prime Time PX, and integrate power grid

to routed layout.

Power estimations for individual blocks are made initially from block size and

gate count. Activity factors have been integrated using a code benchmark. Later, a

preliminary floor-plan from ICC has been used as the base for power grid.

Vertical power lines go on M5, Horizontal on M6. No power ring has been

added to ease integration with power in M3 and M4 and to power pins in IO

ring. Power grid includes Vdd, clk, rst and Vss lines, with spacing and widths: 5λ,

2λ, 2λ, 2λ, 2λ, 2λ, 5λ, 2λ respectively. Total spacing between two Vdd will be

22λ, which should be multiple of power grid spacing in M3 and M4 for

interconnection.

Power estimation for each block has remained similar, regardless the changes

in source code occurring during synthesis and integration. Power grid at M5/M6

considers block placement and individual block consumption, while power grid

inside blocks on M3/M4 will be done automatically.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 67

A verification run for obtaining activity factors by block from simulation

instead that from estimations has also been made.

Dependencies for Power IR drop analysis, which is the voltage drop due to

the resistance of interconnects in power network are illustrated:

• Additional code lines at top level are needed for power grid.

• IO ring needs to be hooked up to the top level design.

• All blocks should place their pins only in M3 and M4.

• The IO pads have to be hooked up to the power rail, to get info about

external source of power rails.

• Modules should be power routed in M4 and hooked up to the power grid

using via M4 and M5.

• De-coupling capacitor filler cells must be inserted in empty spaces: within

individual modules and in the full chip level between modules.

• Design Rule Check should be executed after hooking up power routes.

• Design decision to make for each individual block: where to put the power

pins for minimum route to power grid.

Results from final run of power estimation are shown in Table 3.11.

Integrated Circuit Design Using Open Cores and Design Tools

68 http://www.sciencepublishinggroup.com

Table 3.11 Power Consumption Values.

Block Activity *(Net Switching Power + Cell Internal Power) + Cell Leakage power

Block

Activity

Net Switching

Power

Cell Internal

Power

Cell Leakage

Power
Total Power

Weighted

value

alu 0.4 4.8500E−03 6.1020E−03 1.0290E−07 1.1000E−02 4.3809E−03

cfgr 0.02 2.4420E−04 3.0160E−04 1.0400E−08 5.4580E−04 1.0926E−05

ctrl 0.4 1.4490E−03 3.0220E−03 7.0550E−08 4.4710E−03 1.7884E−03

dc_top 0.5 3.0410E−03 5.9600E−02 1.0080E−05 6.2600E−02 3.1330E−02

dmmu_top 0.5 1.2410E−03 9.6630E−03 6.0270E−06 1.0900E−02 5.4580E−03

du 0.01 1.7200E−02 1.9800E−02 6.5830E−07 3.7100E−02 3.7065E−04

except 0.4 3.1590E−03 1.1200E−02 1.9230E−07 1.4300E−02 5.7437E−03

freeze 0.4 2.5380E−05 6.8790E−05 1.9090E−09 9.4170E−05 3.7669E−05

genpc 0.5 3.0450E−03 5.7010E−03 1.2740E−07 8.7470E−03 4.3731E−03

gpio 0.5 7.4720E−04 2.3390E−03 1.9830E−07 3.0860E−03 1.5432E−03

ic_top 0.5 1.3880E−03 5.7500E−02 1.0040E−05 5.8900E−02 2.9454E−02

if 0.5 7.3330E−04 2.2270E−03 3.9420E−08 2.9600E−03 1.4801E−03

immu_top 0.5 2.3510E−03 1.0600E−02 6.0780E−06 1.3000E−02 6.4815E−03

iwb_biu 0.1 7.1960E−04 1.4030E−03 8.6690E−08 2.1220E−03 2.1234E−04

lsu 0.6 5.7150E−03 4.5360E−03 9.4160E−08 1.0300E−02 6.1506E−03

mult_mac 0.1 6.9460E−03 2.8100E−02 5.1140E−07 3.5000E−02 3.5051E−03

operandmux 0.4 2.2710E−03 2.6400E−03 6.4490E−08 4.9110E−03 1.9644E−03

pic 0.01 5.3930E−04 1.1050E−03 3.0240E−08 1.6450E−03 1.6473E−05

pm 0.01 2.3360E−04 4.0410E−04 9.5910E−09 6.3770E−04 6.3865E−06

rf 0.5 2.9220E−03 2.6000E−02 7.3280E−07 2.9000E−02 1.4461E−02

sb 0.2 5.6610E−04 7.5770E−04 1.5890E−08 1.3240E−03 2.6477E−04

sprs 0.02 5.5530E−03 5.2600E−03 1.3510E−07 1.0800E−02 2.1639E−04

tt 0.01 9.8770E−04 1.7000E−03 4.6980E−08 2.6880E−03 2.6923E−05

uart 0.5 4.8040E−04 2.8240E−03 2.8800E−07 3.3050E−03 1.6524E−03

wb_biu 0.1 5.0040E−04 9.5720E−04 4.9520E−08 1.4580E−03 1.4580E−04

wbmux 0.4 2.3900E−03 3.6520E−03 7.5520E−08 6.0420E−03 2.4168E−03

Total

6.9298E−02 2.6746E−01 3.5766E−05 3.3693E−01 1.2349E−01

Chapter 3 System Design

http://www.sciencepublishinggroup.com 69

The power consumed by electronic devices has been on a downward path for

many years as a result of the hard work and creativity of talented engineers.

Despite the obvious gains, the creation of lower power designs continues to be a

major concern of modern engineering. There are two facets to this engineering

problem. One is simply the desire to consume less power; to extend battery life

and to make wall-powered devices cheaper to operate and ecologically

friendlier. The other, perhaps less obvious problem, is that all power consumed

must also be dissipated. Power dissipation has become more difficult as devices

have become more complex yet smaller. Of course, the best way to help the

dissipation problem is to consume less power in the first place. This course

looks at the fundamentals of achieving the low power operation needed with

nearly all of today's leading-edge chip designs.

3.6.6 IO Ring

The Input-Output pad ring on a chip acts as a communication link between

the chip core and the outside world. IO pad ring is a collection of open metal

areas usually located at the periphery of the chip. When a chip is being

packaged a mechanical wire bonder connects the open metal surface of an IO

pad with the corresponding package pin.

The circuit functions of an IO pad ring are listed below:

1. ESD protection – The IO pad ring has diode protection circuitry which

protects the gates connected to the pads from any external electrostatic

discharge.

2. Buffering the output signal – Usually, digital output pads have buffers to

allow driving huge external world capacitances of the order of 30 pF.

Integrated Circuit Design Using Open Cores and Design Tools

70 http://www.sciencepublishinggroup.com

3. Buffer the input signal – Digital input pads can have buffers to isolate the

external input from the signals inside the core chip. A digital input pad can

also have a noise tolerant functionality which removes any noise that might

have coupled to the external input. A Schmitt trigger circuit is used to

perform this function. The circuit generates a cleaner signal, mitigating any

effect that noise might have on the circuit performance. A tradeoff of using

Schmitt trigger circuits is the fact that they are power hungry and are slow.

4. Mixed voltage interface – An IO pad ring usually provides a mixed voltage

interface. The external IO pads are usually running at higher voltage while

the cores chip inside run at a smaller voltage, to minimize power. The IO

pad ring contains Level shifter circuits that perform this function.

Due to the limitation in resolution of the mechanical wire-bonding tool, a

minimum open metal surface area and a minimum pad pitch need has been

maintained. Maintaining a minimum pad pitch resulted in the limitation of the

number of input/output pins possible for a chip to the minimum presented ahead.

Table 3.12 shows the final IO pins for the designed SoC.

Table 3.12 SoC IO Pin List.

Signal From block Signal From block Signal From block

clk_i RISC 250MHz iwb_dat_i(31:0) Wishbone pm_ic_gate_o Power

rst_i RISC rst iwb_cyc_o Wishbone pm_dmmu_gate_o Power

clmode_i RISC clock control iwb_adr_o(31:0) Wishbone pm_immu_gate_o Power

pic_ints_i(3:0) PPIC interrupts iwb_stb_o Wishbone pm_tt_gate_o Power

iwb_clk_i Wishbone iwb_we_o Wishbone pm_wakeup_o Power

iwb_rst_i Wishbone iwb_sel_o Wishbone pm_cpu_gate_o Power

iwb_ack_i Wishbone GPIO(31:0) GPIO pm_1volt_o Power

iwb_err_i Wishbone pm_cpustall_i Power pm_clk_sd_o (3:0) Power

iwb_rty_i Wishbone pm_dc_gate_o Power

Chapter 3 System Design

http://www.sciencepublishinggroup.com 71

The design of the IO ring for this system has been made based on the needed

pins for this specific application and has been integrated later to the complete

and routed layout. These pads are available ready-made in TSMC’s digital IO

pad library. These pads have been piled together in a rectangle to create the pad

ring. The open metal area surface of the pad has a 50um length. The pad length

itself is 70um. To keep sufficient spacing between two metal area surfaces -

where the wire-bonder would come to attach the bonding wires-, a spacer of

10um was inserted between each pad. This increased the pad pitch to 80um.

The input pads were chosen without Schmitt trigger functionality (PDIDGZ)

because Schmitt trigger circuits are power hungry and slower. Only general

purpose IO pads (PRU08SDGZ) had schmitt trigger circuitry inside them. They

also had control enable based input/output configuration functionality. The

output pads were chosen based on the current driving capability required from

the pad. The average current was estimated for the pad assuming a 30pF load

and a 25% rise time at 62.5MHz. Based on the average current calculation for

some of the pads, the average current requirement was 4.8mA. An output pad

(PDO16CGZ) with a current capability of 16mA was therefore chosen to safely

meet the current requirements. 3.11 shows a close up to the physical IO ring.

To find out whether the area was pad limited or core chip limited, a very

conservative area estimate was made by adding the block areas and multiplied it

by double to account for wire routing overheads. The area assuming a square

came out to be 0.583976mm2 (0.7mm x 0.7mm) – which denoted severely pad

limited die size.

Integrated Circuit Design Using Open Cores and Design Tools

72 http://www.sciencepublishinggroup.com

Figure 3.11 Close-up view of the IO pad ring, pad pitch is 80nm.

Number of Vdd - Vss pair pin calculation:

There are two power supply voltages on the chip. The first is 3.3V volt which

is used for input/output signals from the external world to the IO pads. The

other voltage is 1.8V which is the Vdd for the core chip. The IO pad ring

performs the task of converting the voltage levels.

An adequate amount of Vdd - Vss pins is needed to allow sufficient current

source and sink-in capability. The more the number of IO pads the larger the

number of Vdd - Vss pins. For this design a 3.3V Vdd - Vss pair for every 8 IO pins

was chosen. While two 1.8V Vdd - Vss pairs were placed on each side of the die.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 73

There are more 3.3V Vdd - Vss pairs due to the amount of power dissipation of

the IO pads needed to drive the external 30pF buffers. The core chip itself

requires less power so fewer IO pins were dedicated to it.

3.6.7 Clock Tree Synthesis

Clock tree synthesis (CTS) is a separate design process which consists on

building a balanced buffer tree from clock input pin to all clock sinks in the

design blocks.

Clock design includes clock generation, clock regeneration and clock

distribution. Tree design, leafs, sinks and location have been set according to

this chip needs. The input files needed for the clock design are top level DEF

file and top level Verilog net-lists.

To do clock tree synthesis SOC Encounter from Cadence has been used.

When starting from a placed net-list, the flow is to perform CTS, do global

routing and block level routing.

Clock Tree design is critical for system synchronization: if clock does not

arrive on time to each block depending on its location within the data-path, all

instruction flow gets wrong.

Clock distribution and Clock pin placement are design placement dependent,

so every new place and route run requires a new clock tree design.

Figure 3.12 shows a sample run of the clock tree generation:

Integrated Circuit Design Using Open Cores and Design Tools

74 http://www.sciencepublishinggroup.com

Figure 3.12 Sample run of the clock tree generation.

Hardware design in high-performance applications such as communications,

wireless infrastructure, servers, broadcast video, and test and measurement

equipment is becoming increasingly complex as systems integrate more

functionality and require ever-increasing levels of performance. This trend

extends to the board-level clock tree that provides reference timing for the

system. A ―one size fits all‖ strategy does not apply when it comes to clock tree

design. Optimizing the clock tree to meet both performance and cost

requirements depends on a number of factors, including the system architecture,

integrated circuit (IC) timing requirements (frequencies, signal formats, etc.)

and the jitter requirements of the end application.

3.6.8 Integration

Integration work is an inter-dependent task, since results from power, timing,

placement, and routing affect other results, so iterations have been done until

Chapter 3 System Design

http://www.sciencepublishinggroup.com 75

satisfactory results in all areas have been reached. First designs for power grid

and clock tree have been done based on the first preliminary floor-plan

delivered. As part of integration, different versions of definers’ file, one from

verification, one from Timing and one from Place & Route have been merged

into one common file to check and eliminate inconsistencies.

When cores have not been completely compatible with the bus based

architecture, wrappers have been needed, since cores are generic open source

code and customization is needed, especially for hardware integration and

in-chip communication. A Wishbone compliant wrapper has been added for: an

8K SRAM for the memory module, a 4x8 bit GPIO core, and a standard UART.

When synthesizing at top level some signal and bus inconsistencies arose:

missing pins, incompatible bus widths, and unreferenced instantiations, among

others.

Most Verilog sources have gone under editing and current control version is

maintained for code consistency since it is critical for integration.

When integrating at chip level, hardware hierarchy has been redefined: block

level is the open source for each individual block; CPU level is the unit build by

interconnecting the individual blocks; OR1200 level is the processor built with

CPU, memories, debug, and system units; SoC level is the system built with

OR1200 processor, SRMA, ROM, GPIO, UART, power grid, and clock tree.

Tables 3.13 and 3.14 show details of the tasks performed and results obtained

during the last two rounds of integration.

Integrated Circuit Design Using Open Cores and Design Tools

76 http://www.sciencepublishinggroup.com

Table 3.13 Tasks and results, 7th round of synthesis and integration.

Cluster Tasks/Problems/Results

P&R

Preliminary floor-plan has been delivered for power grid design. To be final it needs: resize

IMMU cache, consider 30% of interleaving space for routing, clock and power lines. Do block

placement re-runs with different aspect ratio for each block, until better area utilization is

achieved.

Timing Worst slack time at -800ps over a 4ns period. That leads to a frequency of 208 MHz.

Top level

synthesis

Synthesis script and netlist for OR1200 top level: ready. Synthesized OR1200_top.v, net-list

generated. To do: re-synthesize to be consistent with updated defines file, due to

inconsistencies in source files.

