Population Inversion and X-Ray Laser Gain by Electron Impact Excitation of Ni-Like Tin
American Journal of Optics and Photonics
Volume 3, Issue 1, February 2015, Pages: 17-23
Received: Jul. 11, 2015; Accepted: Jul. 22, 2015; Published: Jul. 30, 2015
Views 4410      Downloads 123
Authors
Mahmoud Ahmad, Physics Department, Faculty of Science, Al-Azhar University, Assiut, Egypt; Physics Department, College of Science, Majmaah University, Al-Zulfi, Kingdom of Saudi Arabia
Ahmed Abou El-Maaref, Physics Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
Essam Abdel-Wahab, Physics Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
Sami Allam, Laboratory of Lasers and New Materials, Physics Department, Faculty of Science, Cairo University, Giza, Egypt
Article Tools
Follow on us
Abstract
Excitation energies and transition probabilities for the 1s22s22p63s23p63d10, and the 1s22s22p63s23p63d94l (l= s, p, d, and f) configurations in nickel-like tin have been used to calculate the reduced population of 99 fine structure levels over a wide range of electron densities and at different electron plasma temperatures. The gain coefficients for those transitions with positive population inversion factors have been calculated as a function of electron density. This study is concerned with the transitions which produce positive gain at XUV and X-ray spectral regions.
Keywords
Ni-Like Sn, Population Inversion, Laser Gain, X-Ray, XUV
To cite this article
Mahmoud Ahmad, Ahmed Abou El-Maaref, Essam Abdel-Wahab, Sami Allam, Population Inversion and X-Ray Laser Gain by Electron Impact Excitation of Ni-Like Tin, American Journal of Optics and Photonics. Vol. 3, No. 1, 2015, pp. 17-23. doi: 10.11648/j.ajop.20150301.14
References
[1]
D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.M. Ceglio, A.U. Hazi, H. Medecki, B.J. MacGowan, J.E. Trebes, B.L. Whitten, E.M. Campbell, C.W. Hatcher, A.M. Hawryluk, R.L. Kaufman, L.D. Pleasance, G. Rambach, J.H. Scofield, G. Stone, T.A. Weaver, Phys. Rev. Lett. 54 (1985) 110.
[2]
Wessameldin S. Abdelaziz, Hamed Mahmoud Hamed Ibrahim, Opt. Photonics J. 1 (2011) 110.
[3]
J. Zhang, A.G. MacPhee, J. Nilsen, J. Lin, T.W. Barbee, Jr., C. Danson, M.H. Key, C.L.S. Lewis, D. Neely, R.M.N. O'Rourke, G.J. Pert, R. Smith, G.J. Tallents, J.S. Wark, E. Wolfrum, Phys. Rev. Lett. 78 (1997) 3856.
[4]
J. Zhang, A.G. MacPhee, J. Lin, E. Wolfrum, R. Smith, C. Danson, M.H. Key, C.L.S. Lewis, D. Neely, J. Nilsen, G.J. Pert, G.J. Tallents, J.S. Wark, Science 276 (1997) 1097.
[5]
R. Tommasini, F. Loewenthal, J.E. Balmer, Phys. Rev. A 59 (1999) 1577.
[6]
S. Maxon, P. Hagelstein, K. Reed, J. Scofield, J. Appl. Phys. 57 (1985) 971.
[7]
B.J. MacGowan, S. Maxon, P.L. Hagelstein, C.J. Keane, R.A. London, D.L. Matthews, M.D. Rosen, J.H. Scofield, D.A. Whelan, Phys. Rev. Lett. 59 (1987) 2157.
[8]
B.J. MacGowan, S. Maxon, C.J. Keane, R.A. London, D.L. Matthews, D.A. Whelan, J. Opt. Soc. Am. B 5 (1988) 1858.
[9]
B.J. MacGowan, S. Maxon, L.B. Da Silva, D.J. Fields, C.J. Keane, D.L. Matthews, A.L. Osterheld, J.H. Scofield, G.M. Shimkaveg, J.F. Stone, Phys. Rev. Lett. 65 (1990) 420.
