| Peer-Reviewed

Bioactivation of Carbonated Mineral Water with Passion Fruit Microcapsules

Received: 19 January 2015    Accepted: 9 April 2015    Published: 18 April 2015
Views:       Downloads:
Abstract

The ionic gelation is a technique of microencapsulation by a reaction between a polymer solution and an ionic solution. This technique can protect the nutraceutical bioactive compounds. This study used the process of ionic gelation solution with sodium alginate in order to obtain a new product: a bioactive water from passion fruit microcapsules placed in the carbonated mineral water. The physical-chemical, microbiological stability, and migration of the bioactive compounds of microcapsule for water for 35 days at 5 ± 1 °C was verified. For the microcapsules, it was possible to verify that the levels of ascorbic acid and carotenoids decreased during the storage period, and phenols remained constant (p≤0,05). Microcapsules and water presented balance of the ascorbic acid, carotenoids and phenols levels (p≤0,05). This result indicates migration of the bioactive compounds of the microcapsule to water and consequently the bioactivation of carbonated mineral water.

Published in International Journal of Nutrition and Food Sciences (Volume 4, Issue 3)
DOI 10.11648/j.ijnfs.20150403.18
Page(s) 310-319
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Ionic Gelation, Passion Fruit, Water, Migration, Bioactive Compounds

