| Peer-Reviewed

Calcareous Nannofossils Boistratigraphy and Paleoecology of the Late Paleocene/Early Eocene of Wadi Nukhul, Westcentral Sinai, Egypt

Received: 24 February 2015    Accepted: 9 March 2015    Published: 14 March 2015
Views:       Downloads:
Abstract

The calcareous nannofossil biozones NP7/8 through NP12 were identified from the Esna and base of the Thebes formations at Wadi Nukhul, westcentral Sinai. The Subzone NP9a spans the lower part of Esna Formation. The Zone NP10 is easily differentiated into 4 subzones (a-d). The NP9/NP10 zonal boundary can be identified at the level of increase frequency of Neochiastozygus junctus. Zone NP11 occupies the topmost part of the Esna Formation and the base of the Thebes Formation indicating conformable relation between them. The Paleocene/Eocene boundary is traced between the NP9a/NP9b subzonal boundary which is marked by the first- appearances of Rhomboaster spp. It is located at the basal part of the Esna Formation and conforms lithologic change from blackish calcareous shale to brown calcarenite. On the basis of nannofossils, the Paleocene Eocene Thermal maximum (PETM) interval can be divided into two parts (lower and upper). The major assemblage shift across the P/E boundary suggests a change from colder, more productive surface waters to warmer, more oligotrophic conditions. Above the PETM interval, the niche of Fasciculithus spp. was filled by Neochiastozygus juncts and Rhabdolithus solus, the cooler and more eutrophic taxa.

Published in Earth Sciences (Volume 4, Issue 2)
DOI 10.11648/j.earth.20150402.11
Page(s) 59-71
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Nannofossils, Paleocene, Eocene, Sinai, Nukhul, Egypt