Integration

Different versions, one from verification, one from Timing and one from Place & Route of

definers’ file should merge into one common file. Example inconsistencies:

"OR1200_ARTISAN_SSP" has been commented out, `define OR1200_ASIC is commented

out in one version, FPU related macros to be removed.

Verification

Verification

for Power

Verification is complete with the new Verilog files, re-do when definers’ file is common to all

clusters. Use SAIF from Synopsys (1st option, for tool compatibility) or VCD from Model-

Sim to write out activity factor, for a given timing window of simulation.

SAIF: forward_saif file required for Model-Sim to generate a backward_saif, the required

output file

VCD: To write out VCD: Read DC synthesized net-list into Model-Sim. Write out a VCD

from Model-Sim from the designed test bench using time window which power numbers are

going to be generated; zip VCD: "zip -r DESIGN.vcd.zip DESIGN.vcd"

To convert between formats: Invoke Synopsys DC and use "vcd2saif" command

Source

Wrappers are written for SRMA, GPIO, and UART. These blocks, along with OR1200, will

build the SoC top level.

UART and GPIO connect to the data wishbone of the processor. New pins created for GPIO

wrapper: aux_i, ext_pad_i, ext_pad_o, ext_padoe_o, clk_pad_i, For UART: int_o, stx_pad_o,

srx_pad_i, rts_pad_o, cts_pad_i, dtr_pad_o, dsr_pad_i, ri_pad_i, dcd_pad_i

SRAM: Wishbone compliant wrapped 8K SRAM memory module. No syntax errors. Needs

functional verification, run design compiler to get the gate level Verilog.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 77

Table 3.14 Tasks and results, 8th round of synthesis and integration.

Cluster Tasks/Problems/Results

P&R
Re-run the global P&R scripts, since the floor-plan has changed significantly. All of the objects

are placed. Rebuild each using synopsis/icc/2010 and make the OR1200_top library.

Power

As Verilog source files change, new SDC files for the new net-lists are needed for each block.

After generating sdc files for each block, check for consistency among the gate.v net-list and

new sdc file.

Upload new files in the corresponding folder because existing scripts take them from there.

Results from last run of power analysis are shown in a table below.

Needs from Global P&R for Power IR drop analysis - Due to the resistance of the interconnects

in power network, there is a voltage drop -:

Add code lines for power grid

IOs still not hooked up in the milky way

Check all blocks place pins in M3 and M4.

Hook up the IO pads to the power rail, to get info about external source of power rails

Modules should be power routed in M4 and hooked up to the power grid using via 4-5

Insert de-coupling capacitor filler cells in empty spaces: within individual modules and in the

full chip level between modules

Design Rule Check should be executed after hooking up power routes

Timing

Final run: squeeze out as much extra timing as possible. Reference to:

For each pass-through in a critical path, a log has been used to show the average path slack,

average time for the pass-through, and the number of times that pass-through appears in a

critical path. Locate the pass-through routes in each block that occupy a good amount of time

in a critical path to tighten while also locating a path with slack to give that you can relax.

Due to changes in defines file between r6 and r7, the timing became a little worse, now at

200MHz. Some pins of debug unit and control unit are causing the problem. These pins pop up

only in this release, probably due to changing of the define file.

Integration Design decision to make: where and how to put the power grid on blocks?

Source

Defines file at processor top level was modified to meet requirements from: cache memory

blocks (`define OR1200_ASIC and `define OR1200_ARTISAN_SSP 0), register file block

(Type of register file RAM: `define OR1200_RFRAM_GENERIC), wishbone bus

(OR1200_CLKDIV_4_SUPPORTED, This will allow us to use 50 MHz for the external

wishbone bus.), Power management unit (`define OR1200_PM_IMPLEMENTED), and

eliminated references to floating process unit since it is not implemented.

3.7 Design Evaluation

This system design was completed through the stages of the design. The

hardware architecture was synthesized with Synopsys Design Compiler using

TSMC Physical Libraries for 180µm technology. RAM and ROM arrays were

Integrated Circuit Design Using Open Cores and Design Tools

78 http://www.sciencepublishinggroup.com

built with Artisan Memory Generators. Place and Route, Clock Tree synthesis

and IO Ring design were realized with Synopsys IC Compiler. Power analysis

and power grid design was made with Prime Time-Px.

Source cores -Processor, Peripherals, and on-chip Communication Bus- are

synthesizable cores from OpenCores.org.

Here are presented the resulting design parameters:

Timing Analysis was made during synthesis process. Timing parameters like

system clock frequency, bus clock frequency, and port clock frequency are

implementation dependent only. Output update rate considers n data samples

per waveform cycle. Table 3.15 shows operating frequencies per block group.

Table 3.15 Operating Frequencies.

Concept Operating Frequency

System Clock 190 MHz

Wishbone bus clock 47.5 MHz

GPIO, 8 bit data L&S 5.94 MHz

Output data update rate (48/n) MHz

Execution times were obtained from simulations of the application software

and from actual execution times on a development board –the LM3S6965-.

Application functions are grouped to present their execution times: Parameter

set up function gets the operation parameters from user, and generates related

data; Data processing function creates temporary and output table generation

processing two waveforms -frequencies f1 and f2 -, 32 samples each.

An example where f2= 4f1 is used. Output update function refers to signal

generation - sending waveform data samples to output port-, and corresponds to

1 cycle for addressing, 1 cycle for load from memory, and two cycles for store

Chapter 3 System Design

http://www.sciencepublishinggroup.com 79

in parallel port. Execution times marked with * do not impact maximum output

frequency since they are executed during system configuration or data

processing, i.e. before signal generation begins.

Table 3.16 Execution Times.

Function Clock cycles Exec time (ns)

Parameters setup, 8 parameters, 4 cycles each 4 x 8 168

Data processing for temporary tables 2 (4 x 32) 1347

Data processing for output table 5(32)(f2 /f1) 3368

Output update 4 21

Delivered Signals The system can deliver any mix of sine, triangle and

saw-tooth waveforms with different frequencies in single or superimposed

patterns.

Power analysis Power analysis was made for individual blocks then grouped

for simplicity. Power values in Table 3.17 consider full throttle operation for that

group of blocks and % of total power is calculated considering activity factor.

Table 3.17 Power Consumption By Block Group.

Block Power, Watts % of total power

Processor 0.176965 52.3

Memories 0.145400 42.97

Peripherals 0.006385 1.887

Bus 0.009620 2.843

Table 3.18 Area Use By Block Group.

Block Area, (mm2) % of chip area

Processor 1.4866 25.73

8K IC RAM 0.9824 17.01

8K DC RAM 0.9736 16.85

256 bytes ROM 0.0212 0.37

Peripherals 0.0522 0.90

Integrated Circuit Design Using Open Cores and Design Tools

80 http://www.sciencepublishinggroup.com

Bus & Interconnect 1.4694 25.44

IO Ring 0.7912 13.70

Areas The minimum total and interconnect areas were achieved by varying

the aspect ratio of major blocks: memory and processor cores. Area use per

block group is shown in Table 3.18.

3.8 Application Software

Based on the hardware specifications, the application software is developed

including start up and load procedure, sine/triangle/saw tooth waveform's data

storage, configuration and operation setting, and frequency synthesis process

using the novel methodology created for this application.

Separate application software versions for development board and IC are kept

due to differences in hardware resources.

Board version is an extended functionality version where hardware resources

are only limited by the board features.

The SoC version is called the standard version: it has less functionality than

the board's due to area budget, processor, and open source restrictions.

3.8.1 Program Flow

Table 3.19 shows a simplification of the application flow by listing only the

main tasks; secondary tasks as data protection, data scaling and frequency

synthesis details are not shown.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 81

Table 3.19 Application Program Steps.

1. Configure General Purpose I/O port

2. Get configuration and operation parameters

3. Calculate time separation between data and shift factor for data extraction

4. Prepare temporary and output tables for requested mode

4.1 Mode 1: 1 8-bit table, single data, for 1 frequency signal output

4.2 Mode 2: 1 16-bit table, inter lapped double data, for two frequency signal outputs

4.3 Mode 3: 1 8-bit table, superimposed data, for two frequencies on 1 signal output

5. Configure four 8-bit GPIO port for output signals.

6. Send data samples for sine signal to output port, with a load-from-table/store-to-port cycle

7. Update output port continuously while waiting for stop signal

8. Restart operation to get new configuration parameters

3.8.2 Standard Version

A standard version of the application program has been developed to run on

OR1200 based architecture; this version is the foundation for the SoC design

and implementation. The three waveforms can be delivered to output channels

and dual superimposed frequencies are included if frequencies are exact

multiples, due to in-chip memory limitations. To be interrupted during

operation using master reset only. Maximum output frequency is limited by the

timing constraints of the available physical libraries for implementation and the

timing optimization of the set of processor source files. Standard version takes

less than 1 Kbytes of data RAM and less than 2 Kbytes of instruction RAM.

Table 3.20 shows a description of the routines in the standard version.

Table 3.20 Routine List and Description, Standard Version.

Routine Description

Calculate Data

Separation

Desired output frequency and number of voltage steps determine how many data points

will be extracted from the original sine table in order to construct desired output signal.

Two data separation parameters are needed for operation modes 2 and 3.

Calculate base

time

According to desired frequency and number of voltage steps, there is a base times that

indicates the time between data points are sent to output port.

Integrated Circuit Design Using Open Cores and Design Tools

82 http://www.sciencepublishinggroup.com

Routine Description

Create Table-

Mode1

Extract data from original sine table needed to construct 1 output signal, 1 single

frequency: each 8-bit data from original sine table is stored as the 8 least significant bits of

the 32-bit output port.

Create Table-

Mode2

Extract data from original sine table needed to construct two output signals, two separated

frequencies: if two 8-bit output ports can be stored at the same time with 32-bit data, two

data points from original sine tables must be concatenated before stored in buffer memory

table.

Create Table-

Mode3

Extract data from original sine table needed to construct 1 output signal, two superimposed

frequencies: data points for different frequencies should be added to achieve

superimposition.

Output Signal

Generation

Continuous, uninterrupted loop, for loading data from buffer memory and storing it on

output ports. No memory other than buffer is read, no instructions other than those for

signal generation are executed.

Start/Stop

external

interrupt

Start/Stop button is enabled as an external interrupt in two execution moments: at startup

to be ready for accepting configuration and operation parameters, and during Output Signal

Generation routine to stop signal.

Timer interrupt

generation

Within Output Signal Generation routine: When low frequency output is desired, a timer is

used to update data to outputs at a base time determined by Calculate Base routine. For

high frequencies time is achieved by cycle and instruction count.

See Appendix A1 for Application software C code, standard version.

3.8.3 Extended Version

The extended version of the application program was developed to run on an

ARM9 or Cortex-M3 based development board. A functional implementation of

this version is presented in chapter 5. Extended functionality is added, such as

delivering data via an USB port for further analysis of monitored or stored data,

mixing different waveforms in a superimposed signal for more controlled

experimental environments and an interactive user interface for configuration

and operation. Data tables for the three signal wave forms (sine, triangle and

saw tooth) can be displayed at start-up for demonstration purposes of the novel

frequency synthesis methodology to show the frequency superposition effect.

Extended version takes less than 4 Kbytes of data RAM - 1 Kbytes for base data

and 3 Kbytes for temporary and final data-, and less than 3 Kbytes of instruction

Chapter 3 System Design

http://www.sciencepublishinggroup.com 83

RAM. Although the Extended version has additional functionality it fits in the

original SoC design which has separated RAM blocks of 8KB of data RAM and

8KB of instruction RAM.

See Appendix A2 for Application software in C code, extended version.

Chapter 4

The Open Source Design Tools

http://www.sciencepublishinggroup.com 87

4.1 Chip Design Flow

As long as the technology and processes involved in circuit design remain

within the current boundaries, the design variables will remain the same: Circuit

area, execution speed, and power consumption. If a new and completely different

technology and materials arrive, this could change. Meantime, the design teams

will dependently develop their areas, iteratively delivering new versions of them

until the team achieves a final functional design within the time-to-Market frame.

The trade-offs. The design team keeps in mind that when you modify the area

of a circuit it also impacts the power consumption and the execution time.

Although it is not possible to gain in those three variables: you gain in one, then

loose in the other two. That is why in these projects the design team needs to

focus on the final goal, rather than its own specifications, and still, optimize the

individual parameters to the maximum achievable.

Time to market. The circuit design field is a fast moving one, with new circuits

being released every day. Professional design teams always work on a very tight

time schedule, in order to complete their design, containing what will be a novelty

in the market, only if it arrives on time to it. At this point is important to note that

maximum optimization always goes as far as time schedule allows, it means that

you will see that if you would have more time to work on your design it can be

smaller, or faster, or may consume less energy. But there is no more time for that,

or the market will no longer find your design useful. So you need to declare your

design done, in order to get into the market on time. Of course this applies when

you are designing for a market, but if you design as a hobby or as part of an open

cores community, you can have more time.

Integrated Circuit Design Using Open Cores and Design Tools

88 http://www.sciencepublishinggroup.com

4.2 Open Source Design Tools

Using open cores in designing independent integrated circuits is a growing

trend between electronic engineers, and there are large communities focusing on

open source development, intended for electronic hardware. Designing hardware

cores by programming them starting from scratch, is not easy, you need to know

about electronics, programming, and design tools. For instance, many steps need

to be done to ensure a design can be synthesized and translated to an FPGA or a

Silicon wafer, through several verification steps. Knowledge on FPGAs and

standard libraries is needed, and you need to be good at HDL programming.

4.3 Open Source EDA Tools

There are plenty of good EDA tools that are available as open source. The

use of such tools makes it easier for you to take advantage of the resources and

open cores available in related sites and forums. The larger and most used site

for this purpose is Opencores.org. You can access there IP cores and scripts for

an open source HDL simulator.

Here is a description of the most used terms and tools you will need to know.

Of course, as any practical tool, there is no other way to be a master than using

it and practicing.

Icarus Verilog Simulator. Icarus Verilog is a Verilog simulation and synthesis

tool. It works like a compiler: when you compile source code written in Verilog,

you can deliver different formats. For synthesis (the process of generating a

circuit design from a description language), the compiler generates net lists. These,

Chapter 4 The Open Source Design Tools

http://www.sciencepublishinggroup.com 89

and other compilers, elaborate design descriptions according to IEEE standards.

You can surf the internet to download the Icarus Verilog simulator.

