| Peer-Reviewed

Biochemistry and Physiological Functions of ADAMTS7 Metalloprotease

Received: 8 August 2013    Accepted:     Published: 20 August 2013
Views:       Downloads:
Abstract

Here, we provide a comprehensive review of current findings concerning the biochemistry and physiological functions of ADAMTS7, a metalloprotease that is known to interact with cartilage oligomeric matrix protein, progranulin, and alpha2-macroglobulin. Such broad substrate specificity and potentially diverse physiological functions make ADAMTS7 an interesting enzyme to study. ADAMTS7 has been shown to play a role in the pathogenesis of arthritis and disc disorders. More recently, the ADAMTS7 locus is identified to have a strong association with coronary atherosclerotic disease. However, the role of ADAMTS7 in the development of atherosclerosis is yet to be determined. The development of an easy and high throughput assay for ADAMTS7 activity and appropriate animal models will allow us to uncover the novel mechanisms of coronary arterial disease.

Published in Advances in Biochemistry (Volume 1, Issue 3)
DOI 10.11648/j.ab.20130103.11
Page(s) 43-50
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

ADAMTS7, Substrate Specificity, Structure-Function, Cardiovascular Disease, and Smooth Muscle Cell

References
[1] E. C. Arner, "Aggrecanase-mediated cartilage degradation," Curr. Opin. Pharmacol. 2002, vol. 2, pp. 322-29
[2] X. H. Bai, D. W. Wang, L. Kong, Y. Zhang, Y. Luan, T. Kobayashi, H. M. Kronenberg, X. P. Yu, and C. J. Liu, "ADAMTS-7, a direct target of PTHrP, adversely regulates endochondral bone growth by associating with and inactivating GEP growth factor," Mol. Cell Biol. 2009, vol. 29, pp. 4201-19
[3] A. Bateman and H. P. Bennett, "Granulins: the structure and function of an emerging family of growth factors," J. Endocrinol. 1998, vol. 158, pp. 145-51
[4] Coronary Artery Disease (C4D) Genetics Consortium., "A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease," Nat. Genet. 2011, vol. 43, pp. 339-44
[5] A. Didangelos, U. Mayr, C. Monaco, and M. Mayr, "Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis," J. Biol. Chem. 2012, vol. 287, pp. 19341-45
[6] Y. Du, C. Gao, Z. Liu, L. Wang, B. Liu, F. He, T. Zhang, Y. Wang, X. Wang, M. Xu, G. Z. Luo, Y. Zhu, Q. Xu, X. Wang, and W. Kong, "Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification," Arterioscler. Thromb. Vasc. Biol. 2012, vol. 32, pp. 2580-2588
[7] Y. Du, Y. Wang, L. Wang, B. Liu, Q. Tian, C. J. Liu, T. Zhang, Q. Xu, Y. Zhu, O. Ake, Y. Qi, C. Tang, W. Kong, and X. Wang, "Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2," Circ. Res. 2011, vol. 108, pp. 917-28
[8] R. J. Fernandes, S. Hirohata, J. M. Engle, A. Colige, D. H. Cohn, D. R. Eyre, and S. S. Apte, "Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis," J Biol Chem 2001, vol. 276, pp. 31502-9
[9] G. Gao, A. Plaas, V. P. Thompson, S. Jin, F. Zuo, and J. D. Sandy, "ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1," J Biol Chem 2004, vol. 279, pp. 10042-51
[10] C. Gendron, M. Kashiwagi, N. H. Lim, J. J. Enghild, I. B. Thogersen, C. Hughes, B. Caterson, and H. Nagase, "Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4," J. Biol. Chem. 2007, vol. 282, pp. 18294-306
[11] F. Guo, Y. Lai, Q. Tian, E. A. Lin, L. Kong, and C. Liu, "Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein," Arthritis Rheum. 2010, vol. 62, pp. 2023-36