References
[1] Adolfo Lutz Institute. (2005). Normas Analíticas do Instituto Adolfo Lutz: Métodos químicos e físicos para análise de alimentos. (3th ed). São Paulo: IAL.
[2] Água & Vida. (2012). Água mineral lidera ranking de vendas no primeiro bimestre de 2011. Água & Vida. Available in: . Accessed July 15, 2013.
[3] Almeida, R. F., Martins, M. L. L., Resende, E. D., Vitorazi, L., Carlos, L. A. & Pinto, L. K. A. (2006). Influência da temperatura de refrigeração sobre as características químicas do mamão cv. “Golden”. Ciência e Tecnologia de Alimentos, 26, 3, 577-581.
[4] AOAC - Association of Official Analytical Chemists. (1984). Official methods of analysis of the Association of Official Analytical Chemists. (14th ed.). Arlington: A.O.A.C.
[5] AOAC - Association of Official Analytical Chemists. (1996). Official Methods of analysis of the Association of Official Analytical Chemists. Arlington: A.O.A.C., Chapter 44.
[6] Arrazola, G., Herazo, I. & Alvis, A. (2014). Obtención y Evaluación de la Estabilidad de Antocianinas de Berenjena (Solanum melongena L.) en Bebidas. Información Tecnológica, 25, 3, 43-52.
[7] Benassi, M. T. & Antunes, A. J. (1988). A comparison of meta-phosphoric and oxalic acids as extractant solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, 31, 4, 507-513.
[8] Brasil. (2005). ANVISA – Agência Nacional de Vigilância Sanitária. Resolução de Diretoria Colegiada - RDC nº 274, de 22 de setembro de 2005. Anexo: “Regulamento técnico para águas envasadas e gelo”. Brasília: Diário Oficial da União.
[9] Castro, L. R. S., Carvalho, J. S. & Vale, V. L. C. (2010). Avaliação microbiológica de diferentes marcas de água mineral. Revista Baiana de Saúde Pública, 34, 4, 835-844.
[10] Couto, A. B. B., Aguiar, I. B., Oliveira, C. S., Gomes, F. S., Freire Jr., M., Cabral, L. M. C. & Leal Jr., W. F. (2011). Caracterização físico-química maracujá-amarelo (Passiflora edulis fo. Flavicarpa) cultivado em sistema orgânico e convencional. Embrapa Agroindústria de Alimentos – Article in Annals of Congress (ALICE).
[11] De’Nobili, M. D., Curto, L. M., Delfino, J. M., Soria, M., Fissore, E. N. & Rojas, A. M. (2013). Performance of alginate films for retention of L-(+)-ascorbic acid. International Journal of Pharmaceutics, 450, 1–2, 95–103.
[12] Endo, E., Bertoldi, M. C., Pinheiro, N. M. S., Arruda, A. C. & Minim, V. P. R. (2009). Caracterização do mercado consumidor de “água aromatizada”: hábitos e motivações para o consumo. Ciência e Tecnologia de Alimentos, 29, 2, 365-370.
[13] Guadarrama-Lezama, A. Y., Dorantes-Alvarez, L., Jaramillo-Flores, M. E., Pérez-Alonso, C, Niranjan, K. & Alamilla-Beltrán, L. (2012) Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. Journal of Food Engineering, 112, 1–2, 29–37.
[14] IBGE - Instituto Brasileiro de Geografia e Estatística. (2010). Banco de dados agregados. Sistema IBGE de Recuperação Automática – SIDRA. Available in: . Accessed January 28, 2014.
[15] Jiang, T. (2013). Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biology and Technology, 76, 91–97.
[16] Johnston, C. S. & Bowling, D. L. J. (2002). Stability of ascorbic acid in commercially available orange juices. Journal of the American Dietetic Association, 102, 525-529.
[17] Lessa, A. O. (2011). Determinação do teor de compostos fitoquímicos e estudo do potencial para processamento da polpa de frutos de maracujá das espécies silvestres (Passiflora setacea DC, Passiflora cincinnata MAST). 83 p. Dissertation (Master in Food Engineering) - State University of Southwest Bahia, Itapetinga.
[18] Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods of Enzymology, 148, 350-382.
[19] Lozano, M. I. C. (2010). Efecto de las condiciones de proceso en la conservación de alimentos encapsulados por el método de gelificación iónica. 127p. Dissertation (Master in Food Science) - National School of Biological Sciences, National Polytechnic Institute, Mexico.
[20] Mineral Waters of the World. (2013). Health Issues. Mineral Waters of the World. Available in: . Accessed July 15, 2013.
[21] Moura, L. R. C., Porto, G. D., Cunha, N. R. S., Moura, L. E. L. & Veiga, R. T. (2011). O comportamento de compra e a percepção dos atributos da água mineral pelos consumidores. Perspectiva, 35, 130, 97-112.
[22] Mukai-Correa, R., Prata, A. S., Alvim, I. D. & Grosso, C. (2005). Caracterização de microcápsulas contendo caseína e gordura vegetal hidrogenada obtidas por gelificação iônica. Brazilian Journal of Food Technology, 8, 1, 73-80.
[23] Oliveira, E. M. S., Regis, S. A. & Resende, E. D. (2011). Caracterização dos resíduos da polpa do maracujá-amarelo. Ciência Rural.
[24] Oliveira, J. E. D. & Marchini, J. S. (1998). Ciências Nutricionais. São Paulo: Sarvier.
[25] Oliveira, M. C. (2011). Estudo do processo de obtenção de gotas de mamão (Caricapapaya L.) por esferificação básica. 87p. Dissertation (Master in Food Science and Technology) - Federal University of Sergipe, São Cristóvão.
[26] Pasin, B. L., Azón, C. G. & Garriga, A. M. (2012). Microencapsulación con alginato en alimentos. Técnicas y aplicaciones. Revista Venezolana de Ciencia y Tecnología de Alimentos, 3, 1, 130-151.
[27] Passos, M. C. L. M. S., Lima, M. A. C., Amariz, A., Ribeiro, T. P., Trindade, D. C. G. & Antão, T. S. (2009). Utilização de revestimentos à base de alginato na conservação pós-colheita de manga “Tommy Atkins”. Embrapa Agroindústria de Alimentos – Artigo em anais de congresso (ALICE), 181-187.
[28] Paulo, E. M., Assis, S. A. & Santos, V. L. C. S. (2009). Polímeros constituídos por carboidratos utilizados no processo de microencapsulação de bactérias: uma revisão. Sitientibus Série Ciências Biológicas, 9, 4, 185-191.
[29] Qv, X., Zeng, Z. & Jiang, J. (2011). Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocolloids, 25, 6, 1596–1603.
[30] Ragazzi, E. & Veronese, G. (1973). Quantitative analysis of phenolics compounds after thin-layer chromatographic separation. Journal of Chromatography, 77, 369–375.
[31] Ramos, M. F. S. (2006). Desenvolvimento de microcápsulas contendo fração volátil de copaíba por spray-drying: estudo da estabilidade e avaliação farmacológica. 132p. Doctoral thesis (Pharmaceutical Sciences) - Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto.
[32] Rizzi, L. C., Rabello, L. A., Morozini Filho, W., Savasaki, E. T. & Kavati, R. (1998). Cultura do maracujá-azedo. Campinas: Coordenadoria de Assistência Técnica Integral.
[33] Robles-Sánchez, R. M., Rojas-Graü, M. A., Odriozola-Serrano, I., González-Aguilar, G. & Martin-Belloso, O. (2013). Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. Food Science and Technology, 50, 1, 240–246.
[34] Rosa, C. G., Borges, C. D., Zambiazi, R. C., Rutz, J. K., Luz, S. R., Krumreich, F. D., Benvenutti, E. V. & Nunes, M. R. (2014) Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). Food Science and Technology, 58, 2, 527–533.
[35] Rutz, J. K. (2013). Caracterização e microencapsulação de suco de pitanga roxa (Eugenia uniflora L.). 105p. Dissertation (Master in Food Science and Technology) - Federal University of Pelotas, Pelotas.
[36] Silva, G. J. F., Constant, P. B. L., Figueiredo, R. W. & Moura, S. M. (2010). Formulação e estabilidade de corantes de antocianinas extraídas das cascas de jabuticaba (Myrciaria ssp). Alimentos e Nutrição, 21, 3, 429-436.
[37] TACO. (2011). Tabela Brasileira de Composição de Alimentos. (4th ed.). Campinas: NEPA- UNICAMP.
[38] Vicentino, S. L., Floriano, P A., Dragunski, D. C. & Caetano, J. (2011). Filmes de amidos de mandioca modificados para recobrimento e conservação de uvas. Química Nova, 34, 8, 1309-1314.
[39] Xavier, A. C. R. (2014). Pérolas de maracujá obtidas por processo de gelificação iônica. 69p. Dissertation (Master in Food Science and Technology) - Federal University of Sergipe, São Cristóvão.
Cite This Article
  • APA Style