Verilator. Verilator is a free Verilog HDL simulator. It compiles

synthesizable Verilog into an executable format and wraps it into a SystemC

model. Keep in mind that the resulting circuit after compilation greatly depends

on how you programmed it, so, the execution speed of the resulting model can

widely vary. Since Verilator has been used to simulate many very large multi-

million gate designs with thousands of independent modules, it is often chose as

part of several verification environments. You can also surf the web to find the

site for Verilator.

GUI-based design tools. For those not used to code by lines, there are GUI

tools (Graphic User Interface). Of course, the more easy and graphic the tool is,

the less control you have on the final representation of your design. A sample of

a GIU design tool is Fizzim, but there are several more. The advantages of using

a GUI tool are that they run in Windows or Apple, or anything with Java.

4.4 Open Cores Library

There are several internet sites where you can find circuit cores developed by

experienced designers. One of the most popular sites is www.OpenCores.org,

where you can find from the simple circuits, as adders and multipliers, to complex

designs as processors and memories. Even more, you can find complete systems

of hardware IP cores that you can download and use as open source. You can find

them in several Hardware description languages, such as VHDL, Verilog, Verilog,

SystemC, Bluespec, and C/C++. The developing stage or status of each core is

indicated, so you know how trust worthy or reliable a core is; the stages or

Integrated Circuit Design Using Open Cores and Design Tools

90 http://www.sciencepublishinggroup.com

versions of these projects can be Planning, Mature, Alpha, Beta and Stable.

Within the open source community, there are different licenses that apply to each

product; the licenses you will find are GPL, LGPL, BSD, among others.

A list of example core and projects is presented here, but it is very dynamic

so you can check recent cores on the website. The cores are grouped by purpose,

for instance: Arithmetic, Processors, Memories, Systems-on-a-Chip, and so on.

a) Arithmetic cores:

• Anti- Logarithm (square-root), base-2, single-cycle

• Discrete Cosine Transform core

• Elliptic Curve Group

• Floating Point Adder and Multiplier

• Gaussian Noise Generator

• Random number generator

• Maximum/Minimum binary tree finder

• Signed integer divider

• Sine and Cosine Table

• Trigonometric functions (degrees) in double fpu

b) Processors:

• ARM-compatible cores

• R6502 Processor

• Educational 16-bit MIPS Processor

• FORTH processor with Java compiler

Chapter 4 The Open Source Design Tools

http://www.sciencepublishinggroup.com 91

• HIVE- 32 bit, 8 thread, 4 register

• Leros: A Tiny Microcontroller for FPGAs

• 8051 compatible CPU

• MCPU- A minimal CPU

• Wishbone High Performance Z80

• ZPU- the world’s smallest 32 bit CPU with GCC toolchain

c) Memory cores:

• 8/16/32 bit SDRAM Controller

• Functional simulation models for commercially available RAMs

• High Performance Dynamic Memory Controller

• High Speed SDRAM Controller with Adaptive Bank Management and

Command Pipeline

• Parametrized FIFO based on SRL16E

• Single Port ASRAM

• Synchronous reset fifo memory

• Wishbone Flash Interface for Parallel FLASH

d) Communication controllers:

• 10, 100, 1000 Mbps Ethernet MAC

• 8b10b Encoder/Decoder

• A VHDL CAN Protocol Controller

• Ethernet MAC 10/100 Mbps

Integrated Circuit Design Using Open Cores and Design Tools

92 http://www.sciencepublishinggroup.com

• Ethernet Switch on Configurable Logic

• USB Device Core

• Wishbone SD Card Controller

• Space Wire Light

• Serial Port Interface Flash controller

e) System-on-Chip:

• Embedded FPGA Core

• Arm core

• RFID Transponder

• I2C Controller

• Real-time image processing unit

• OR1200 SoC

• Opens ARC-based SoC

• Soft Multiprocessor on FPGA

• MP3 Decoder

• NoC Network on chip

f) Other cores:

• 16x2 LCD controller

• 8254 Timer

• Alternative Oscilloscope

• Adjustable Frequency Divider

Chapter 4 The Open Source Design Tools

http://www.sciencepublishinggroup.com 93

• Keypad scanner

• DDS Signal generator

• Date time

• FM Receiver

• General purpose IO

• Sound Encoder

• PWM controller

• Multiple Switch Debouncer

• OpenRisc 1200 Graphic Configuration Tool

• Programmable Interval Timer

Licenses. Although the open source code is free software, there are

differences among the different license agreements that you accept when

downloading and using it. Here is a brief explanation of several licenses, and

you should check extensively the kind of license you are agreeing to. According

to the Open Source Initiative, an Open source license ―shall not restrict any

party from selling or giving away the software as a component of an aggregate

software distribution containing programs from several different sources. The

license shall not require a royalty or other fee for such sale. The program must

include source code, and must allow distribution in source code as well as

compiled form. Where some form of a product is not distributed with source

code, there must be a well-publicized means of obtaining the source code for no

more than a reasonable reproduction cost preferably, downloading via the

Internet without charge. The source code must be the preferred form in which a

programmer would modify the program. Deliberately obfuscated source code is

Integrated Circuit Design Using Open Cores and Design Tools

94 http://www.sciencepublishinggroup.com

not allowed. Intermediate forms such as the output of a preprocessor or

translator are not allowed‖.

LGPL. The GNU Lesser General Public License (LGPL) is a free software

license published by the Free Software Foundation (FSF) that allows developers

and companies to use and integrate LGPL software into their own software

without being required by the terms of a strong license to release the source

code of their own software-parts. For proprietary software, LGPL-parts are in

the form of a shared library so that there is a clear separation between the

proprietary and LGPL parts. The LGPL is primarily used for software libraries.

GPL. The GNU General Public License is a free license mostly used for

software and it is intended to guarantee your freedom to share and change all

versions of a program, to make sure it remains free software for all its users. So,

you need to check carefully the version you are using, since it can come from a

developer that has made a lot of changes to the original version.

BSD. The BSD license is a simple and liberal license for software. The

restrictions to users are that if they redistribute such software in any form, with

or without modifying it, they must include the original copyright notice, a list of

restrictions, and a disclaimer of liability. The restrictions are: one should not

claim that they wrote the software and should not sue the developer if the

software does not function as expected.

Chapter 5

Sample Implementation

http://www.sciencepublishinggroup.com 97

A functional implementation has been developed as a prototype of the

stimulation system by integrating a user interface, the application software

running in a processor based board, and a signal conditioning circuitry that

delivers to the fluidic device signals, patterns and sequences selected by the user.

The user interface allows the selection of signal and operation parameters, the

based board system runs the extended version of the application software and

shows the functionality of the multi-frequency synthesis methodology, and the

conditioning circuitry allows the system to deliver analog voltages in a range

that is needed in the majority of AC based electro-kinetics in micro fluidic

devices. This prototype implementation include all the configurable parameters

for a flexible setting that meets the functional requirements described in the

standard extended versions, and is also a portable prototype that can be easily

moved to different places or labs.

This chapter details the functionality of the extended version of the

application software, defines an experiment to be performed with this prototype,

show simulation results for a specific type of particles being manipulated,

describe and illustrate the experimental environment and, most important,

present the potential of this system in referenced research works about

experiments and devices where this stimulation system could be used, as a

stand-alone stimulation module or as a block to be integrated at chip level.

5.1 The Running Application Program

The extended version of the application program, developed to run on an

arm9 or Cortex-M3 based development board –the LM3S6965-. Extended

functionality is added, such as delivering data via an USB port for further

analysis of monitored or stored data, mixing different waveforms in a

Integrated Circuit Design Using Open Cores and Design Tools

98 http://www.sciencepublishinggroup.com

superimposed signal for more controlled experimental environments and an

interactive user interface for configuration and operation.

Data tables for the three signal wave forms (sine, triangle and saw tooth) are

displayed at start-up for demonstration purposes of the novel frequency synthesis

methodology to show the frequency superposition effect. A requirement for lower

frequencies was fulfilled by adding a new routine for frequencies smaller than

400 Hz, where a counter creates wait cycles so the time between samples in the

output port is extended. A cyclic delivering of same or different signal patterns

are delivered for a specific and individual period of time, is also available in the

extended version: multiple tests can be done with sequenced stimulation patterns

where each pattern may have different parameters such as frequency, samples per

cycle, and exposure time. Additionally, when a particular stimulus pattern is

found useful, it can be stored and re-used later so the experiment is repeated

without having to set the operation parameters.

Table 5.1 presents a routine list and description of the extended version. The

appendix A2 presents a documented version of the program code.

Table 5.1 Routine List and Description, Extended Version.

Routine Description

Store waveform

data tables

Stores 256 8-bit values for each of the three waveforms: Sine, Triangle and Saw tooth.

See Appendixes A for table content.

Get operation

parameters

Get operations parameters via the user interface. Displays parameter list and gets input

values.

Validate input

values

Check for frequency multiplicity in operation mode 2, check for 2-multiple number of

data samples, check for frequency out of range.

Check frequency

range

Separate operation into low and frequencies at 400 Hz. Low frequencies use up to 256

data samples per waveform cycle; high frequencies use up to 32.

Calculate Data

Separation

Desired output frequency and number of voltage steps determine how many data points

will be extracted from the original sine table in order to construct desired output signal.

Two data separation parameters are needed for operation modes 2 and 3.

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 99

Routine Description

Calculate base

time

According to desired frequency and number of voltage steps, there is a base times that

indicates the time between data points are sent to output port.

Create Table-

Mode1

Extract data from original sine table needed to construct 1 output signal, 1 single

frequency: each 8-bit data from original sine table is stored as the 8 least significant bits

of the 32-bit output port.

Create Table-

Mode2

Extract data from original sine table needed to construct two output signals, two

separated frequencies: if two 8-bit output ports can be stored at the same time with 32-bit

data, two data points from original sine tables must be concatenated before stored in

buffer memory table.

Create Table-

Mode3

Extract data from original sine table needed to construct 1 output signal, two

superimposed frequencies: data points for different frequencies should be added to

achieve superimposition.

Time match
When in superposition mode, does a time match between data samples for frequencies f1

and f2, since period and time between samples are different. See appendix A.

Clock set Set clock for system and parallel port control from board main oscillator.

Configure port Enable and configure parallel port A as output, as 8-bit set, output driving current.

Off-line monitor
When in off-line mode, data in final output table is displayed to monitor frequency

superposition methodology.

Output Signal

Generation, High

frequencies.

Continuous, uninterrupted loop, for loading data from buffer memory and storing it on

output ports. No memory other than buffer is read, no instructions other than those for

signal generation are executed.

Output Signal

Generation, Low

frequencies.

Loading data from buffer memory and storing it on output ports uses a counter to create

wait cycles and extend the time between samples. In this mode of slow output

frequencies, the restriction of no computation during synthesis is not necessary.

Generate multiple

sequences

When selected on user interface, cyclic delivering of same or different signal patterns is

delivered for a specific and individual period of time. Multiple tests can be done with

sequenced stimulation patterns.

Start/Stop

external interrupt

Start/Stop button is enabled as an external interrupt in two execution moments: at startup

to be ready for accepting configuration and operation parameters, and during Output

Signal Generation routine to stop signal.

5.2 Experiment Definition

A Carbon-DEP fluidic device is used for these experiments. The fluidic

device has 3-dimensional carbon electrodes above a comb-like planar array of

electrodes in a chess board arrange. This device was fabricated by pyrolysis of

Integrated Circuit Design Using Open Cores and Design Tools

100 http://www.sciencepublishinggroup.com

SU-8 structures defined by a two-step photolithography process following

standard C-MEMS techniques.

The electrodes are used to apply an electric potential to the micro-channel in

order to produce a non-uniform electric field distribution that will generate DEP

traps. The 3-Dimensional carbon structures are 40 µm high with a 12.5 µm

radius and a center to center separation of 45 µm and 100 µm in the X and Y

axis, respectively.

Deionized water with K2HPO4 as buffer solution with a final conductivity of

21 µS/cm was employed. Conductivity was measured with a multi-parameter

bench meter, Model HI 255 from Hanna Instruments.

Fluid sample preparation. Saccharomyces cerevisiae, 24858 yeast cells from

ATCC - a global nonprofit bio-resource center and research organization that

provides biological products, technical services and educational programs to

industries and labs- were growth in Yeast Malt Broth at 30° C for 18 hours until

late log phase. Cells were then centrifuged and re-suspended with deionized

water to remove the excess of culture media within the cells to a final

concentration of 6x107 cells/mL. Cells were labeled with Syto® 9 fluorescent

(490/520) green stain. For the non-viable yeast cells, a sample of cells from the

culture media is centrifuged and washed with deionized water, later to be heated

up to 80° C for 20 minutes. Non-viable cells are then labeled with propidium

iodide fluorescent (490/635) color red. Carboxylated fluorescent polystyrene

particles with a diameter of 10.14 and Dragon green color (480/520) were

employed in this work. Particles were prepared in the buffer solution to a

concentration of 2x106 spheres/mL.

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 101

Two mixtures, the first containing viable and non-viable yeast cells for

experiment 1, and the second containing 10.14 µm polystyrene particles and

viable yeast cells for experiment 2, were employed to evaluate the performance

of the signal excitation source.

The sample mixtures were introduced into the fluidic micro device using a

micropipette. The micro device was mounted under an inverted epifluorescence

video microscope for micro fluidics SVM340 from Lab Smith. A personal

computer was employed to manipulate the communication and operation of the

microscope.

5.3 Simulations

Simulation of crossover frequency spectra for different experimental settings

was performed using MATLAB. This allowed for the selection of the best

suspending medium conductivity, as well as for the selection of the most

adequate AC frequencies to be used on the experiments. Dielectric properties

for yeast cells were extracted from and from for polystyrene particles. To

compute the equivalent complex permittivity of yeast, the multi-shell model

presented in was used.

Finite element method based simulations were carried out using COMSOL

Multiphysics in order to obtain predictions of the experimental results. An array

of 4x5 electrode posts was considered on a plane located at 30 µm above the

channel floor. At this height the effect of the planar electrodes located at the

bottom of the channel are negligible. The channel geometry is shown in

Figure 5.1. Boundary conditions were set to electric insulation at the channel

Integrated Circuit Design Using Open Cores and Design Tools

102 http://www.sciencepublishinggroup.com

walls, and uniform AC electric potential at the electrode posts. The mesh for

this geometry consisted of 14,208 elements.

Two different experiments were planned: separation of live and dead yeast

cells using an AC signal of Vpeak to peak with a frequency of 100 Hz, and

separation of live yeast cells and polystyrene beads using an AC signal of

5 Vpeak to peak with a frequency of 28 kHz. The geometry section from which this

curves were obtained is represented by the red line plotted on Figure 5.1.

Figure 5.1 Geometry section of the fluidic device.

