First Investigation of Optical Properties and Local Structure of
Gd3+ Doped Nano-Crystalline GeSe2
American Journal of Optics and Photonics
Volume 4, Issue 5, October 2016, Pages: 40-45
Received: Oct. 31, 2016; Accepted: Nov. 12, 2016; Published: Nov. 29, 2016
Views 4124      Downloads 107
Author
H. Hantour, Faculty of Science, Al-Azhar University, Cairo, Egypt
Article Tools
Follow on us
Abstract
Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. The crystal structure, local structure and emission properties are investigated. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41nm for GeSe2 and 48nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1ev and 4.8ev for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ~ 202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its FWHM is reduced by ~ 50% accompanied by an intensity increase of about ~ 17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ~ 604 nm. This band is splitted into two separated bands with higher intensity. The detected emission bands at wavelength > 650 nm are assigned to transmission from 6GJ to the different 6PJ terms.
Keywords
Nano-Crystalline GeSe2Doped with Gd3+, Microstructure, Optical, Raman and Photoluminescence Characteristics
To cite this article
H. Hantour, First Investigation of Optical Properties and Local Structure of
Gd3+ Doped Nano-Crystalline GeSe2, American Journal of Optics and Photonics. Vol. 4, No. 5, 2016, pp. 40-45. doi: 10.11648/j.ajop.20160405.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo and H. Jain, J. Non-Cryst. Solids, 353(2007) 2066.
[2]
H. Nicolas, J. M. Laniel, R. Valle and A. Villeneuve, Opt. Lett, 28(2003) 965.
[3]
W. J. Miniscalco and M. J. F. Digonnet (Ed.), Rare Earth Doped Fiber Lasers and Amplifiers, Marcel Dekker, New York, (1993) 35.
[4]
L. Russo, M. Vlcek and H. Jain, Glass Technol, 46(2005) 94.
[5]
K. Tanaka, J. Non-Cryst. Solids, 352 (2006) 2580.
[6]
L. A. Wahab, A. Adam, M. R. Balboul, N. Makram, A. A. El-Ela and K. Sedeek, J. Physica B, 387 (2007) 81.
[7]
K. Sedeek, M. Fadel and M. A. Afify, J. Mater.Sci, 33 (1998) 4621.
[8]
S. R. Elliot and A. T. Steel, J.Phys.Rev.Lett, 57 (1986) 1316.
[9]
K. Sedeek, J. Phys.D: Appl. Phys, 26 (1993) 130.
[10]
T. Schweizer, D. W. Hewak, B. N. Samson and D. N. Payne, J. Lumin, 72±74 (1997) 421.
[11]
S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi and N. Soga, J.Am.Ceram. Soc, 78 (1995) 2917.
[12]
R. Reisfeld, Ann.Chim.Fr, 7 (1982) 147.
[13]
B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera and I. D. Aggarwal, J. Non-Cryst. Solids, 256&257 (1999) 253.
[14]
P. Tronc, M. Bensoussan, A. Brenac and C. Sebenne, J. Phys. Rev. B, 8 (1973) 5947.
[15]
R. J. Menanich and S. A. Solin, Commun, 21 (1977) 273; R. J. Nemanich, Phys. Rev. B, 16 (1977) 1655.
[16]
Z. V. Popovic and P. M. Nikolic, J. Solid State Commun, 27 (1978) 561.
[17]
K. Murase, T. Fukunago, P. C. Taylor (Ed.) and S. G. Bishop (Ed.), Optical Effects in Amorphous Semiconductours, AIP Conf. Proc. No.120 (AIP, New York, 1984) 449.
[18]
Z. V. Popovic, Z. Jaksic, Y. S. Raptis and E. Anastassakis, J.Phys.Rev.B, 57 (1998) 3418.
[19]
V. A. Vassilyev, M. Koo´s and I. K. Somogyi, Solid State Commun, 22 (1977) 633.
[20]
V. A. Vassilyev, M. Koo´s and I. K. Somogyi, Philos. Mag. B, 39 (1979) 333.
[21]
R. A. Street and D. K. Biegelsen, Solid State Commun, 32 (1979) 339.
[22]
G. Boulon, J.Rev.Phys. Appl, 21 (1986) 689.
[23]
G. Blasse, ed. Mat. Chem. Phys, 16 (1987) 3-371.
[24]
A. J. De Vries, M. F. Hazenkamp and G. Blasse, J. Luminescence, 42 (1988) 275.
[25]
G. Blasse, H. S. Kiliaan, A. J. de, Vries, J. Less-Common Met, 129 (1986) 139.
[26]
K. N. Shinde, V. B. Pawade, S. J. Dhoble, A. Hakeem, Impact of temperatureon Na2Sr(PO4)F:Eu3+ phosphor, Luminescence, 29(2014) 352–6.
[27]
S. Tamboli, B. Rajeswari and S. J. Dhoble, J. Biological and Chemical luminescence, 13 (2016) 551.
[28]
P. Neˇmec, B. Frumarova´, M. Frumar and J. Oswald, J.Phys.Chem.Solids, 61 (2000) 1583.
[29]
P. Scardi, L. Lutterotti and P. Masitrelli, Powder Diff, 9(3) (1994) 180.
[30]
K. El-Sayed, Z. K. Heiba, K. Sedeek and H. H. Hantour, J. Alloys and Comp, 530 (2012) 102.
[31]
R. K. Pan, H. Z. Tao, H. C. Zang, X. J. Zhao and T. J. Zhang, J. Alloys and Comp, 484 (2009) 645.
[32]
N. Kumagai, J. Shirafuji and Y. Inuishi, J.Phy.Soc.Jpn, 42 (1977) 1261.
[33]
P. M. Bridenbaugh, G. P. Espinosa, J. E. Griffiths, J. C. Phillips and J. P. Remeika, Phys.Rev.B, 20 (1979) 4140.
[34]
T. Nakaoka, Y. Wang, K. Murase, O. Matsuda and K. Inoue, Phys. Rev,61 (2000) 15569.
[35]
R. Holomb, V. Mitsa, E. Akalin, S. Akyuz and M. Sichka, J.Non-Cryst.Solids, 373–374 (2013) 51.
[36]
Z. V. Popovic and H. J. Stolz, J. phys. stat. sol. (b), 108 (1981) 153.
[37]
R. A. Street and D. K. Biegelsen, J. Non-Cryst. Solid, 32 (1979) 339.
[38]
M. Koos, I. Kosa Somogyi and V. A. Vassilyev, J. Non-Cryst.Solids, 43 (1981) 245.
[39]
M. Kastner and S. J. Hudgens, Phil. Mag. B, 37 (1978) 665.
[40]
M. Kastner and H. Fritzsche, Phil. Mag. B, 37 (1978) 199.
[41]
R. T. Wegh and A. Meijerink, J.ActaPhysica A, 90 (1996) 333.
[42]
L. H. Brixner and G. Blasses, J.Chem.phys.lett, 157 (1989) 283.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186