References
[1] Abu Shama AM, Faris M, Al Wosabi K (2007). Upper Paleocene-Lower Eocene calcareous nannofossil biostratigraphy and paleoecology of Gebel Matulla section, southwestern Sinai, Egypt. Proceeding 5th International Conference on the Geology of Africa, Assiut, Egypt 1: 33-51.
[2] Al Wosabi KhA (2014). Upper Paleocene–lower Eocene planktonic foraminiferal biostratigraphy of Gabal Matulla section, southwestern Sinai, Egypt. Arabian Journal of Geoscience. DOI 10.1007/s12517-014-1422-y. http://link.springer.com/article/10.1007%2Fs12517-014-1422-y
[3] Alegret L, Ortiz S, Arenillas I, Molina E (2005). Paleoenvironmental turnover across the Paleocene/Eocene boundary at the stratotype section in Dababiya (Egypt) based on benthic foraminifera. Terra Nova 17:526-536.
[4] Aubry MP (1992). Late Paleogene nannoplankton evolution: A tale of climatic deterioration, in Eocene-Oligocene Climatic and Biotic Evolution, edited by Prothero DR, Berggren WA, Princeton Univercity Press, Princeton NJ, 272-309.
[5] Aubry MP (1996). Towards an Upper Paleocene-Lower Eocene high resolution stratigraphy based on calcareous nannofossil stratigraphy. In: Aubry MP, Benjamini C, editors. Paleocene/Eocene Bondary Events in space and Time. Journal Earth Science, Israel 44:239-253.
[6] Aubry MP (1998). Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration. In: Aubry MP, Lucas S, Berggren WA, editors. Late Paleocene and Early Eocene Climatic and Biotic Evolution. Columbia Univercity Press, New York, pp.158-203.
[7] Aubry MP (2001). Provincialism in the photic zone during the LPTM. In: Ash A, Wing S, editors. Climate and Biota of the Early Paleogene. International Meeting, Powell, Abstract, pp. 1-6.
[8] Aubry MP, Berggren WA, Cramer B, Dupuis C, Kent DV, Ouda KH, Schmitz B, Steurbaut E (1999). Paleocene/ Eocene boundaries sections in Egypt. International Symposium on Late Paleocene-Early Eocene events from Northern Africa to the Middle East in connection with 1st International Conference on the Geology of Africa. Assiut, Egypt, Symposium Proceedings, pp. 1-11.
[9] Aubry MP, Berggren WA, Stott L, Sinha A (1996). The upper Paleocene-lower Eocene stratigraphic record and the Paleocene-Eocene boundary carbon isotope excursion: implication for geochronology. In: Knox RWO'B, Corfield RM and Dunay RE, editors. Correlation of the Early Paleogene in Northwest Europe. Geological Society, Special Publication, 101:353-380. http://sp.lyellcollection.org/content/101/1/353.refs
[10] Aubry MP, Ouda K, Dupuis C, Van Couvering JA and the Members of the Working Group on the Paleocene/Eocene Boundary: Ali J, Berggren WA, Brinkhuis H, Gingerich PH, Heilman-Clausen C, Hooker J, Kenet DV, King C, Knox RWOB, Laga P, Molina E, Schmitz B, Steurbaut E, Ward DR (2002). Proposal: Global Standard Stratotype-section and Point (GSSP) at the Dababiya section (Egypt) for the Base of the Eocene Series. International Subcommission on the Paleogene Stratigraphy, Internal Report, pp.1-58.
[11] Bains S, Norris RD, Corfield RM, Faul, KL (2000). Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171-174. http://www.nature.com/nature/journal/v407/n6801/full/407171a0.html
[12] Berggren WA, Ouda K (2003). Upper Paleocene-lower Eocene planktonic foraminiferal biostratigraphy of the Dababiya section, Upper Nile Valley (Egypt). Micropaleontology 49(1): 61-92. http://www.jstor.org/stable/3648475
[13] Bolle MP, Tantawy A, Pardo A, Adate T, Burns S, Kassab A (2000). Climatic and environmental changes documented in the Upper Paleocene to Lower Eocene of Egypt. Ecol Geol Helv 93:33-51.
[14] Bown P, Pearson P (2009). Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: New evidence from Tanzania. Marine Micropaleontology 71:60-70. http://www.sciencedirect.com/science/article/pii/S0377839809000061.
[15] Bralower TJ (2002). Evidence of surface water oligotrophy during the Paleocene Eocene Thermal Maximum: nannofossil assemblage data from Ocean Drilling Program Site 690 Maud Rise, Weddell Sea. Paleoceanography 17:1-13.
[16] Bramlette MN, Sullivan FR (1961). Coccolithophorids and related nannoplankton of the Early Tertiary in California. Micropaleontology 7:129-188.
[17] Brönnimann P, Stradner H (1960). Die foraminiferen und Discoasterid-enzonen von Kuba und ihre intercontinental correlation. Erdoel 76:364-369.
[18] Bukry D (1973). Low-latitude coccolith biostratigraphic zonation. Initial Report of Deep Sea Drilling Project 15:685-703.
[19] Bukry D, Bramlette MN (1970). Coccolith age determinations. Leg 3. Initial Report of Deep Sea Drilling Project 3:589-611.
[20] Cramer BS, Wright JD, Kent DV, Aubry MP (2003). Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography 18(21):1-21.
[21] Dupuis CH, Aubry MP, Steurbaut E, Berggren WA, Ouda KH, Magioncalda R, Cramer BS, Kent DV, Speijer RP, Heilmann-clausen C (2003). The Dababiya Quarry Section: Lithostratigraphy, clay mineralogy, geochemistry and paleontology. Micropaleontology 49(1):41-59. http://dx.doi.org/10.2113/49.Suppl_1.41.
[22] Ernst SR, Guasti E, Dupuis C, Speijer RP (2006). Environmental perturbation in the southern Tethys across the Paleocene/Eocene boundary (Dababiya, Egypt): Foraminiferal and clay mineral records. Marine Micropaleontology 60:89-111. http://www.sciencedirect.com/science/article/pii/S0377839806000466.
[23] Faris M, Abu Shama AM (2007). Calcareous nannofossil biostratigraphy of Paleocene lower Eocene succession in the Thamad area, east central Sinai, Egypt. Micropaleontology 53:127-144. http://www.micropress.org/pdf/micropaleontology_53_1_2.pdf