Simulations were performed and estimations of the experimental results are

shown in Figure 5.2 where it can be observed that dead cells will experience a

positive DEP force, causing the dead cell population to be attracted to the

electrode posts. On the other side, live cells will experience a negative repulsive

force. However, since the magnitude of this negative DEP force is low, live

cells are expected to be found near the posts but not in touch with them. For the

second experimental setup, live cells will now experience a strong positive DEP

force, while polystyrene beads are expected to be repelled from the posts.

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 103

Figure 5.2 Simulation of dielectrophoretic forces.

5.4 Experimental Environment

To define reliable experiments the user started by defining test parameters

from a previous known base used in manual experiments, like the frequency

value known to be effective for a particular manipulation experiment on a

specific type of particle. From there, the user can modify parameters such as

waveform, frequency, exposure time, or sequence of patterns. These parameters

can be changed one at a time or as a set for each test run. Once a set of

parameters is found to be effective for a specific manipulation experiment, that

test can be precisely repeated with no manual intervention.

This implementation shows a configurable system which delivers single, dual

and superimposed 30Vpp output signals with sinusoidal, saw-tooth and triangle

waveforms on frequencies going from 0.01 kHz to 40 kHz. The design is an

original application specific architecture which implements a programmable and

Integrated Circuit Design Using Open Cores and Design Tools

104 http://www.sciencepublishinggroup.com

configurable dual-frequency and multi-waveform signal generation system. The

instrument presented was implemented as a set of components: An application

specific user interface, a processor based prototyping board, and a signal

conditioning circuit. The C language user interface program was developed to

configure the experiment and to control the operation; the processor based

development board –the LM3S6965 with an ARM Cortex-M3® processor –

runs the application program that generates the electric stimulation signals; the

conditioning circuit takes digital data and finally delivers analog signals to a

fluidic device.

Figure 5.3 Elements of the board based implementation.

The core of this instrument is the application software that has been designed

specifically for electrical stimulation purposes and has configuration capabilities

that allow users to adapt the system to specific tests and applications with no

modifications to the hardware or the software. This design can be used as an

autonomous stimulation system or can be integrated into Lab-on-Chip designs.

Figure 5.3 shows how this stimulation system fits into a particle manipulation

setting: the stimulation system running on the LM3S6965 board takes operation

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 105

parameters from the User Interface, delivers sine, triangle, and saw tooth wave

digital data to the signal conditioning circuitry, which sends analog signals to

the micro-fluidic device.

A description of the instrument components is presented:

User interface. Has been developed to define the experiment environment by

selecting several operation parameters: select the operation mode between three

output options (One single frequency, Two separated frequencies, and Two

superimposed frequencies); set the frequencies (base and superimposed) for the

experiment; select the number of data samples desired for each frequency; select

the exposure time for the test, and start operation when ready for the experiment.

Figure 5.4 shows the options for setting operation parameters in the user interface:

Figure 5.4 User Interface for the board based implementation.

Development board. The LM3S6965 - an ARM Cortex-M3® processor based

board, shown in figure 5.5 - runs on a 50 MHz clock, has a 256Kb flash

memory, 64Kb of SRAM, and up to 42 general purpose output bits grouped in

8-bit output channels. The LM3S6965 stores and runs the application program,

Integrated Circuit Design Using Open Cores and Design Tools

106 http://www.sciencepublishinggroup.com

stores processed data needed for the signal generation, and delivers final data to

output ports. It has a USB port for the user interface and for re-programming the

board. Parallel 8-bit GPIO ports are used to deliver waveform ś data to the signal

conditioning circuitry. The whole system operation is done through the user

interface so no manual operation is regularly needed. An emergency start/reset

button can be used if an experiment needs to be interrupted before normal

operation finishes (Figure 5.5 d).

Figure 5.5 The LM3S6965 prototyping board: a) ARM® Cortex-M3 Processor,

b) GPIO port for output digital data, c) USB port for system programming and

debugging, and for connecting User interface when in running mode, d) Reset button,

e) Memory card slot for extra data and program storage.

Application Software. Designed for this flexible stimulation environment, it

includes the program code and the data tables for the three waveforms. The

program contains a frequency synthesis methodology specifically designed for

this system, so it can deliver single and dual frequency signals for a more

controlled test environment. The program executes operation according to the

set of parameters defined by the user and pre-stored data defines the selection of

available waveforms. Although, program and data can be modified according to

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 107

new users or new needs. Figure 5.6 shows a screenshot of the software

development environment, Red code suite ®.

Signal Conditioning. Consists of a digital to analog converter -DAC902- and

two AD811 as current-to-voltage converter and voltage amplifiers. Digital data

coming from the LM3S6965 board represents single or dual frequency

waveforms and are finally converted into a +/-15V analog signal to meet most

requirements of current test procedures. The system delivers 2-line analog signals

to be applied to the electrodes or stimulation spots in the micro fluidic device.

Figure 5.6 The user interface allows programming, running and debugging the

application.

This system has automated operation: stimulation parameters are selected

once, no intervention is needed during execution, and operation can be

automatically repeated. This is a programmable implementation since modified

Integrated Circuit Design Using Open Cores and Design Tools

108 http://www.sciencepublishinggroup.com

or new applications can be loaded into it. The advantages of this automated,

programmable, and intelligent manipulation system are: a) User interface allows

to configure and to operate the system for new tests and procedures,

b) Previously programmed test parameters for a known test sequence can be

stored and accessed later, c) More reliable data results are obtained due to

precise reproduction of test parameters, d) Multiple tests can be done and

repeated by programming test sequences, e) It can run the current application

with the current waveforms or to load and run a different program, and f) It can

be integrated to Lab-on-chip implementations or to portable Lab devices.

For experiment continuity, a relevant set of operation parameters can remain

loaded in the system for future use: the last set of parameters used for a

stimulation experiment is stored in flash memory so the system will perform the

last stimulation pattern the next time the system is used, even if it is turned off.

5.5 System Potential

Besides the simulations and experimental results presented, this stimulation

system has the potential to be used in a variety of particle manipulation systems.

The flexibility of its operation allows users from different application areas to

define a specific stimulation pattern by selecting signal parameters such as

frequency, waveform type, superposition, samples per cycle, time of exposure,

and sequence.

To show the potential of this system, possible applications have been

organized in four types:

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 109

• Electric stimulation already in use on particular experiments. Specific

experiments from research work that currently use manual or limited

electric stimulation show the type of signals used to achieve a particular

manipulation effect over a specific type of particles; it is shown here how

this system can substitute their stimulation means and improve their

research procedures.

• Integrated electric stimulation that can be used in devices currently at

proposal or design level. Published particle manipulation systems presented

as proposed or demonstration designs that integrate electric stimulation and

expose the need of automated stimulation; it is shown here how this system

can fulfill those needs by selecting the appropriate set of operation

parameters.

• Stimulation presented by theory on ACEK (Alternate Current Electro

Kinetics). Existing theory about electric stimulation for particle

manipulation presents the possible applications in a variety of fields by

using simulations or theoretical demonstrations; it is shown here how this

system can be used to comply with almost every application area that needs

electric stimulation.

• Applications which use electric stimulation, even if it is not directly

related to fluidic systems. Such potential applications go from impedance

spectrometry for cell characterization, dielectrophoretic characterization,

signal generation for DNA hybridization, or electro-rotation based

systems, to completely different research areas such as implantable

prosthetics, where new designs of prosthetic devices need to be tested

with electric stimulus similar to those received from a live nervous system.

Integrated Circuit Design Using Open Cores and Design Tools

110 http://www.sciencepublishinggroup.com

Tables 5.2, 5.3 and 5.4 show referenced research works that could use this

stimulation system. For each experiment or device, it can be seen in the tables

whether the system can be used as it is or if modifications in the program

application are needed to fit in that particular experimental setting.

Experiments. Experiments extracted from the reference list expose a specific

manipulation purpose over a particular type of cells or particles, so a specific

frequency value or a limited frequency range is used for a particular experiment.

Table 5.2 presents the electric stimulation used in actual experiments to show

that the stimulation system presented in this work can be used as the stimulation

module instead of generic signal generators and manual procedures. Regarding

the Voltage amplitude all the experiments require values within the range

delivered by this system. Even if higher voltages were needed they could be

achieved with additional amplifying stages in the signal conditioning circuitry

without modifying the SoC or the platform based design.

Table 5.2 Particle manipulation experiments.

Reference Experiment Electric stimulation used Purpose

1992

Experiment: Dual-frequency

dielectrophoretic levitation of

Canola protoplasts

Sine, f < 1kHz
Compare Single vs. Dual

Frequency effect.

2003

Separation of bioparticles using

the travelling wave

dielectrophoresis with multiple

frequencies.

+-6V, 200kHz,

2 superimposed frequencies

Separate red cells from

lymphocytes T in a blood

sample, simultaneous PDEP

and NDEP.

2005

Study of two-frequency

dielectrophoresis effects on a

linear array.

2 superimposed frequencies:

10Kz+500 Hz, 10- 20 Vpp. Large

particles NDEP & small particles

PDEP. F1<100kHz, f2>300kHz

Main f+low f broaden

frequency range for particle

separation. T from red

blood cells.

2008

Real-time continuous

dielectrophoretic separation of

malignant cells.

7Vrms, 30-50 kHz
Separate MD231 breast

cancer cells in blood.

2008

Micro fluidic Device for DEP

Manipulation and Electro-

disruption of Respiratory

Pathogen Bordetella pertussis.

Sine, 10V, 1 MHz AC and DC

sequence patterns.

Manipulation of respiratory

pathogens.

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 111

Devices. As seen from the State of the Art section in chapter 1, published

research works that involve a manipulation device, even if the work is at proposal

or design stage, they do not integrate the electric stimulation circuitry in the

design, or they talk about a limited integration proposal or a partially configurable

demonstration chip. From those device proposals a set of functionality and

stimulation parameters were extracted and presented in Table 5.3 to determine if

the system presented here can apply to those proposed devices. It was found that

the electric stimulation conformed by the signals and patterns delivered by this

system are useful in most of the proposed devices. In those cases where V and –V

are needed for the device an external high frequency inverter can be used to

obtain –V from the original +V.

Table 5.3 Particle manipulation Devices.

Reference Device Electric Stimulation Purpose

2000

Micro fabricated multi-

frequency particle impedance

characterization system

100kHz-10MHz, Sine signal,

frequency sweep.

Resistive and reactive impedance

measure for characterization of

particles and cells

2003

A CMOS Chip for Individual

Cell Manipulation and

Detection.

2 Sine voltages, phase and

counter-phase v1=-v2.

Stop and go stimulation for

grab & drag. 3.3-9.9Vpp, in

kHz range.

Detect and manipulate

Eukaryotic cells 20-30µm.

2003

A SoC bio-analysis platform

for real-time biological cell

analysis-on-a-chip.

Typical DEP stimulation

within a frequency range
Multi Bio-analysis.

2003

A programmable

dielectrophoretic fluid

processor for droplet-based

chemistry.

Up to 180Vpp, 5-500kHz,

varying voltage and

frequency

Manipulate contaminants,

chemical reagents, virus, and

cells.

2005

All CMOS Low Power

Platform for

Dielectrophoresis Bio-

Analysis.

one of four sine signals, 8

different phases, frequency

sweep 1kHz-5MHz

Show effect on poly-styrene

beads.

2007

A High-Voltage SOI CMOS

Exciter Chip for a

Programmable Fluidic

Processor System Current.

100Vpp, up to 200Hz, sine, 0

& 180º phase. Varying phase,

amplitude, and frequency

Use multiple droplets, set a

particle route for different

particles.

Integrated Circuit Design Using Open Cores and Design Tools

112 http://www.sciencepublishinggroup.com

Reference Device Electric Stimulation Purpose

2007

A Programmable Biochip for

the Applications of Trapping

and Adaptive Multi-sorting.

Sine, 8Vpp, 1MHz, V1=-V2,

Lab-view controlled

Multi-sorting of proteins and

DNA

2009

A robust electrical micro-

cytometer with 3-dimensional

hydro-focusing.

Sine, 4Vrms, 50kHz

Electrical impedance sensing to

detect T cells in blood, for HIV

diagnosis.

Theory. From the early research works on particle manipulation to recent

publications about more complex stimulation for highly controlled environments,

a summary of the AC signals and patterns needed for stimulation are shown in

Table 5.4 to illustrate that the mathematical proof and simulations also lead to

signals and frequency ranges be covered by this system. Travelling Wave

Dielectrophoresis is a specific sequence of Sine signals synchronized to form a

travelling electric field that produces a drag effect on the particles within a sample.

Table 5.4 Particle manipulation Based on Background Theory.

Reference Device Electric Stimulation Purpose

2003
AC Electro-kinetics—Colloids

and Nanoparticles.

Single frequency DEP, TWD,

4 phase Sine

Show mobility effects of AC

stimulation

2004

Dielectrophoresis-based

programmable fluidic

processors.

40V-100V, 1kHz, 2KHZ. 0

and 180º phase to

neighboring electrodes.

Titrating, moving and

mixing polar and non-polar,

conductive or not, droplets

2004

Sample handling in general-

purpose programmable

diagnostic instrument.

4 de-phased sine to repel &

attract, TWD to concentrate

particles in a spiral electrode

array.

If f>200kHz all viable cells

can be

Trapped

2007

Interactions of electrical fields

with fluids: laboratory-on-a-

chip applications.

2.2Vrms, 100 Hz, 500Hz,

1kHz, 35Vpp @ 100kHz,

24Vpp @ 1kHz

Describes ACEK

experiments: ACEO,

ACDEP, & ACET.

2010

Controlled micro-particle

manipulation employing low

frequency alternating electric

fields.

0.2-1.25Hz, 750V

Show the potential of

manipulation using AC

fields.

Following Table 5.5 allows visualizing a variety of experimental settings. An

experimental setting is defined by selecting the operation parameters for a

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 113

specific manipulation purpose. Note that changes in one or several parameters

define a whole new experiment setting and purpose.

Parameters that can be changed:

Operation mode: Single or Dual frequency. Waveform type: Sine, Triangle,

Saw tooth. Separate or superimposed frequencies. Frequency values for one or

two signals. Number of data samples per waveform cycle. Waveform selection

for superimposed frequencies.

Table 5.5 Samples of Experimental Settings.

