Input Dataset Survey of In-Silico Tools for Inference and Visualization of Gene Regulatory Networks (GRN)
Computational Biology and Bioinformatics
Volume 3, Issue 6, December 2015, Pages: 81-87
Received: Sep. 25, 2015; Accepted: Oct. 4, 2015; Published: Nov. 16, 2015
Views 1709      Downloads 59
Taiwo Adigun, Centre for Systems and Information Services, Covenant University, Ota, Nigeria; Bioinformatics Research Group (UNIBReG), University of Ibadan, Ibadan, Nigeria
Angela Makolo, Department of Computer Science, University of Ibadan, Ibadan, Nigeria; Bioinformatics Research Group (UNIBReG), University of Ibadan, Ibadan, Nigeria
Segun Fatumo, H3Africa Bioinformatics Network (H3ABioNet) Node, National Biotechnology Development Agency (NABDA), Federal Ministry of Science and Technology (FMST), Abuja, Nigeria
Article Tools
Follow on us
Understanding Gene Regulatory Network (GRN) is considered to be the fundamental approach to many biological questions, and the input dataset performs a crucial role in investigating and visualizing the gene regulatory network [5, 14, 17, 23, 34, 37, 40, 41, 44, 45]. Several software tools [2, 5, 7, 10, 11, 14, 21, 22, 25, 31-33, 37, 38, 40, 41, 44] have recently been developed for GRN inference, where some are designed for a particular dataset, an organism or a particular diseased cell. The questions that prompted this review are; what is (are) the kind of omic data needed to construct a GRN? Is there any peculiar property attached to a GRN of a particular data? And, could there be an integration of data from various omic experiments in form of a knowledge base? The input dataset for GRN are transcriptome information which is analyzed comprehensively including the two major technologies (sources) that produce them. We consider four omic datasets and two of their sources for the purpose of this review. The biological data source technologies are hybridization-based, and sequence-based. Dataset from microarray and ChIP-Chip experiments are hybridization-based while RNA-seq and ChIP-seq are sequence-based. Software tools published on Omic Tool website ( are analyzed for this review. However, the major disparity is whether the dataset is ChIP-X (ChIP-Chip and ChIP-seq) or expression (Microarray and RNA-seq) dataset not whether the source is from hybridization-based or sequence-based. Moreover, ChIP-X dataset gives more opportunity to investigate more biological problems. The importance of gene regulatory network suggests a GRN software template, which contains all the additional data from ChIP-X experiment and a knowledge base of biological prior knowledge, including integration of data from different omic datasets as a single knowledge base.
In-Silico, Hybridization, Transcriptome, Microarray, ChIP-X, Epigenetics, Hybridization-Based, Next Generation Sequencing (NGS)
To cite this article
Taiwo Adigun, Angela Makolo, Segun Fatumo, Input Dataset Survey of In-Silico Tools for Inference and Visualization of Gene Regulatory Networks (GRN), Computational Biology and Bioinformatics. Vol. 3, No. 6, 2015, pp. 81-87. doi: 10.11648/j.cbb.20150306.11
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Altay, G. and Emmert-Streib, F. (2010) Inferring the Conservative Causal Core of Gene Regulatory Networks. BMC Systems Biology, 4:132.
Altay, G., Kurt, Z., Dehmer, M., and Emmert-Streib, F. (2014). Netmes: Assessing Gene Network Inference Algorithms by Network-Based Measures. Evolutionary Bioinformatics: 1–9 doi: 10.4137/EBO.S13481.
Ambros, V., Bartel, B., Bartel, D.P. et al. (2003) A uniform system for micro RNA annotation. RNA 9, 277–279.
Bower, J. (2001) Computational Modelling of Genetic and Biochemical Networks. MIT Press, Cambridge.
Chien, C., Chiang-Hsieh, Y., Chen, Y., Chow, C., Wu, N., Hou, P., and Chang, W.(2015). Atmi RNET: A Web-Based Resource for Reconstructing Regulatory Networks of Arabidopsis Micro RNAs. Database, 2015, 1–11 doi: 10.1093/database/bav042.
Ching, W., Fung, E., Ng, M. and Akustu, T. (2005) On Construction of Stochastic Genetic Networks Based on Gene Expression Sequences. International Journal of Neural Systems, 15(4), 297-310.
Cun, Y. and Fro ̈hlich, H. (2014) .net Class: An R-Package for Network Based, Integrative Biomarker Signature Discovery. BIOINFORMATICS, Vol. 30, no. 9, pages 1325–1326 doi:10.1093/bioinformatics/btu025.
Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-Scale Mapping and Validation of Escherichia Coli Transcriptional Regulation From a Compendium of Expression Profiles. PLoS Biol 5(1): e8. doi:10.1371/journal.pbio.0050008.
Fatumo, S., Plaimas, K., Mallm, J.P., Schramm, G., Adebiyi, E., Oswald, M., Eils, R., König, R., 2009. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 9, 351–358.
Gillani, Z., Akash, M., Rahaman, MD. and Chen, M. (2014). Compare SVM: Supervised, Support Vector Machine (SVM) Inference of Gene Regularity Networks. BMC Bioinformatics, 15:395.
Glass, K., Quackenbush, J., Spentzos, D., Haibe-Kains, B., and Yuan, G. (2015). A Network Model for Angiogenesis in Ovarian Cancer. BMC Bioinformatics 16:115 DOI 10.1186/s12859-015-0551-y.
Goutsias, H. and Lee, N.H.(2007) Computational and Experimental Approaches for Modeling Gene Regulatory Networks. Curr. Pharm. Design, 13(14):1415–1436.
Greenfield, A., Hafemeister, C. and Bonneau, R. (2013). Robust Data-Driven Incorporation of Prior Knowledge into the Inference of Dynamic Regulatory Networks. BIOINFORMATICS, Vol. 29 no. 8 2013, pages 1060–1067, doi:10.1093/bioinformatics/ btt099.
Guan, D., Shao, J., Deng, Y., Wang, P. Zhao, Z., Liang, Y., Wang, J. and Yan, B.(2014).CMGRN: A Web Server For Constructing Multilevel Gene Regulatory Networks using Chip-Seq and Gene Expression Data. BIOINFORMATICS, Vol. 30 no. 8, pages 1190–1192, doi:10.1093/bioinformatics/btt761.
Hartemink, A., Gifford, D., Jaakkola, T., et al. (2002) Bayesian Methods for Elucidating Genetic Regulatory Networks. IEEE Intelligent Systems, 17(2), 37-43.
Hidde, D.J. (2002) Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology, 9(9), 67-103.
Ho, J., Bishop, E., Karchenko, P., Nègre, N., White, K. and Park, P. (2011).ChIP-chip versus ChIP-seq: Lessons for Experimental Design and Data Analysis. BMC Genomics 2011, 12:134.
Hurd, P. J. and Nelson, C. J. (2009). Advantages of Next-Generation Sequencing Versus the Microarray in Epigenetic Research. Briefings in Functional Genomics and Proteomics. Vol 8. No 3, p174 -183, doi:10.1093/bfgp/elp013.
Huynh-Thu, V., Irrthum, A., Wehenkel, L. and Geurts, P.(2010). Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE, Volume 5, Issue 9, e12776.
Huynh-Thu, V. and Sanguinetti, G. (2015). Combining Tree-Based and Dynamical Systems for the Inference of Gene Regulatory Networks. Bioinformatics, 1614–1622 doi: 10.1093/bioinformatics/btu863.
Janky, R., Verfaillie, A., Imrichova, H., Sande, B. et al. (2014). iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections. PLOS Computational Biology, Volume 10, Issue 7, e1003731.
Jung, N., Bertrand, F., Bahram, S., Vallat, L. and Maumy-Bertrand, M. (2014). Cascade: A R Package to Study, Predict and Simulate the Diffusion of a Signal through a Temporal Gene Network. Bioinformatics Applications Note, Vol. 30 no. 4, pages 571–573, doi:10.1093/bioinformatics/btt705.
Karlebach, G. and Shamir, R. (2012). Constructing logical models of gene regulatory networks by integrating transcription factor-DNA interactions with expression data: an entropy-based approach. Journal of Computational Biology.: 30-41.doi: 10.1089/ cmb.2011.0100.
Kharumnuid G. and Roy S. (2015) Tools for in-silico Reconstruction and Visualization of Gene Regulatory Networks (GRN). Second International Conference on Advances in Computing and Communication Engineering. IEEE Computer Society. 978-1-4799-1734-1/15, p421-426.
Kling, T., Johansson, P., Sanchez, J., Marinescu, V., Jornsten, R. and Nelander, S. (2015). Efficient Exploration of Pan-Cancer Networks by Generalized Covariance Selection and Interactive Web Content. Nucleic Acids Research, doi: 10.1093/nar/gkv413.
Lèbre, S., Becq, J., Devaux, F., Stumpf, M., Lelandais, G. (2010) Statistical Inference of the Time-Varying Structure of Gene-Regulation Networks. BMC Systems Biology, 4: 130.
Linde, J., Schulze, S., Henkel, S., Guthke, R. (2015) Data- And Knowledge-Based Modeling of Gene Regulatory Networks: An Update. EXCLI Journal; 14: 346-378 – ISSN 1611-2156.