[12] Z. He, C. H. Ong, J. Halper, and A. Bateman, "Progranulin is a mediator of the wound response," Nat. Med. 2003, vol. 9, pp. 225-29
[13] T. L. Hurskainen, S. Hirohata, M. F. Seldin, and S. S. Apte, "ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family," J. Biol. Chem. 1999, vol. 274, pp. 25555-63
[14] M. L. Iruela-Arispe, D. Carpizo, and A. Luque, "ADAMTS1: a matrix metalloprotease with angioinhibitory properties," Ann N Y Acad Sci 2003, vol. 995, pp. 183-90
[15] G. C. Jones and G. P. Riley, "ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis," Arthritis Res. Ther. 2005, vol. 7, pp. 160-169
[16] M. B. Jones, M. Spooner, and E. C. Kohn, "The granulin-epithelin precursor: a putative new growth factor for ovarian cancer," Gynecol. Oncol. 2003, vol. 88, pp. S136-S139
[17] K. Kuno and K. Matsushima, "ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region," J Biol Chem 1998, vol. 273, pp. 13912-7
[18] G. G. Levy, W. C. Nichols, E. C. Lian, T. Foroud, J. N. McClintick, B. M. McGee, A. Y. Yang, D. R. Siemieniak, K. R. Stark, R. Gruppo, R. Sarode, S. B. Shurin, V. Chandrasekaran, S. P. Stabler, H. Sabio, E. E. Bouhassira, J. D. Upshaw, Jr., D. Ginsburg, and H. M. Tsai, "Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura," Nature 2001, vol. 413, pp. 488-94
[19] S. W. Li, M. Arita, A. Fertala, Y. Bao, G. C. Kopen, T. K. Langsjo, M. M. Hyttinen, H. J. Helminen, and D. J. Prockop, "Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility," Biochem. J. 2001, vol. 355, pp. 271-78
[20] C. J. Liu, "The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis," Nat. Clin. Pract. Rheumatol. 2009, vol. 5, pp. 38-45
[21] C. J. Liu, W. Kong, K. Ilalov, S. Yu, K. Xu, L. Prazak, M. Fajardo, B. Sehgal, and P. E. Di Cesare, "ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein," FASEB J. 2006, vol. 20, pp. 988-90
[22] Y. Luan, L. Kong, D. R. Howell, K. Ilalov, M. Fajardo, X. H. Bai, P. E. Di Cesare, M. B. Goldring, S. B. Abramson, and C. J. Liu, "Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin," Osteoarthritis. Cartilage. 2008, vol. 16, pp. 1413-20
[23] H. Nagase and M. Kashiwagi, "Aggrecanases and cartilage matrix degradation," Arthritis Res. Ther. 2003, vol. 5, pp. 94-103
[24] X. Pu, Q. Xiao, S. Kiechl, K. Chan, F. L. Ng, S. Gor, R. N. Poston, C. Fang, A. Patel, E. C. Senver, S. Shaw-Hawkins, J. Willeit, C. Liu, J. Zhu, A. T. Tucker, Q. Xu, M. J. Caulfield, and S. Ye, "ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant," Am. J. Hum. Genet. 2013, vol. 92, pp. 366-74
[25] N. D. Rawlings, A. J. Barrett, and A. Bateman, "MEROPS: the database of proteolytic enzymes, their substrates and inhibitors," Nucleic Acids Res. 2012, vol. 40, pp. D343-D350
[26] M. P. Reilly, M. Li, J. He, J. F. Ferguson, I. M. Stylianou, N. N. Mehta, M. S. Burnett, J. M. Devaney, C. W. Knouff, J. R. Thompson, B. D. Horne, A. F. Stewart, T. L. Assimes, P. S. Wild, H. Allayee, P. L. Nitschke, R. S. Patel, N. Martinelli, D. Girelli, A. A. Quyyumi, J. L. Anderson, J. Erdmann, A. S. Hall, H. Schunkert, T. Quertermous, S. Blankenberg, S. L. Hazen, R. Roberts, S. Kathiresan, N. J. Samani, S. E. Epstein, and D. J. Rader, "Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies," Lancet 2011, vol. 377, pp. 383-92
[27] R. P. Somerville, J. M. Longpre, E. D. Apel, R. M. Lewis, L. W. Wang, J. R. Sanes, R. Leduc, and S. S. Apte, "ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain," J. Biol. Chem. 2004, vol. 279, pp. 35159-75