Setting
Output

channels
Operation mode Frequencies Waveform

1 1 Single 50 Hz Sine

2 1 Dual Superposition, 10 Hz + 200 Hz sine over sine

3 2 Dual Separate, 5 Hz, 400 Hz Sine and sine

4 1 Single 300 kHz Triangle

5 1 Dual Superposition, 2kHz, 10kHz Saw tooth over saw tooth

6 1 Single 8 kHz Sine

7 1 Dual Superposition, 1 kHz + 5 kHz Triangle over sine

8 2 Dual Separate, 5 kHz, 10 Hz Sine, sine

9 1 Single 15 kHz Saw tooth

10 1 Dual Superposition, 1kHz, 7kHz Triangle over saw tooth

Set an experiment through the user interface.

Defining a specific experiment consists of selecting the appropriate set of

operation parameters in the user interface. Parameter values can be known from

previous experiments or from simulations. At least an idea of the convenient

frequency and voltage range is needed. Once the fluid sample has been prepared

and put in the fluidic device, the terminals that will carry the electric stimulation

Integrated Circuit Design Using Open Cores and Design Tools

114 http://www.sciencepublishinggroup.com

have to be connected to the device. Microscope and camera set have to be ready

too.

Here is presented the parameter selection, accessed through the user interface:

Operation Mode. 1 For Single frequency output, 2 for Dual superimposed

frequencies, and 3 for Dual separate frequencies.

Waveform for Signal 1. Choose between sine, triangle, and saw-tooth.

Frequency for Signal 1, f1. Signal 1 is the low frequency signal for the

superposition mode.

Number of samples for Signal 1, n1. The higher the number the less harmonic

components are found in the output signal and the lower output frequency can

be achieved.

Waveform for Signal 2, requested only if operation mode = 2 or 3.

Frequency for Signal 2, f2. Is the high frequency to be superimposed on the

low frequency Signal 1.

Number of samples for Signal 2, n2. The amount of memory space needed for

the final output table containing sample with both superimposed frequencies

could increase significantly if f2 >>f1. The amount of needed memory space for

output buffer table:

2
size 2

1

f
M n bytes

f

  
   
   

It is recommended that n2 <n1 to prevent that.

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 115

The exposure time for the stimulation, texp. The exposure time is achieved by

defining the number of waveform cycles to be delivered, N. Since f1 is the base

frequency in the case of superimposed frequencies, then

 1 exp
N f t

If a sequence of a different stimulation signal is needed, a similar set of

parameters has to be provided.

If the same test or sequence has to be repeated, the same set of parameters is

automatically used by the system if re-run.

A set of experiments is described to show the flexibility of this stimulation

system.

A specific manipulation experiment.

As shown in tables above, some experiments have already defined the

particular set of parameters needed to manipulate a specific type of particles or

cells. This set of parameters is introduced once in the user interface and

execution are repeated over new fluid samples without changing the parameter

set. Another scenario is that the user has an idea about the parameters to be used

in an experiment, but not the exact values. In this case user can play with the

parameters until the appropriate set of parameters is found.

Once the exact set of parameters is known by achieving the desired

manipulation effect, the values can be stored and accessed later to precisely

reproduce the experiment.

A particle characterization experiment.

Integrated Circuit Design Using Open Cores and Design Tools

116 http://www.sciencepublishinggroup.com

Particle characterization experiments may need a frequency sweep in x10

steps to first determine a smaller range to work. A set of sequences can be

defined, and a special case were fnew= 10*fold can be defined in program to cover

all the frequency range, going through 0.1 Hz, 1 Hz, 10 Hz, 100Hz, 1kHz,

10kHz, …up to the maximum output frequency.

For example, in a sensor measures resistive and reactive impedance of

circulating particles. Particle impedance is measured at three or more

frequencies simultaneously, enabling the derivation of multiple particle

parameters such as blood granulocyte radius, membrane capacitance, and

cytoplasmic conductivity.

A frequency sweep experiment.

Some experiments require observing the mobility effect under different

frequencies. In those cases the whole frequency range delivered by this system

can be swept in user defined steps. An initial fi frequency is selected, a

frequency step fs is defined, and a time period tr for each repetition is introduced.

This way each following tr a new frequency fi+1=fi+fs is delivered during tr

seconds. In a feasible procedure that uses DEP phenomenon as a method of

separation of the abnormal cells from the blood stream is presented.

Negative and positive DEP (NDEP and PDEP) forces generated by a

non-uniform electric field are engaged to separate the normal blood cells from the

malignant ones. By fine tuning the parameters of the electric field different types

of abnormal cells are isolated. It is noticed that at a frequency of 30 kHz all blood

cells and the cancer cells experienced a PDEP, and the cells started accumulating

in the area of low electric field. Increasing the AC frequency to 50 kHz, the

cancer cells experienced PDEP and gathered over the tip of the electrodes array

Chapter 5 Sample Implementation

http://www.sciencepublishinggroup.com 117

where the maximum electric filed is present. At the same time the blood cell still

with from the electric field. To perform a similar procedure for different cell types

within a blood sample, a frequency sweep experiment can be used.

A dual frequency experiment.

If two different particles are present in the same fluid sample, they can be

separated by applying two frequencies simultaneously. Particles can be different

in type, size, or of the same type but different because one are alive and the

others are dead, or because they present a different development stage. In there

is an analysis for a mixture of two different types of particles: they choose an

angular frequency, w, such that the real parts of the Clausius Mossotti function

at U (or Re[G(jw)]) of the two different types of particles have different signs).

Then an electric field produces time-averaged dielectric forces in such that the

particles with Re[G(jw)]> 0 get attracted to the maximum points of the field,

and the particles with Re[G(jw)]< 0 get repelled away from those points.

In a similar analysis they consider an example where the goal is to separate

two types of latex balls with a very small difference between both cross-over

frequencies, so that the electric field of single frequency is not effective.

A saw-tooth waveform experiment.

It has been shown in previous table that saw-tooth waveforms are useful in a

drag-trap effect; during the linear voltage rise the particles are moved to a

certain point, and once the voltage exceeds certain level they remain trapped.

An interesting effect can be achieved when a saw-tooth over a sine signal is

used, because two different types of particles are manipulated, and the more

distant the two frequencies, the more different the particles.

Chapter 6

Integrated Circuits for Intelligent Systems

http://www.sciencepublishinggroup.com 121

The term Intelligent System is being used in a more extensive and inclusive

way. It covers systems that perform intelligent functions, understanding by

intelligent that it seems to think and decide, based on information it has and

information it takes from the environment. An easy example to understand this

concept is a Smartphone’s. They are called smart because they read the

environment and take actions based on what they find: they detect if Wi-Fi

networks are available, they use the GPS to know where they are, and so on. In

consequence of those readings it can tell the user what to do or use. The decision

making process involves hardware and software within the smart device. A robot

is also smart, in the way its software and hardware allows him to be. The more

sensors it has, and the more complex its program is, it will be more intelligent and

can be able to control more output elements and perform more actions.

Nowadays people are more familiar with intelligent systems and, by now,

people born in this decade cannot imagine a functioning world without them.

We all now count and rely on intelligent systems for everyday activities such as

electronic banking, automated parking, electronic document sharing, and

permanent communication capabilities, among others.

More recently, connectivity capabilities are becoming the more important

feature of an intelligent device or system. Specific functionalities of each device

can still grow and innovate, but it is more and more important that a device can

connect with other, similar or different, devices and systems.

This is how the concept of smart cities, smart grid, and smart cars has been

defined. A smart system consists now on a set of interconnected devices, either

they are of the same nature and purpose, or not.

Integrated Circuit Design Using Open Cores and Design Tools

122 http://www.sciencepublishinggroup.com

The following examples, although its outside is known by everyone, show

that all systems are the same inside: they have a processor to execute the

instructions, a memory to store that instructions, sensors to detect what they

need from the environment, actuators to perform the functions, and

communication capabilities to connect with others.

Smart house: The control system includes light sensors, motion sensors,

proximity sensors, temperature sensors, timers, in order to operate the lighting

network, the alarm system, the air conditioning system, the access doors, and so

on. The more elements it has, the smarter it looks.

Smart building: Same idea than the smart house, and additionally it may

include collective access control, separated areas air conditioning, access record,

access reports, energy efficiency programs, personnel data base. You can notice

that sensor and actuators sound similar than those in smart houses, but

processing and storage capabilities need to be larger.

Smart parking: Commercial centers, Corporate buildings and Residential

complexes use to have access control, assigned placement, and space

optimization. For this, they need a smart control, like the ones mentioned in

previous smart systems: sensors, actuators, program, data management and

storage, user interface. The administration of space, maintenance cost, users and

rates are now common elements in parking systems. And what if you need to

know in advance, prior to your arrival to the parking lot, if they have spaces

available and what is the current rate? The system should be available through a

web page or an app, so users do not discard this parking from their options by

not having that information available anytime and anywhere.

Chapter 6 Integrated Circuits for Intelligent Systems

http://www.sciencepublishinggroup.com 123

Smart grid: As the green movement becomes more important and global

impact on energy resources is a regular element in business decisions, also is

becoming important the smart grid concept in large cities. The grid that supplies

energy to the city (cables, stations, transformers, and measuring devices) can be

aware of the user’s consumption habits and needs. The energy demand of a city,

and of every city district or area, depends on the season, the time of the day, and

the day of the week, among other factors. It is useful for the energy provider to

know the demand patterns so they can manage the energy distribution,

maintenance tasks, rates, and so. A smart greed consists of a regular energy grid

plus the needed sensors and measurement devices to know and predict the

energy patterns and take decisions for energy optimization and use.

Smart cars: People still use to name the smart system of a car as the ―car

computer‖. It was a proper name when the concept began, because the first cars

used to have one system that received signals from simple sensors like rpm

readers, impact sensors, and proximity detectors. With this signals and a simple

program, a central computer decided things like activate the airbags when an

impact occurred, activate the ABS when the regulars breaks were not enough

for an efficient speed reduction, and to activate a bip signal if the car was too

close to the next car, the sidewalk, or an object behind. But, as processes

became more complex, the need for independent controls arose and cars had

more than one computer. For instance, a state of the art car, these days, has

more than 60 independent intelligent controls or ―computers‖: one for the fuel

injection system, one for ABS, one for the security tasks, one to collect and

store all the info needed for the maintenance procedures (have you noticed that

today’s mechanics is not about checking under the car to find out what the

malfunction comes from, but to download the computer information to analyze

the sensor’s measurements over time, and what the system is concluding the

Integrated Circuit Design Using Open Cores and Design Tools

124 http://www.sciencepublishinggroup.com

problem is), one for entertainment, and the list of new needs will never stop.

And of course, all the systems need to know what is going on with the other

sub-systems, as their decisions depend on the other’s decisions. At this point,

the need for a local network between subsystems is needed, so all of them

require communication or interconnection capabilities, and a central system to

coordinate the operation between them.

Smart city: What will happen next, after many of the systems living in a city

have their own intelligence? The obvious next step is to connect them all

together and see what additional intelligence can result from that. The smart

grid can know the energy consumption patterns from the smart houses, smart

buildings and smart parking. The smart cars can take advantage from the traffic

information collected from the City Traffic System. All the smart systems in the

city can be accessed using a data center, so any store, service center, weather

center, manufacturer and user, can access information in real time and take

smart decisions.

Smart manufacturing: When a company already has stable in quality control

schemes and lean manufacturing, decides to move towards smart Manufacturing.

We are accustomed to using terms like Smartphone, Smart TV and Smart

Cars; soon it will be Smart House, Intelligent Building, Smart City and finally,

intelligent planet, meaning that an intelligent system uses its resources to create,

manage, and use information to help you make decisions and actions wisely.

Referring to the context of manufacturing, it covers to have information in

real time, ensuring its flow and access, and maintain integrated and scalable on

which to base all business decisions. This will fundamentally change the way

products are invented, manufactured, transported and sold.

Chapter 6 Integrated Circuits for Intelligent Systems

http://www.sciencepublishinggroup.com 125

When a company decides to join the Smart Manufacturing trend, it will

inevitably find other issues when integrating intelligence: Safety and

interoperability of data, modeling of production, simulation market, Sustainable

Production, Integrated processes, Sensor Networks, Knowledge Management,

Zero emissions and, of course, cloud Computing. These terms are not new, but

now they must be integrated into a system that includes planning, production,

operation, and vision of the company.

Now, if we understood the idea of system intelligence, and we were convinced

that we must make the transition, we can classify the next steps into 3 phases:

Integrate into one system all the information from all lines, processes and

products of the company. It will take time but it is essential. Since IT resources,

sensors, motors, automatic controls, and software to manage production, but

each is an efficient island.

Make models and simulations that allow flexible manufacturing, demand

production and product customization when markets change rapidly.

When the previous phases progress, create scenarios for innovation, and

manage to break the paradigms of today's markets. These breaks are generated

by innovative technologies in processes and products. This phase will reverse

the traditional chain where the consumer was forced to buy what it was mass

produced.

6.1 The Smart Systems and the Integrated Circuits

Having said that, a question arises: What’s the link between Smart systems

and Integrated circuit design? The answer is that the core of an intelligent is,

Integrated Circuit Design Using Open Cores and Design Tools

126 http://www.sciencepublishinggroup.com

mostly for sure, an integrated circuit. Not a generic or over-the-counter circuit,

but an Application Specific Integrated Circuit.

If you were able to open a smart phone, or the car computer, or the robot brain,

you will find, at the end, an integrated circuit specifically designed for that

purpose. More often than not, it will be only one integrated circuits that includes

processor, memory, communication ports, and even sensors and actuators.

What is important about this book is that the design procedures described here

are universal and non-dependant of the application or need you want to solve.

ASICs for commercial products. ASIC stands for Application Specific

Integrated Circuit, so it means somebody detected an opportunity to develop an

original circuit to attend a specific need, and then developed a circuit

specifically for that purpose. Examples of this are: A commercial brand for

refrigerators decides, for the first time, that it will be useful to have internet

connection available in its refrigerators, so the customer can connect from any

place and check what’s in the fridge, or to send a list to the store every weekend

of what is missing and have it delivered to your home. The circuit designer

starts from the previous circuit (not from scratch) and adds the needed circuitry

to complete the monitoring and detection tasks. If successfully designed, it will

lead to what is called an intelligent system, because it apparently understood

what happened in your refrigerator, decided that you needed more bananas and

milk, and ordered them for you. In this example, you design a circuit

specifically intended for that application. The understanding and decision

making was made by the carefully designed combination of circuit and program.

By the way, if you take this same circuit and connect it to your microwave oven

it will not know what to do or will do something wrong. So, this is an

Application Specific Integrated Circuit.

Chapter 6 Integrated Circuits for Intelligent Systems

http://www.sciencepublishinggroup.com 127

It may have sounded casual, but the fact that you should not start a design

from scratch, but from what has been already designed before, is one of the

main rules of circuit design: You should never start a new design assuming

nothing like it has ever been done before. If you start from zero, it will take you

more time than other designers to get your idea implemented, and by then you

will be out of the competition for your idea’s market.