Lodish, H., Berk, A., Zipursky, S., Matsudaira, P., Kaiser C., Krieger M., Scott M., Darnell J.(2000). Molecular Cell Biology. 4th edition. Section 4.4. New York: W. H. Freeman.
Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R., and Califano, A. (2006) ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics, 7(Suppl 1): S7 doi: 10.1186/1471-2105-7-S1-S7.
Nelson P., Kiriakidou M., Sharma A., Maniataki E. and Mourelatos Z. (2013). The micro RNA World: Small is Mighty. TRENDS in Biochemical Sciences Vol.28 No.10, p534-540.
Nicolle, R., Radvanyi, F., and Elati, M. (2015).CoREGNET : Reconstruction and Integrated Analysis of Co-Regulatory Networks. Bioinformatics, 1–3, doi: 10.1093/bioinformatics/btv305.
Ocone, A., Haghverdi, L., Mueller, N.S. and Theis, F.J. (2015). Reconstructing Gene Regulatory Dynamics from High-Dimensional Single-Cell Snapshot Data. Bioinformatics, ISMB/ECCB 2015, i89–i96, doi: 10.1093/bioinformatics/btv25.
Petralia, F., Wang, P., Yang, J. and Tu, J. (2015). Integrative Random Forest for Gene Regulatory Network Inference. Bioinformatics, ISMB/ECCB 2015, i197–i205, doi: 10.1093/bioinformatics/btv268.
Qin, J., Li, M., Wang, P., Zhang, M. and Wang, J. (2011). ChIP-Array: Combinatory Analysis of Chip-Seq/Chip and Microarray Gene Expression Data to Discover Direct/Indirect Targets of a Transcription Factor. Nucleic Acids Research, Vol. 39, Web Server issue W430 – W436.
Rui-Rui Ji, Ding Liu, Wen Zhang (2010) The Application of Hidden Markov Model in Building Genetic Regulatory Network. Biomedical Science and Engineering, J. Biomedical Science and Engineering, 3, 633-637.
Vijesh, N., Chakrabarti, S., Sreekumar, J. (2013) Modelling of Gene Regulatory Networks: A Review. Biomedical Science and Engineering, 6, 223-231.
Wang, P., Qin, J., Qin, Y., Zhu, Y., Wang, L.Y., Li, M., Zhang, M. and Wang, J. (2015).ChIP-Array 2: Integrating Multiple Omics Data to Construct Gene Regulatory Networks. Nucleic Acids Research, Vol. 43, Web Server issue, W264–W269.
Wang, D., Yan, K., Sisu, C., Cheng, C., Rozowsky, J., Meyerson, W. and Gerstein, M.B. (2015). Loregic: A Method to Characterize the Cooperative Logic of Regulatory Factors. PLOS Computational Biology DOI: 10.1371/journal. pcbi. 1004132.
Wang Z., Gerstein M., and Snyder M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet.10(1): 57–63. doi: 10.1038/nrg2484.
Xu, H., Ang, Y., Sevilla, A., Lemischka, I.R. and Ma’ayan, A. (2014).Construction and Validation of a Regulatory Network for Pluripotency and Self-Renewal of Mouse Embryonic Stem Cells. PLOS Computational Biology, Volume 10, Issue 8, e1003777.
Yalamanchili, H.K., Yan B., Li M.J., Qin, J., Zhao, Z., Chin, F. and Wang, J. (2014). DDGni: Dynamic Delay Gene-Network Inference from High-Temporal Data using Gapped Local Alignment. BIOINFORMATICS, Vol. 30 no. 3, pages 377–383 doi:10.1093/bioinformatics/btt692.
Yao, S., Yoo, S. and Yu, D. (2015). Prior Knowledge Driven Granger Causality Analysis on Gene Regulatory Network Discovery. BMC Bioinformatics 16:273, DOI 10.1186/s12859-015-0710-1.
Zhang, S.-Q., Ching, W.-K. and Yue, J. (2008) Construction and Control of Genetic Regulatory Networks: A Multivariate Markov Chain Approach. Journal of Biomedical Science and Engineering, 1, 15-21.
Zhang, Z.-F. (2004) Constructing and Predicting Gene Regulatory Network Using Micro Array Data. National Central University, Taiwan.
Zacher, B., Abnaof, K., Gade, S., Younesi, E., Tresch, A., and Fröhlich, H. (2012) Joint Bayesian Inference of Condition-Specific miRNA and Transcription Factor Activities from Combined Gene and micro RNA Expression Data. Vol. 28 no. 13, pages 1714–1720 doi: 10.1093/bioinformatics/bts257.
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931