[28] L. Sottrup-Jensen, "Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation," J. Biol. Chem. 1989, vol. 264, pp. 11539-42
[29] L. Sottrup-Jensen, "Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation," J. Biol. Chem. 1989, vol. 264, pp. 11539-42
[30] H. Stanton, J. Melrose, C. B. Little, and A. J. Fosang, "Proteoglycan degradation by the ADAMTS family of proteinases," Biochim. Biophys. Acta 2011, vol. 1812, pp. 1616-29
[31] X. Sun, M. Gulyas, and A. Hjerpe, "Mesothelial differentiation as reflected by differential gene expression," Am. J. Respir. Cell Mol. Biol. 2004, vol. 30, pp. 510-518
[32] B. L. Tang, "ADAMTS: a novel family of extracellular matrix proteases," Int J Biochem Cell Biol 2001, vol. 33, pp. 33-44
[33] M. Tortorella, M. Pratta, R. Q. Liu, I. Abbaszade, H. Ross, T. Burn, and E. Arner, "The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage," J Biol Chem 2000, vol. 275, pp. 25791-7
[34] M. D. Tortorella, M. Pratta, R. Q. Liu, J. Austin, O. H. Ross, I. Abbaszade, T. Burn, and E. Arner, "Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4)," J Biol Chem 2000, vol. 275, pp. 18566-73
[35] S. L. Turner, M. E. Blair-Zajdel, and R. A. Bunning, "ADAMs and ADAMTSs in cancer," Br. J. Biomed. Sci. 2009, vol. 66, pp. 117-28
[36] M. N. Vankemmelbeke, I. Holen, A. G. Wilson, M. Z. Ilic, C. J. Handley, G. S. Kelner, M. Clark, C. Liu, R. A. Maki, D. Burnett, and D. J. Buttle, "Expression and activity of ADAMTS-5 in synovium," Eur. J. Biochem. 2001, vol. 268, pp. 1259-68
[37] L. Wang, X. Wang, and W. Kong, "ADAMTS-7, a novel proteolytic culprit in vascular remodeling," Sheng Li Xue. Bao. 2010, vol. 62, pp. 285-94
[38] L. Wang, J. Zheng, X. Bai, B. Liu, C. J. Liu, Q. Xu, Y. Zhu, N. Wang, W. Kong, and X. Wang, "ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries," Circ. Res. 2009, vol. 104, pp. 688-98
[39] L. Wang, J. Zheng, Y. Du, Y. Huang, J. Li, B. Liu, C. J. Liu, Y. Zhu, Y. Gao, Q. Xu, W. Kong, and X. Wang, "Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin," Circ. Res. 2010, vol. 106, pp. 514-25
[40] J. M. White, "ADAMs: modulators of cell-cell and cell-matrix interactions," Curr Opin Cell Biol 2003, vol. 15, pp. 598-606
[41] H. Yu and Y. Zhu, "Expression of ADAMTS-7 and ADAMTS-12 in the nucleus pulposus during degeneration of rat caudal intervetebral disc," J. Vet. Med. Sci. 2012, vol. 74, pp. 9-15
[42] T. Zanocco-Marani, A. Bateman, G. Romano, B. Valentinis, Z. H. He, and R. Baserga, "Biological activities and signaling pathways of the granulin/epithelin precursor," Cancer Res. 1999, vol. 59, pp. 5331-40
[43] Q. Zhang, M. Huang, X. Wang, X. Xu, M. Ni, and Y. Wang, "Negative effects of ADAMTS-7 and ADAMTS-12 on endplate cartilage differentiation," J. Orthop. Res. 2012, vol. 30, pp. 1238-43
[44] X. L. Zheng, D. Chung, T. Takayama, E. Majerus, J. Sadler, and K. Fujikawa, "Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura," J Biol Chem 2001, vol. 276, pp. 41059-63
[45] X. L. Zheng and J. E. Sadler, "Pathogenesis of Thrombotic Microangiopathies," Annu. Rev. Path. Mech. Dis. 2008, vol. 3, pp. 249-77
[46] J. Zhu, C. Nathan, W. Jin, D. Sim, G. S. Ashcroft, S. M. Wahl, L. Lacomis, H. Erdjument-Bromage, P. Tempst, C. D. Wright, and A. Ding, "Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair," Cell 2002, vol. 111, pp. 867-78
Cite This Article
  • APA Style