In this time and age where there is a solution for almost everything, you may

think: what can I design if everything is already done. Nothing more wrong than

that. The more complex our environment is, the more opportunities for ideas we

have.

6.2 ASIC for Customized Applications

There are design opportunities that may find broader fields of application,

meaning that you want to design a circuit that has some of the functionality

defined and limited by the cores it has inside, but other functionalities can be

defined by the final user. Which is final by design is the hardware, of course,

but you can load a small operative system or a program application that allows

the user to program his own application, purpose specific, and can load it in the

memory Space, you as the designer, left available for that.

In the same sense, a designer can provide external access to the modules

inside the integrated circuit, by having the in-chip address bus, available on

external pins. This will increase the pin out of the IC, the packaging and will

move the place-and-route, but the benefit of an open system supersedes the

design difficulties. The sample application presented in this book shows how

this can be done. It illustrates concepts like:

Integrated Circuit Design Using Open Cores and Design Tools

128 http://www.sciencepublishinggroup.com

Open architecture: the integrated circuit has the address bus available in the

external pin out, so other devices using the same bus can be connected to it. As

long as address assignment stays compatible, the interconnection of other

devices has no limit through this bus.

Programmable: a memory space is reserved to download a different

application program, or additional functions to those already loaded.

Configurable: Many functions are preloaded in the memory chip, by design,

but in the user interface of the application some of those functions can be

disabled, so they do not take execution time.

6.3 Design and Market Trends

The integrated circuit market have been revolving around developing faster,

smaller, and less power consuming components, and it will continue to do so

unless a completely different technology is developed.

Each of the 3 variables depends on two factors: the technology and tools

available at the moment, and the designer technical capabilities and knowledge.

None of them completely compensates the other, so both, the technology and

the developer, need to be good to achieve a usable product.

Faster: As silicon transistor based technologies became smaller, they are also

faster. That way we went from tenths of nanometers to a single digit figure. As

for edition time of this book, smaller has always been more expensive to

fabricate, so older machines working with larger transistor sizes are cheaper but

no big companies want cheaper and slower circuits. That way, the cheaper

fabrication options are good for beginners or universities on small budgets. The

Chapter 6 Integrated Circuits for Intelligent Systems

http://www.sciencepublishinggroup.com 129

developer competences come in play when designing the HDL program: a

designer needs to keep in mind that loops, variable assignment, variable sizes,

data transfers and so, will finally translate into circuits. And circuits can be

efficient in their implementation or not. A simple example to understand this

idea is to think on a simple adder being implemented in a protoboard by 2

students; each of them can have a different idea on how to do it, then use

different gates or array of gates, or use multiplexers. At the end, the two circuits

will be different in appearance, in size, in gate count and, consequently, in

response time. This illustrates how your programming style impacts your design

size and speed. Besides, your programming language is also a factor: designers

who prefer to program in C see this idea clearly: when a C program is

transferred to HDL the sizes are completely different meaning there is no

optimization possible when you program in a high level language that does not

allow you to see how your program will look when in the final language.

Smaller: As mentioned in the paragraph above, silicon based technologies

became smaller over the years. There is a size limit as connections and

transistors need to transport electrons, and electrons have dimensions. Under

this idea, the smallest a wire or transistor can be, is related to the electron size,

so it can freely transit through it without reducing its speed or overheating the

wire. About the designer skills, core size and placement are the main issues in

circuit size. Core size comes from the synthesis process, where HDL design is

translated into circuits, and the programming style impacts the resulting circuit.

Once each core is size optimized, the pin placement determines where each core

is going to be placed within the integrated circuit; space between cores is

needed for interconnections, so you want to be safe and leave more space than

needed, but external pin-out may demand that cores be placed differently than

interconnections suggest. There is no single solution for a good route and

Integrated Circuit Design Using Open Cores and Design Tools

130 http://www.sciencepublishinggroup.com

placement, which is one of the more careful design processes, other than the

cores design.

Less power: Power consumption by an integrated circuit is separated in two

types: active and passive consumption. Passive is the power it takes to keep the

circuit ON even if it is not running the application or any part of the program;

this state could be named as Stand-by. Active consumption is when the circuit is

operating or running. Of course active consumption is larger than passive, but

active is not a fixed or constant figure: Not all parts of the hardware and

software architecture are being used in every function of the system, so the

power consumption rate depends on the function currently executed or

performed by the circuit. In a simple integrated circuit, as a 4-NAND gate

circuit, it is easy to estimate the amount of power being consumed if one, or two,

or four gates are ON. For an integrated circuit that has a running processor

executing a complex application program, a power simulation is needed to

determine the low and high consumption peaks.

Modularity is also a trend, meaning that a complete system is built over

interchangeable blocks that can define capabilities and functionality using a

common platform. Modular systems are upgradeable by definition, as the user can

change the processor, the memory or storage capabilities, the communication

components, and so on.

Modularity in hardware, for circuit designers, is a constant in any design, as no

one starts a new design from scratch, but from the previous product or from

something similar. Design teams work by developing independent and coherent

blocks that will finally complete the hardware architecture. But for the final user

of a product, like a cell phone, a computer or a tablet, the product is a closed

Chapter 6 Integrated Circuits for Intelligent Systems

http://www.sciencepublishinggroup.com 131

hardware architecture where the user chooses the architecture when buying a

product, and can do nothing or just a little to add or upgrade circuits or blocks in it.

Modularity in software has been here for a long time, as it is the concept

behind Apps: the main operative system is the foundation, and the apps are the

added blocks to complete a different software system based on the preferences

of each user.

Figures 6.1 to 6.4 show examples of applications for embedded and intelligent

systems, in every day uses.

Figure 6.1 Example of embedded systems in automotive.

Figure 6.2 Example of embedded systems in aeronautics.

Integrated Circuit Design Using Open Cores and Design Tools

132 http://www.sciencepublishinggroup.com

Figure 6.3 Example of embedded systems in safety monitoring.

Figure 6.4 Example of embedded systems in home appliances.

http://www.sciencepublishinggroup.com 133

Glossary

ASIC: An integrated circuit designed for one particular use, such as

substituting many small integrated circuits with a larger but specific one.

Address bus: A unidirectional set of signals used by a processor to point to

memory locations in which it interested, in a certain device or circuit.

Analog: A continuous value that most closely resembles the real world and

can be as precise as the measuring technique allows.

Analog circuit: A collection of components used to process or generate

analog signals.

Bit: A zero or one value or representation in the binary language of computers.

Byte: a package of 8 bits.

Clock tree: This refers to the way in which a clock signal is routed

throughout a chip. This structure is used to ensure that all of the flip flops see

the clock signal as close together as possible.

Custom circuit: An Integrated circuit designed and manufactured for a

particular customer.

Data Bus: A bidirectional set of signals used by a computer to convey

information from a memory location to the central processing unit and vice versa.

Design flow: Design flows are the explicit and graphic combination of

electronic design automation tools and representation to accomplish the design

of an integrated circuit.

Glossary

134 http://www.sciencepublishinggroup.com

Die: The small piece of the wafer on which an individual semiconductor

device has been formed.

Digital Circuit: A collection of logic gates used to process or generate digital

signals.

Diode: A two terminal device that conducts electricity in only one direction.

EDA: Electronic design automation is a category of software tools for

designing electronic system such as printed circuit boards and integrated circuits.

Hardware: Generally understood to refer to any of the physical portions

constituting an electronic system, circuit boards, power supplies and monitors.

Hertz: Unit of frequency. One hertz equals one cycle or one oscillation per

second.

IC layout: Also known as mask design, it is the representation of an IC in

terms of planar geometric, so components can be visualized and placed.

Integrated circuit: A complete electronic circuits composed of interconnected

diodes and transistors on a single semiconductor substrate.

IP Core: Reusable unit of cell or chip layout. IP cores are used as building

blocks within chip designs.

Micros: A micrometer, or one-millionth of a meter.

RAM: A data storage device from which data can be read out and into, which

new data can be written on.

Glossary

http://www.sciencepublishinggroup.com 135

Semiconductor: A material (silicon or germanium) that has four electrons in

its outer ring and is a poor conductor of electricity.

Silicon: The basic material used to make the majority of semiconductor wafer.

SRAM: A type of RAM that has self contained memory circuitry. Memories

are categorized by speed and by storage capacity.

Transistor: A three terminal semiconductor device used mainly to amplify.

Via: A hole filled or lined with a conducting material, which is used to link

two or more conducting layers in a substrate.

Wafer: A thin disk, from 3 to 8 inches in diameter from silicon or other

semiconductor material. The same or different integrated circuits can be printed

in one wafer.

http://www.sciencepublishinggroup.com 137

References

[1] Lopez M, Gerstlauer A, Avila A, & Martinez-Chapa S. (2011). A programmable

and configurable multi port System on Chip for stimulating electrokinetically drive

microfluidic devices (8361-8364). IEE Conference publications.

[2] Lopez M, Hernandez M. Gonzales H. Martinez S. (2013, March). An electric

stimulation system for electrokinetic particle manipulation in microfluidic devices.

Review of Scientific Instruments.

[3] Jupiter, XT. (2006). Synopsys, Top-Down Hierarchical Flow, User Guide, Version

Y-2006.06.

[4] Gascoyne P, & Vykonkal J. (Jan 2004). Dielectrophoresis-based sample handling

in general-purpose programmable diagnostic instrument (Vol 92, pp 22-42). IEEE

Proceedings.

[5] Manaresi N, Romani A, Medoro G, Altomare L, Leonardi A, Tartagni M, & R

Guerrieri. (2003). A CMOS Chip for Individual Cell Manipulation and Detection.

(Vol. 38, pp. 2297-2305). IEEE Journal of Solid-State Circuits

[6] Tierney J, Rader C & Gold B. (1971). A digital frequency synthesizer. (Vol 19,

pp 48-57). IEEE Transactions on Audio and Electroacustics.

[7] Choi Y, Kim Y, Im M, Kim B, Yun K & Yoon E. (2006). Three Dimensional

Electrode Structure Controlled by Dielectrophoresis for Flow-Through Micro

Electroporation System. (pp 466-469). IEEE International Conference on Micro

Electro Mechanical Systems.

[8] Chang F, Lee Y & Chiu Ch. (2008). Multiple Electrodes Arrayed

Dielectrophoretic Chip with Application on Micro-Bead Manipulation. IEEE

Proceedings.

[9] Ibrahim M, Elsayed F, Ghallab Y & Badawy W. (2009). An Electric Field Array

Microsystem for Lab-on-Chip and Biomedical Analysis. (pp 89-92). IEEE

Conference on Biomedical Circuits and Systems.

References

138 http://www.sciencepublishinggroup.com

[10] Standard library SRAM Generator, from Artisan, User Manuel, revision

ug_2004q1v0.

[11] Standard library 0.13um - 0.25 um ROM Generator, from Artisan, User Manuel,

revision ug_2004q3v1.

[12] ASIC Design Flow Tutorial, Nano-Electronics and Computing Research Center,

San Francisco State University.

[13] OpenCores. (2015). OpenCores. Recuperado el 2015, de http://opencores.org/

[14] Design Compiler User Guide, Synopsys, Version C-2009.06.

[15] Library Data Preparation for IC Compiler, User Guide, Synopsys, Version

D-2010.03.

[16] Li H, Yanan Z, Akin D & Bashir R. (2005). Characterization and modeling of a

microfluidic dielectrophoresis filter for biological species. (Vol 14. pp 103-112).

IEEE Journal of Microelectromechanical Systems.

[17] Yuk K, Mc Conaghy C, Gascoyne P, Schwartz J, Vykoukal J & Andrews C.

(2007). A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic

Processor System Current‖, K.W.; Biomedical Circuits and Systems. (Vol 1.

pp 105-115). IEEE Transactions on Biomedical Circuits and Systems.

[18] Rosa C, Tilley P, Fox J & Kaler K. (October 2008). Microfluidic Device for

Dielectrophoresis Manipulation and Electrodisruption of Respiratory Pathogen

Bordetella pertussis. (pp 2426-2432). IEEE Transactions on Biomedical

Engineering.

[19] Villemejane J, Mottet G, Francais O, Pioufle B, Woytasik M & Dufour-Gergam E.

(2010). Nanomanipulation of Living Cells on a Chip Using Electric Field.

(pp 229-232). IEEE International Symposium in Electronic Design, Test and

Application.

http://opencores.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(li%20%20h.%3cin%3eau)&valnm=Li%2C+H.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20yanan%20zheng%3cin%3eau)&valnm=Yanan+Zheng&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20akin%20%20d.%3cin%3eau)&valnm=Akin%2C+D.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20bashir%20%20r.%3cin%3eau)&valnm=Bashir%2C+R.&history=yes

http://www.sciencepublishinggroup.com 139

Appendixes

This section has been constructed for easy access to the most relevant

information about the developed work. Here is found the application program

for the standard and extended versions, an illustration of the signal

superposition methodology, the content of the base, temporary, and output data

tables, a summary of the user interface, a compact description of the SoC design

flow, and the final SoC parameters.

 A.1 Application Program: Standard Version

The standard version has been developed for the SoC design. It can be stored

in in-chip ROM or uploaded to chip RAM at boot time.