[10]
B.J. MacGowan, L.B. Da Silva, D.J. Fields, C.J. Keane, K.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G.M. Shimkaveg, J.E. Trebes, R.S. Walling, Phys. Fluids B 4 (1992) 2326.
[11]
H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, F. Koike, Phys. Rev. Lett. 75 (1995) 1074.
[12]
J. Nilsen, J.C. Moreno, Opt. Lett. 20 (1995) 1386.
[13]
P.L. Hagelstein, in Proceedings of the OSA Meeting on Short Wavelength Coherent Radiation: Generation and Applications, edited by R.W. Facone and J. Kirz ,Optical Society of America, Washington, DC, 1988, pp 28.
[14]
G.D. Enright, J. Dunn, D.M. Villeneuve, S. Maxon, H.A. Baldis, A.L. Osterheld, B. La Fountaine, J. C. Kieffer, M. Nantel, and H. Pépin, X Ray Lasers 1992, edited by E.E. Fill , Institute of Physics, Bristol, 1993, pp 45.
[15]
Y. Li, G. Pretzler, E.E. Fill, Phys. Rev. A 52 (1995) R3433.
[16]
J. Nilsen, B.J. MacGowan, L.B. Da Silva, J.C. Moreno, Phys. Rev. A 48 (1993) 4682.
[17]
J. Nilsen, J.C. Moreno, B.J. MacGowan, J.A. Koch, Appl. Phys. B 57 (1993) 309.
[18]
E.E. Fill, Y. Li, D. Schlögl, J. Steingruber, J. Nilsen, Opt. Lett. 20 (1995) 374.
[19]
Y. Li, G. Pretzler, E.E. Fill, Opt. Lett. 20 (1995) 1026.
[20]
R. Kodama, D. Neely, Y. Kato, H. Daido, K. Murai, G. Yuan, A. MacPhee, C.L. Lewis, Phys. Rev. Lett. 73 (1994) 3215.
[21]
H. Daido, R. Kodama, K. Murai, G. Yuan, M. Takagi, Y. Kato, I.W. Choi, C.H. Nam, Opt. Lett. 20 (1995) 61.
[22]
Y. Li, G. Pretzler, P. Lu, E.E. Fill, Phys. Rev A. 53 (1996) R652.
[23]
F. Staub, M. Braud, J.E. Balmer, J. Nilsen, S. Bajt, Phys. Rev A. 70 (2004) 013813.
[24]
U. Feldman, A.K. Bhatia, S. Suckewer, J. Appl. Phys. 54 (1983) 2188.
[25]
U. Feldman, J.F. Seely, G.A. Doschek, J. Appl. Phys. 59 (1986) 3953.
[26]
U. Feldman, G.A. Doschek, J.F. Seely, A.K. Bhatia, J. Appl. Phys. 58 (1985) 2909.
[27]
G. Chapline, L. Wood, Phys. Today 28 (1975) 40.
[28]
A.V. Vinogradov, V.N. Shlyaptsev, Sov. J. Quantum Electron. 10 (1980) 754.
[29]
L.J. Palumpo, R.C. Elton, J. Opt. Soc. Am. 67 (1977) 480.
[30]
M.A. Dopita and R.S. Sutherland, Astrophysics of the diffuse universe, Astronomy and astrophysics library, Springer (2003) pp 128.
[31]
Y.Q. Liang, J.Y. Zhong, At. Data Nucl. Data Tables 94 (2008) 807.
[32]
W.H. Goldstein, J. Oreg, A. Zigler, A. Bar-Shalom, M. Klapisch, Phys. Rev. A 38 (1988) 1797.
[33]
Wessameldin S. Abdelaziz, Th.M. ElSherbini, Opt. Laser Technol. 42 (2010) 699.
[34]
I.I. Sobelman, Introduction to the theory of atomic spectra, International Series of Monographs in Natural Philosophy, Vol. 40, Pergamon Press, 1979.
[35]
A.V. Vinogradov, I.I. Sobelman, E.A. Yukov, Sov. J. Quantum Electron. 7 (1977) 32 .
[36]
A.A. El-Maaref, M.A.M. Uosif, S.H. Allam, Th.M. El-Sherbini, Can. J. Phys. 91 (2013) 981.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186