    Morais A. B. L., Xavier A. C. R., Silva G. F., Silva M. A. A. P., Pagani A. A. C. (2015). Bioactivation of Carbonated Mineral Water with Passion Fruit Microcapsules. International Journal of Nutrition and Food Sciences, 4(3), 310-319. https://doi.org/10.11648/j.ijnfs.20150403.18

    Copy | Download

    ACS Style

    Morais A. B. L.; Xavier A. C. R.; Silva G. F.; Silva M. A. A. P.; Pagani A. A. C. Bioactivation of Carbonated Mineral Water with Passion Fruit Microcapsules. Int. J. Nutr. Food Sci. 2015, 4(3), 310-319. doi: 10.11648/j.ijnfs.20150403.18

    Copy | Download

    AMA Style

    Morais A. B. L., Xavier A. C. R., Silva G. F., Silva M. A. A. P., Pagani A. A. C. Bioactivation of Carbonated Mineral Water with Passion Fruit Microcapsules. Int J Nutr Food Sci. 2015;4(3):310-319. doi: 10.11648/j.ijnfs.20150403.18

    Copy | Download

  • @article{10.11648/j.ijnfs.20150403.18,
      author = {Morais A. B. L. and Xavier A. C. R. and Silva G. F. and Silva M. A. A. P. and Pagani A. A. C.},
      title = {Bioactivation of Carbonated Mineral Water with Passion Fruit Microcapsules},
      journal = {International Journal of Nutrition and Food Sciences},
      volume = {4},
      number = {3},
      pages = {310-319},
      doi = {10.11648/j.ijnfs.20150403.18},
      url = {https://doi.org/10.11648/j.ijnfs.20150403.18},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnfs.20150403.18},
      abstract = {The ionic gelation is a technique of microencapsulation by a reaction between a polymer solution and an ionic solution. This technique can protect the nutraceutical bioactive compounds. This study used the process of ionic gelation solution with sodium alginate in order to obtain a new product: a bioactive water from passion fruit microcapsules placed in the carbonated mineral water. The physical-chemical, microbiological stability, and migration of the bioactive compounds of microcapsule for water for 35 days at 5 ± 1 °C was verified. For the microcapsules, it was possible to verify that the levels of ascorbic acid and carotenoids decreased during the storage period, and phenols remained constant (p≤0,05). Microcapsules and water presented balance of the ascorbic acid, carotenoids and phenols levels (p≤0,05). This result indicates migration of the bioactive compounds of the microcapsule to water and consequently the bioactivation of carbonated mineral water.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Bioactivation of Carbonated Mineral Water with Passion Fruit Microcapsules
    AU  - Morais A. B. L.
    AU  - Xavier A. C. R.
    AU  - Silva G. F.
    AU  - Silva M. A. A. P.
    AU  - Pagani A. A. C.
    Y1  - 2015/04/18
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijnfs.20150403.18
    DO  - 10.11648/j.ijnfs.20150403.18
    T2  - International Journal of Nutrition and Food Sciences
    JF  - International Journal of Nutrition and Food Sciences
    JO  - International Journal of Nutrition and Food Sciences
    SP  - 310
    EP  - 319
    PB  - Science Publishing Group
    SN  - 2327-2716
    UR  - https://doi.org/10.11648/j.ijnfs.20150403.18
    AB  - The ionic gelation is a technique of microencapsulation by a reaction between a polymer solution and an ionic solution. This technique can protect the nutraceutical bioactive compounds. This study used the process of ionic gelation solution with sodium alginate in order to obtain a new product: a bioactive water from passion fruit microcapsules placed in the carbonated mineral water. The physical-chemical, microbiological stability, and migration of the bioactive compounds of microcapsule for water for 35 days at 5 ± 1 °C was verified. For the microcapsules, it was possible to verify that the levels of ascorbic acid and carotenoids decreased during the storage period, and phenols remained constant (p≤0,05). Microcapsules and water presented balance of the ascorbic acid, carotenoids and phenols levels (p≤0,05). This result indicates migration of the bioactive compounds of the microcapsule to water and consequently the bioactivation of carbonated mineral water.
    VL  - 4
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Food Technology, Federal University of Sergipe, Sergipe, Brazil

  • Department of Food Technology, Federal University of Sergipe, Sergipe, Brazil

  • Laboratory for Alternative Technologies - Federal University of Sergipe, Sergipe, Brazil

  • Department of Food Technology, Federal University of Sergipe, Sergipe, Brazil

  • Department of Food Technology, Federal University of Sergipe, Sergipe, Brazil

  • Sections