/* Name: boardv2.c

Author: Martha Lopez

Version: Board_Extended_v2, 256 data sine samples, buffer table OK, all

frequencies, three operation modes

Copyright: (C) Copyright

Description: Board version, standard functionality, sine, saw-tooth, triangle */

// include files

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

//definitions and declarations

Appendixes

140 http://www.sciencepublishinggroup.com

#define Pi 3.14159265358979323846264338327

static unsigned int sinedatint[256] =

{ 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169,

172, 175, 178, 181, 184, 186, 189, 192, 194, 197, 200, 202, 205, 207, 209, 212,

214, 216, 218, 221, 223, 225, 227, 229, 230, 232, 234, 235, 237, 239, 240, 241,

243, 244, 245, 246, 247, 248, 249, 250, 250, 251, 252, 252, 253, 253, 253, 253,

253, 254, 253, 253, 253, 253, 253, 252, 252, 251, 250, 250, 249, 248, 247, 246,

245, 244, 243, 241, 240, 239, 237, 235, 234, 232, 230, 229, 227, 225, 223, 221,

218, 216, 214, 212, 209, 207, 205, 202, 200, 197, 194, 192, 189, 186, 184, 181,

178, 175, 172, 169, 166, 163, 160, 157, 154, 151, 148, 145, 142, 139, 136, 133,

130, 127, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78,

75, 72, 69, 67, 64, 61, 59, 56, 53, 51, 48, 46, 44, 41, 39, 37, 35, 32, 30, 28, 26,

24, 23, 21, 19, 18, 16, 14, 13, 12, 10, 9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 23, 24,

26, 28, 30, 32, 35, 37, 39, 41, 44, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72,

75,78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123 };

static unsigned int toothsawdat[256] =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,

106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,

138, 139, 140, 142, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,

170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,

186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,

202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,

218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,

Appendixes

http://www.sciencepublishinggroup.com 141

234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249,

250, 252, 252, 253, 254, 255 };

static unsigned int triangdat[256] =

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44,

46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,

88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120,

122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152,

154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184,

186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216,

218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248,

250, 252, 254, 255, 254, 252, 250, 248, 246, 244, 242, 240, 238, 236, 234, 232,

230, 228, 226, 224, 222, 220, 218, 216, 214, 212, 210, 208, 206, 204, 202, 200,

198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 174, 172, 170, 168,

166, 164, 162, 160, 158, 156, 154, 152, 150, 148, 146, 144, 142, 140, 138, 136,

134, 132, 130, 128, 126, 124, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104,

102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64, 62,

60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20,

18, 16, 14, 12, 10, 8, 6, 4, 2 };

unsigned int timeindex1int[256], timeindex2int[256], timeindexbuffint [256];

unsigned int TempTable1int[256], TempTable2int[256]; // Temporary tables

//modes 2 & 3, scale 0 to 255

unsigned int BuffTable[256]; // Output table, data to port

double trunc(double arg);

float tbs, tbs1, tbs2; // time between samples, signal 1 and 2

int dat_samples_buff1, dat_samples_temp1, dat_samples_temp2; //number of

//samples in output table

int opmode; //operation mode: 1 single signlal, 2 superimposed, 3 separate

//signals

Appendixes

142 http://www.sciencepublishinggroup.com

int signaltype; //signal type: 1 sine, 2 saw-tooth, 3 triangle

float freq1, freq2; //selected frequency for outputs 1 and 2

int N, n1, n2; //samples per waveform cycle, signal 1 and 2

void GetOperParam()

{

printf ("Operation mode: 1, 2 or 3:\n ");

scanf ("%d", &opmode);

//printf ("Selected Operation mode = %d\n", opmode);

printf ("Signal type, 1 sine, 2 tooth, 3 triang:\n ");

scanf ("%d", &signaltype);

//printf ("Selected signal type = %d\n", signaltype);

printf ("Output single/low frequency in KiloHertz:\n ");

scanf ("%f", &freq1);

printf ("Samples per cycle: \n");

scanf ("%d", &n1);

if (n1<9) n1=8;

if (n1>8 & n1< 17) n1=16;

if (n1>16 & n1< 33) n1=32;

if (n1>32 & n1< 65) n1=64;

if (n1>64 & n1< 129) n1=128;

Appendixes

http://www.sciencepublishinggroup.com 143

if (n1>128) n1=256;

printf(" %d\n", n1);

if (opmode>1)

{

printf ("Output high frequency2 in KiloHertz:\n ");

scanf ("%f", &freq2);

printf ("Samples per cycle 2: \n");

scanf ("%d", &n2);

if (n2<9) n2=8;

if (n2>8 & n2< 17) n2=16;

if (n2>16 & n2< 33) n2=32;

if (n2>32 & n2< 65) n2=64;

if (n2>64 & n2< 129) n2=128;

if (n2>128) n2=256;

printf(" %d\n", n2);

printf ("Leaving function GetOperParam\n");

}

}

void SineDisplay(int N)

{

Appendixes

144 http://www.sciencepublishinggroup.com

unsigned int iter;

printf ("Entering function SineDisplay ORIGINAL SINE TABLE \n");

for (iter = 0; iter < N; iter++)

{

printf("[%d] ", iter);

printf(" %d\n", sinedatint[iter]);

}

}

void BuffTableGen(int N, int n)

{

unsigned int dsepi;

double dsepd;

unsigned int iter;

unsigned int i;

unsigned int j;

printf ("Entering function BuffTableGen mode 1\n");

i=0;

dsepd=N/n;

dsepi=dsepd;

j=dsepi;

Appendixes

http://www.sciencepublishinggroup.com 145

printf("data separation int, mode1 = %d\n ", dsepi);

for (iter = 0; iter < N; iter=iter+dsepi)

{

/*printf("Data number = %d\n ", iter);*/

if (signaltype == 1) BuffTable[i]=sinedatint[iter];

if (signaltype == 2) BuffTable[i]=toothsawdat[iter];

if (signaltype == 3) BuffTable[i]=triangdat[iter];

/*printf("Original data = %.6ef\n ", sinedat[iter]);*/

printf("%d\n ", BuffTable[i]);

dat_samples_buff1=i;

i=i+1;

}

printf("Amount of data samples in buffer table = %d\n ", dat_samples_buff1);

printf ("Leaving function BuffTableGen mode 1\n");

}

void TempTable1Calc(int N, int n1)//prepare temp table signal 1, modes 2

& 3

{

unsigned int dsepi;

double dsepd;

unsigned int iter;

Appendixes

146 http://www.sciencepublishinggroup.com

unsigned int i;

float t;

printf ("Entering function TempTable1Calc, modes 2 & 3\n");

i=0;

dsepd=N/n1;

dsepi=dsepd;

if ((dsepd-dsepi)>0.495)

{dsepi++; //if separation is 12.5 round up to 13

printf ("Table 1 separation %d \n", dsepi);

}

//printf("data separation in TEMPORARY TABLE 1 = %d\n ", dsepi);

printf ("it time out data\n");

for (iter = 0; iter < N; iter=iter+dsepi)

{

t=tbs1*i;

printf("[%d] >", iter);

printf("[%d] ", i);

//printf("%.3ef ", t);

if (signaltype==1) TempTable1int[i]=sinedatint[iter];

if (signaltype==2) TempTable1int[i]=toothsawdat[iter];

Appendixes

http://www.sciencepublishinggroup.com 147

if (signaltype==3) TempTable1int[i]=triangdat[iter];

timeindex1int[i]=100000*t;

printf("t=%d ", timeindex1int[i]);

printf("%d ", TempTable1int[i]);

printf("%x\n ", TempTable1int[i]);

dat_samples_temp1=i;

i=i+1;

}

//printf("Data samples in temporary table1 = %d\n ",

// (at_samples_temp1+1));

//printf ("Leaving function TempTable1Calc, modes 2 & 3\n");

}

void TempTable2Calc(int N, int n2)//prepare temp table signal 2, modes

2&3

{

unsigned int dsepi;

double dsepd;

unsigned int iter;

unsigned int i;

float t;

printf ("Entering function TempTable2Calc, modes 2 & 3\n");

Appendixes

148 http://www.sciencepublishinggroup.com

i=0;

dsepd=N/n2;

printf(" %.2ef ", dsepd);

dsepi=dsepd;

if ((dsepd-dsepi)>0.495)

{dsepi++;

printf ("Table 2 separation %d \n", dsepi);

}

//printf("data separation in TEMPORARY TABLE 2 = %d\n ", dsepi);

printf ("it time out data\n");

for (iter = 0; iter < N; iter=iter+dsepi)

{

t=tbs2*i;

printf("[%d] >", iter);

printf("[%d] ", i);

//printf("%.3ef ", t);

if (signaltype==1) TempTable2int[i]=sinedatint[iter];

if (signaltype==2) TempTable2int[i]=toothsawdat[iter];

if (signaltype==3) TempTable2int[i]=triangdat[iter];

timeindex2int[i]=100000*t;

Appendixes

http://www.sciencepublishinggroup.com 149

printf("t=%d ", timeindex2int[i]);

printf("%d ", TempTable2int[i]);

printf("%x\n ", TempTable2int[i]);

dat_samples_temp2=i;

i=i+1;

}

}

void BuffTableSuperposition()////prepare output table, mode 2

{

unsigned int i, j, k, l, m, dato1, dato2;

float t, tbsmin, tmax;

unsigned int tint, auxt1, auxt2;

printf ("Entering function BuffTableSuperposition, mode 2\n");

if (tbs1<tbs2)

tbsmin=tbs1;

else

tbsmin=tbs2;

if (freq1<freq2)

tmax=1/freq1;

else

Appendixes

150 http://www.sciencepublishinggroup.com

tmax=1/freq2;

t=0; i=0; j=0; k=0;

dato1=TempTable1int[i];

dato2=TempTable2int[i];

BuffTable[k]=dato1+dato2;

printf("%d ", k);

printf(" %.2ef ", t);

printf(" %x ", dato2);

printf("+ %x ", dato1);

printf("= %d ", BuffTable[k]);

printf("= %x\n ", BuffTable[k]);

do{

t=t+tbsmin;

tint=t*100000+1;

auxt1=timeindex1int[i+1];

auxt2=timeindex2int[j+1];

m=0;

if (tint<auxt1)

l=0;

else{

Appendixes

http://www.sciencepublishinggroup.com 151

m=1;

i=i+1;

//printf("new data table111, index %d \n", i);

dato1=TempTable1int[i];

}

//printf("m value after checking table1 %d \n", m);

if (tint<auxt2)

l=0;

else{

m=2;

j=j+1;

if (j==n2) j=0; // return to begin of temp table for low frequency

dato2=TempTable2int[j];

}

if(m>0)

{

k++;

if (opmode==2) BuffTable[k]=(dato1+dato2)/2;

if (opmode==3) BuffTable[k]=dato1+dato2*256;

timeindexbuffint[k]=tint;

Appendixes

152 http://www.sciencepublishinggroup.com

printf("[%d] ", k);

printf("t= %d ", tint);

printf(" %x ", dato2);

printf("+ %x ", dato1);

printf("= %d ", BuffTable[k]);

printf("= %x\n ", BuffTable[k]);

}

}

while (t<tmax);

dat_samples_buff1=k;

printf("Amount of data samples in BUFFER TABLE = %d\n", k);

}

void tbsCalc(float freq, float n)//calculate time for requested frequency //

and number of samples

{

printf ("Entering function tbsCalc\n");

tbs=1/(freq*n);

}

void WriteToOut()//load data from output table, write to output port

{

unsigned int i;

Appendixes

http://www.sciencepublishinggroup.com 153

unsigned int j;

unsigned int k;

float t;

printf ("Entering function WriteToOut\n");

printf("Time running between samples buffer1 = %.2ef\n", tbs1);

printf ("it time out data\n");

for (i = 0; i < dat_samples_buff1-1; i=i+1)

{

for (j = 0; j < tbs1*1e+5; j=j+1)// 1e+5 proportional to time // between

samples

k=k+1;

t=tbs1*i;

printf("[%d] ", i);

printf(" %d ", timeindexbuffint[i]);

printf(" %x\n ", BuffTable[i]);

}

printf ("Leaving function WriteToOut\n");

}

int main(void)

{

N=256;

Appendixes

154 http://www.sciencepublishinggroup.com

GetOperParam(); //Get operation parameters

//SineDisplay(N); //Display data samples for sine waveform

if (opmode==1)// operation mode = 1?

{

tbsCalc(freq1, n1); //calculate separation between samples

tbs1=tbs;

BuffTableGen(N, n1); //generate buffer table extracting samples

}

if (opmode>1)

{// operation mode= 2 or 3?

tbsCalc(freq1, n1); //calculate separation between samples, signal 1

tbs1=tbs;

TempTable1Calc(N, n1); //generate temp table for signal 1

tbsCalc(freq2, n2); //calculate separation between samples, signal 2

tbs2=tbs;

TempTable2Calc(N, n2); // generate temp table for signal 2

BuffTableSuperposition(); // generate buffer table modes 2 & 3

}

WriteToOut(); //write to output port

return 0 ;

Appendixes

http://www.sciencepublishinggroup.com 155

}

A.2 Application Program: Extended Version

The extended version of the application program has been developed for the

board based prototype implementation. It has added functionality compared to

the SoC based design. Additional functions were defined and implemented

according to experimental needs and developing research work in the particle

manipulation area.

// Uses Luminary Driverlib for parallel port use

// Version date: Feb the 3rd, 2011

// Details: separates frequency ranges in low (<400 Hz) and high (>400Hz)

// Delivers superimposed frequencies in any mix of available waveforms

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "hw_memmap.h"

#include "hw_types.h"

#include "sysctl.h"

#include "hw_sysctl.h"

#include "gpio.h"

#include "hw_gpio.h"

Appendixes

156 http://www.sciencepublishinggroup.com

//#define PORT_DATA(GPIO_PIN_0 |GPIO_PIN_1 | GPIO_PIN_2 |

GPIO_PIN_3 | //GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7)

#ifdef DEBUG

void

__error__(char *pcFilename, unsigned long ulLine)

{

}

#endif

#define Pi 3.14159265358979323846264338327

static unsigned int sinedatint[256] =

{ 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169,

172, 175, 178, 181, 184, 186, 189, 192, 194, 197, 200, 202, 205, 207, 209, 212,

214, 216, 218, 221, 223, 225, 227, 229, 230, 232, 234, 235, 237, 239, 240, 241,

243, 244, 245, 246, 247, 248, 249, 250, 250, 251, 252, 252, 253, 253, 253, 253,

253, 254, 253, 253, 253, 253, 253, 252, 252, 251, 250, 250, 249, 248, 247, 246,

245, 244, 243, 241, 240, 239, 237, 235, 234, 232, 230, 229, 227, 225, 223, 221,

218, 216, 214, 212, 209, 207, 205, 202, 200, 197, 194, 192, 189, 186, 184, 181,

178, 175, 172, 169, 166, 163, 160, 157, 154, 151, 148, 145, 142, 139, 136, 133,

130, 127, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78,

75, 72, 69, 67, 64, 61, 59, 56, 53, 51, 48, 46, 44, 41, 39, 37, 35, 32, 30, 28, 26,

24, 23, 21, 19, 18, 16, 14, 13, 12, 10, 9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 21, 23, 24,

26, 28, 30, 32, 35, 37, 39, 41, 44, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72,

75,78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123 };

static unsigned int toothsawdat[256] =

Appendixes

http://www.sciencepublishinggroup.com 157

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,

106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,

138, 139, 140, 142, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,

170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,

186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,

202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,

218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,

234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249,

250, 252, 252, 253, 254, 255 };

static unsigned int triangdat[256] =

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44,

46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,

88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120,

122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152,

154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184,

186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216,

218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248,

250, 252, 254, 255, 254, 252, 250, 248, 246, 244, 242, 240, 238, 236, 234, 232,

230, 228, 226, 224, 222, 220, 218, 216, 214, 212, 210, 208, 206, 204, 202, 200,

198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 174, 172, 170, 168,

166, 164, 162, 160, 158, 156, 154, 152, 150, 148, 146, 144, 142, 140, 138, 136,

134, 132, 130, 128, 126, 124, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104,