    Hayley A. Hanby, X. Long Zheng. (2013). Biochemistry and Physiological Functions of ADAMTS7 Metalloprotease. Advances in Biochemistry, 1(3), 43-50. https://doi.org/10.11648/j.ab.20130103.11

    Copy | Download

    ACS Style

    Hayley A. Hanby; X. Long Zheng. Biochemistry and Physiological Functions of ADAMTS7 Metalloprotease. Adv. Biochem. 2013, 1(3), 43-50. doi: 10.11648/j.ab.20130103.11

    Copy | Download

    AMA Style

    Hayley A. Hanby, X. Long Zheng. Biochemistry and Physiological Functions of ADAMTS7 Metalloprotease. Adv Biochem. 2013;1(3):43-50. doi: 10.11648/j.ab.20130103.11

    Copy | Download

  • @article{10.11648/j.ab.20130103.11,
      author = {Hayley A. Hanby and X. Long Zheng},
      title = {Biochemistry and Physiological Functions of ADAMTS7 Metalloprotease},
      journal = {Advances in Biochemistry},
      volume = {1},
      number = {3},
      pages = {43-50},
      doi = {10.11648/j.ab.20130103.11},
      url = {https://doi.org/10.11648/j.ab.20130103.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ab.20130103.11},
      abstract = {Here, we provide a comprehensive review of current findings concerning the biochemistry and physiological functions of ADAMTS7, a metalloprotease that is known to interact with cartilage oligomeric matrix protein, progranulin, and alpha2-macroglobulin. Such broad substrate specificity and potentially diverse physiological functions make ADAMTS7 an interesting enzyme to study. ADAMTS7 has been shown to play a role in the pathogenesis of arthritis and disc disorders. More recently, the ADAMTS7 locus is identified to have a strong association with coronary atherosclerotic disease. However, the role of ADAMTS7 in the development of atherosclerosis is yet to be determined. The development of an easy and high throughput assay for ADAMTS7 activity and appropriate animal models will allow us to uncover the novel mechanisms of coronary arterial disease.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Biochemistry and Physiological Functions of ADAMTS7 Metalloprotease
    AU  - Hayley A. Hanby
    AU  - X. Long Zheng
    Y1  - 2013/08/20
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ab.20130103.11
    DO  - 10.11648/j.ab.20130103.11
    T2  - Advances in Biochemistry
    JF  - Advances in Biochemistry
    JO  - Advances in Biochemistry
    SP  - 43
    EP  - 50
    PB  - Science Publishing Group
    SN  - 2329-0862
    UR  - https://doi.org/10.11648/j.ab.20130103.11
    AB  - Here, we provide a comprehensive review of current findings concerning the biochemistry and physiological functions of ADAMTS7, a metalloprotease that is known to interact with cartilage oligomeric matrix protein, progranulin, and alpha2-macroglobulin. Such broad substrate specificity and potentially diverse physiological functions make ADAMTS7 an interesting enzyme to study. ADAMTS7 has been shown to play a role in the pathogenesis of arthritis and disc disorders. More recently, the ADAMTS7 locus is identified to have a strong association with coronary atherosclerotic disease. However, the role of ADAMTS7 in the development of atherosclerosis is yet to be determined. The development of an easy and high throughput assay for ADAMTS7 activity and appropriate animal models will allow us to uncover the novel mechanisms of coronary arterial disease.
    VL  - 1
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104

  • Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104

  • Sections