102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64, 62,

60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20,

18, 16, 14, 12, 10, 8, 6, 4, 2 };

unsigned int timeindex1int[256], timeindex2int[256], timeindexbuffint[256];

Appendixes

158 http://www.sciencepublishinggroup.com

unsigned int TempTable1int[256], TempTable2int[256]; // Temporary tables,

//modes 2 & 3, scale 0 to 255

unsigned int BuffTable[4096]; // output table, all modes

double trunc(double arg);

float tbs, tbs1, tbs2; // time between samples, para senal 1 y 2

int dat_samples_buff1, dat_samples_temp1, dat_samples_temp2; //data

samples

int opmode; //operation modes: 1 single signal, 2 superposition, 3 separate

//signals

int signaltype, signaltype2; //signal type: 1 sine, 2 saw-tooth, 3 triangle

float freq1, freq2; //frecuency for output signals 1 & 2

int N, n1, n2; //samples per waveform cycle

void GetOperParam()

{

//printf ("Operation mode: 1, 2 or 3:\n ");

// scanf ("%d", &opmode);

opmode=2;

//printf ("Selected Operation mode = %d\n", opmode);

//printf ("Signal type, 1 sine, 2 tooth, 3 triang:\n ");

//scanf ("%d", &signaltype);

signaltype2=2;

signaltype=2;

Appendixes

http://www.sciencepublishinggroup.com 159

//printf ("Selected signal type = %d\n", signaltype);

//printf ("Output single/low frequency in KiloHertz:\n ");

//scanf ("%f", &freq1);

freq1=500;

//printf ("Samples per cycle: \n");

//scanf ("%d", &n1);

//if (freq1>399) {

//n1=240000/freq1; //write to port, high frequencies

//n2=16;

//}

//if (freq1<400) {

//n1=64;

//n2=64; //write to port, low frequencies

//}

n1=64;

if (n1<9) n1=16;

if ((n1>8) & (n1< 17)) n1=16;

if ((n1>16) & (n1< 33)) n1=32;

if ((n1>32) & (n1< 65)) n1=64;

if ((n1>64) & (n1< 129)) n1=128;

Appendixes

160 http://www.sciencepublishinggroup.com

if (n1>128) n1=256;

//printf(" %d\n", n1);

if (opmode>1)

{

//printf ("Output high frequency2 in KiloHertz:\n ");

//scanf ("%f", &freq2);

freq2=5000;

//printf ("Samples per cycle 2: \n");

//scanf ("%d", &n2);

n2=64;

if (n2<9) n2=8;

if ((n2>8) & (n2< 17)) n2=16;

if ((n2>16) & (n2< 33)) n2=32;

if ((n2>32) & (n2< 65)) n2=64;

if ((n2>64) & (n2< 129)) n2=128;

if (n2>128) n2=256;

//printf(" %d\n", n2);

//printf ("Leaving function GetOperParam\n");

}

}

Appendixes

http://www.sciencepublishinggroup.com 161

void SineDisplay(int N)

{

unsigned int iter;

// printf ("Entering function SineDisplay ORIGINAL SINE TABLE\n");

for (iter = 0; iter < N; iter++)

{

//printf("[%d] ", iter);

//printf(" %d\n", sinedatint[iter]);

}

}

void BuffTableGen(int N, int n)

{

unsigned int dsepi;

double dsepd;

unsigned int iter;

unsigned int i;

unsigned int j;

//printf ("Entering function BuffTableGen mode 1\n");

i=0;

dsepd=N/n;

Appendixes

162 http://www.sciencepublishinggroup.com

dsepi=dsepd;

j=dsepi;

// printf("data separation int, modo1 = %d\n ", dsepi);

for (iter = 0; iter < N; iter=iter+dsepi)

{

// /*printf("Data number = %d\n ", iter);*/

if (signaltype == 1) BuffTable[i]=sinedatint[iter];

if (signaltype == 2) BuffTable[i]=toothsawdat[iter];

if (signaltype == 3) BuffTable[i]=triangdat[iter];

// /*printf("Dato original = %.6ef\n ", sinedat[iter]);*/

// printf("%d\n ", BuffTable[i]);

dat_samples_buff1=i;

i=i+1;

}

// printf("Amount of data samples in buffer table = %d\n ",

//dat_samples_buff1);

//printf ("Leaving function BuffTableGen, mode 1\n");

}

void TempTable1Calc(int N, int n1)//prepare temp table, signal 1, modes

2&3

{

Appendixes

http://www.sciencepublishinggroup.com 163

unsigned int dsepi;

double dsepd;

unsigned int iter;

unsigned int i;

float t;

// printf ("Entering function TempTable1Calc, modes 2 & 3\n");

i=0;

dsepd=N/n1;

dsepi=dsepd;

if ((dsepd-dsepi)>0.495)

{dsepi++; //if separation es >. 495 round up to next integer

// printf ("separation table 1 %d \n", dsepi);

}

//printf("data separation in TEMPORARY TABLE 1 = %d\n ", dsepi);

//printf ("it time out data\n");

for (iter = 0; iter < N+1; iter=iter+dsepi)

{

t=tbs1*i;

// printf("[%d] >", iter);

//printf("[%d] ", i);

Appendixes

164 http://www.sciencepublishinggroup.com

//printf("%.3ef ", t);

if (signaltype==1) TempTable1int[i]=sinedatint[iter];

if (signaltype==2) TempTable1int[i]=toothsawdat[iter];

if (signaltype==3) TempTable1int[i]=triangdat[iter];

timeindex1int[i]=100000*t;

//printf("t=%d ", timeindex1int[i]);

//printf("%d ", TempTable1int[i]);

//printf("%x\n ", TempTable1int[i]);

dat_samples_temp1=i;

i=i+1;

}

//printf("Data samples in temporary table1 = %d\n ",

(dat_samples_temp1+1));

//printf ("Leaving function TempTable1Calc, modes 2 & 3\n");

}

void TempTable2Calc(int N, int n2)//prepare temp table signal 2, modes

2&3

{

unsigned int dsepi;

double dsepd;

unsigned int iter;

Appendixes

http://www.sciencepublishinggroup.com 165

unsigned int i;

float t;

//printf ("Entering function TempTable2Calc, modes 2 & 3\n");

i=0;

dsepd=N/n2;

//printf(" %.2ef ", dsepd);

dsepi=dsepd;

if ((dsepd-dsepi)>0.495)

{dsepi++;

// printf ("separation table 2 %d \n", dsepi);

}

//printf("data separation in TEMPORARY TABLE 2 = %d\n ", dsepi);

//printf ("it time out data\n");

for (iter = 0; iter < N; iter=iter+dsepi)

{

t=tbs2*i;

// printf("[%d] >", iter);

//printf("[%d] ", i);

//printf("%.3ef ", t);

if (signaltype2==1) TempTable2int[i]=sinedatint[iter];

Appendixes

166 http://www.sciencepublishinggroup.com

if (signaltype2==2) TempTable2int[i]=toothsawdat[iter];

if (signaltype2==3) TempTable2int[i]=triangdat[iter];

timeindex2int[i]=100000*t;

//printf("t=%d ", timeindex2int[i]);

//printf("%d ", TempTable2int[i]);

//printf("%x\n ", TempTable2int[i]);

dat_samples_temp2=i;

i=i+1;

}

}

void BuffTableSuperposition()////prepare output table mode 2

{

unsigned int i, j, k, l, m, dato1, dato2;

float t, tbsmin, tmax;

unsigned int tint, auxt1, auxt2;

//printf ("Entering function BuffTableSuperposition, mode 2\n");

if (tbs1<tbs2)

tbsmin=tbs1;

else

tbsmin=tbs2;

Appendixes

http://www.sciencepublishinggroup.com 167

if (freq1<freq2)

tmax=1/freq1;

else

tmax=1/freq2;

t=0; i=0; j=0; k=0;

dato1=TempTable1int[i];

dato2=TempTable2int[i];

BuffTable[k]=(dato1+dato2)/2;

//printf("%d ", k);

//printf(" %.2ef ", t);

//printf(" %x ", data2);

//printf("+ %x ", data1);

//printf("= %d ", BuffTable[k]);

//printf("= %x\n ", BuffTable[k]);

do{

t=t+tbsmin;

tint=t*100000+1;

auxt1=timeindex1int[i+1];

auxt2=timeindex2int[j+1];

m=0;

Appendixes

168 http://www.sciencepublishinggroup.com

if (tint<auxt1)

l=0;

else{

m=1;

i=i+1;

//printf("new data table111, index %d \n", i);

dato1=TempTable1int[i];

}

//printf("m value after checking table1 %d \n", m);

if (tint<auxt2)

l=0;

else{

m=2;

j=j+1;

if (j==n2) j=0; //returns to beginning of temp table, low frequency

dato2=TempTable2int[j];

}

if(m>0)

{

k++;

Appendixes

http://www.sciencepublishinggroup.com 169

if (opmode==2) BuffTable[k]=(dato1+dato2)/2;

if (opmode==3) BuffTable[k]=dato1+dato2*256;

timeindexbuffint[k]=tint;

// printf("[%d] ", k);

// printf("t= %d ", tint);

// printf(" %x ", dato2);

//printf("+ %x ", dato1);

//printf("= %d ", BuffTable[k]);

//printf("= %x\n ", BuffTable[k]);

}

}

while (t<tmax);

dat_samples_buff1=k;

//printf("Amount of data samples in BUFFER TABLE = %d\n", k);

}

void tbsCalc(float freq, float n)//calculates time between samples

{

// printf ("Entering function tbsCalc\n");

tbs=1/(freq*n);

}

Appendixes

170 http://www.sciencepublishinggroup.com

void WriteToOutLow()//load data from buffer table, write to output port

{

unsigned int i;

unsigned int j;

unsigned int k;

//float t;

// printf ("Entering function WriteToOut\n");

// printf("Time running between samples buffer1 = %.2ef\n", tbs1);

//printf ("it time out data\n");

// delayed cycle for slow signal generation

k=11000/freq1; // k in inverse proportion of desired frequency

for (;;)

for (i = 0; i < dat_samples_buff1+1; i=i+1)

{

for (j = 0; j < k; j=j+1) {} // generates time between //samples for slow

frequencies running k wait cycles between output updates

// printf("[%d] ", i);

// printf(" %d ", timeindexbuffint[i]);

// printf(" %x\n ", BuffTable[i]);

GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_0 |GPIO_PIN_1 |

GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |

GPIO_PIN_7, BuffTable[i]);

Appendixes

http://www.sciencepublishinggroup.com 171

}

// printf ("Leaving function WriteToOut\n");

}

void WriteToOutHigh()//load data from buffer table, write to output port

{

unsigned int i;

//unsigned int j;

// printf("Time running between samples buffer1 = %.2ef\n", tbs1);

//printf ("it time out data\n");

for (;;)

for (i = 0; i < dat_samples_buff1+1; i=i+1)

{

//for (j = 0; j < tbs1*12; j=j+1)//con 1e+5 is time between //samples

// t is accumulated time in cycle, last values is period T of //waveform

//t=tbs1*i;

// printf("[%d] ", i);

// printf(" %d ", timeindexbuffint[i]);

// printf(" %x\n ", BuffTable[i]);

GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_0 |GPIO_PIN_1 |

GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |

GPIO_PIN_7, BuffTable[i]);

Appendixes

172 http://www.sciencepublishinggroup.com

}

// printf ("Leaving function WriteToOut\n");

}

int main(void)

{

//

// If running on Rev A2 silicon, turn the LDO voltage up to 2.75V. //This is a

workaround to allow the PLL to operate reliably.

//

if(DEVICE_IS_REVA2)

{

SysCtlLDOSet(SYSCTL_LDO_2_75V);

}

//

// Set the clocking to run directly from the crystal.

// Default values assume an external crystal of 6MHz. See Luminary

// driverlib documentation for other values.

// Clock source can be:

// 'SYSCTL_USE_OSC | SYSCTL_OSC_MAIN' - use the xtal without PLL

// 'SYSCTL_USE_PLL | SYSCTL_OSC_MAIN' - use the xtal with PLL

// If using the PLL, the oscillator runs at 200MHz and then you select

Appendixes

http://www.sciencepublishinggroup.com 173

// a division of this frequency to clock the core. Otherwise the //divider just

//directly divides the XTAL frequency.

// Use a 6MHz external XTAL directly with no division

//printf ("Entering sysctlclokset \n");

SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC |

SYSCTL_OSC_MAIN | SYSCTL_XTAL_6MHZ);

// Use the XTAL directly to clock the PLL with division by 4

//SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL |

SYSCTL_OSC_MAIN |

// SYSCTL_XTAL_6MHZ);

// printf ("Entering sysctlperipheralenable \n");

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

//printf ("Entering define gpio as output \n");

GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_0

|GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 |

GPIO_PIN_6 | GPIO_PIN_7);

//printf ("Entering write to port \n");

GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_0 |GPIO_PIN_1 |

GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |

GPIO_PIN_7,0x55);

// printf ("Leaving write to port \n");

// Use the XTAL directly to clock the PLL with division by 4

Appendixes

174 http://www.sciencepublishinggroup.com

// SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL |

SYSCTL_OSC_MAIN |

// SYSCTL_XTAL_6MHZ);

N=256;

GetOperParam(); //Get operation parameters

//SineDisplay(N); //Display data samples for sine waveform

if (opmode==1)// operation mode = 1?

{

tbsCalc(freq1, n1); //calculate separation between samples

tbs1=tbs;

BuffTableGen(N, n1); //generate buffer table extracting samples

}

if (opmode>1)

{// operation mode= 2 or 3?

tbsCalc(freq1, n1); //calculate separation between samples, signal 1

tbs1=tbs;

TempTable1Calc(N, n1); //generate temp table for signal 1

tbsCalc(freq2, n2); //calculate separation between samples, signal 2

tbs2=tbs;

TempTable2Calc(N, n2); // generate temp table for signal 2

BuffTableSuperposition(); // generate buffer table modes 2 & 3

Appendixes

http://www.sciencepublishinggroup.com 175

}

if (freq1>399) WriteToOutHigh(); // write to output port, high //frequencies

if (freq1<400) WriteToOutLow(); //write to output port, low //frequencies

while(1);

9 781940 366449 >

ISBN 194036644-5

	SPG-1053 frontcover
	页 1

	16-23 - 副本
	SPG-1053-16.1.6(www)
	16-23
	SPG-1053 backcover
	页 1