[24] Faris M, El Deep WZ, Mandur M (2000). Biostratigraphy of some upper Cretaceous/lower Eocene succession in southwest Sinai, Egypt. Annals Geological Survey Egypt, 23:135-161.
[25] Faris M, Zahran E (2002). Calcareous nannofossil biostratigraphy of the late Paleocene/Early Eocene of El Bruk area, north central Sinai, Egypt. Egyptian Journal of Paleontology 2:359-369.
[26] Guasti E, Speijer RP (2007). The Paleocene-Eocene Thermal Maximum in Egypt and Jordan: An overview of the planktic foraminiferal record. The Geological Society of America, Special Paper, 424:53-67.
[27] Haq BU, Lohmann GP (1976). Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean. Marine Micropaleontology 1:119-194.
[28] Haq BU, Premoli Silva I, Lohmann GP (1977). Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the Early Cenozoic Atlantic Ocean. Journal of Geophysical Research 82:3876-3961.
[29] Hay WW (1964). The use of the electron microscope in the study of fossils.- Annual Report, Smithsonian Institute 409-415.
[30] Hay WW, Mohler HP, Roth PH, Schmidt RR, Boudreaux JE (1967). Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Antillean area and transoceanic correlation. Trans. Gulf Coast Assoc Geol Soc 17:428-480.
[31] Jiang S, Wise JSW (2009). Distinguishing the influence of diagenesis on the paleoecological reconstruction of nannoplankton across the Paleocene/Eocene Thermal Maximum: An example from the Kerguelen Plateau, Southern Indian Ocean. Marine Micropaleontology 72:49-59. http://www.sciencedirect.com/science/article/pii/S0377839809000358.
[32] Kahn A, Aubry MP (2004). Provincialism associated with the Paleocene/ Eocene thermal maximum: temporal constraint. Marine Micropaleontology 52:117-131. http://www.sciencedirect.com/science/article/pii/S0377839804000532.
[33] Kelly DC, Bralower TJ, Zachos JC (1998). Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography Palaeoclimatology Palaeoecology 141:139-161. http://www.sciencedirect.com/science/article/pii/S0031018298000170
[34] Kelly DC, Bralower TJ, Zachos JC, Premoli Silva I, Thomas E (1996). Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423-426. http://geology.gsapubs.org/content/24/5/423.abstract
[35] Khozyem H, , Spangenberg J, Tantawy A, Keller G (2013). Palaeoenvironmental and climatic changes during the Palaeocene–Eocene Thermal Maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt. Journal of the Geological Society 170:341-352. doi: 10.1144/jgs2012-046. http://jgs.lyellcollection.org/content/170/2/341.abstract
[36] Martini E (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A, editor. Proceeding II Planktonic Conference, Roma, 1970, 2:739-785.
[37] Monechi S, Angori E, Speijer RP (2000). Upper Paleocene biostratigraphy in the Mediterranean region: Zonal markers, diachronism, and preservational problems. In: Andreasson FP, Schmitz B, Thompson EI, editors. Early Paleogene warm climates and biosphere dynamics. GFF 122:108-110.
[38] Obaidalla NA (2000). Planktonic foraminiferal biostratigraphy and faunal turnover events during the Late Cretaceous–early Tertiary along the Rea Sea coast, Egypt. Journal of African Earth Sciences 31:571-595. http://www.sciencedirect.com/science/article/pii/S0899536200800081.
[39] Ouda Kh, Aubry MP (2003). The upper-Paleocene-lower Eocene of the Upper Nile Valley Part 1, Stratigraphy. Micropaleontology 49 (1):1-212.
[40] Ouda Kh, Berggren WA, Saad K (2003). The Gebel Oweina and Kilabiya sections in the Idfu-Esna area, Upper Nile Valley (Egypt). In: Ouda K, Aubry MP, editors. The upper Paleocene–lower Eocene of the upper Nile Valley, Part 1, Stratigraphy: Micropaleontology 49(1):147-166.
[41] Perch-Nielsen K (1985). Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nilson K, editors. Plankton Stratigraphy, Cambridge University Press, pp.426-554.
[42] Raffi I, Backman J, Zachos JC, Sluijs,A (2009). The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Marine Micropaleontology 70:201-212. http://www.sciencedirect.com/science/article/pii/S0377839808001485.
[43] Raffi I, Backman J, Palike H (2005). Change in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean. Palaeogeography Palaeoclimatology Palaeoecology 226:93-126. http://www.sciencedirect.com/science/article/pii/S0031018205002580.
[44] Raffi I, De Bernardi B (2008). Response of calcareous nannofossils to the Paleocene-Eocene Thermal Maximum: Observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge-SW Atlantic). Marine Micropaleontology 69:119-138. http://www.sciencedirect.com/science/article/pii/S0377839808000819.
[45] Romein AJT (1979). Lineages in the Early Paleogene calcareous nannoplankton. Utrecht Micropaleontology 22:1-230.
[46] Said R (1960). Planktonic foraminifera from the Thebes Formation, Luxor. Micropaleontology 6:277-286.
[47] Scheibner C, Marzouk AM, Kuss J (2001). Maastrichtian-Early Eocene litho-biostratigraphy and palægeography of the northern Gulf of Suez region, Egypt. Journal of African Earth Sciences 32(2):223-255. DOI: 10.1016/S0899-5362(01)90005-3.
[48] Speijer RP (1994). The late Paleocene benthic foraminiferal extinction as observed in the middle East. Bulletin de la Société Belge de Géologie 3-4:267-280.
[49] Speijer RP, Schmitz B, Aubry MP, Charisi, SD (1996a). The latest Paleocene benthic extinction event: Punctuated turnover in outer neritic foraminiferal faunas from Gebel Aweina, Egypt. Israel Journal of Earth Sciences 44:207-222.
[50] Speijer RP, Schmitz B, Van der Zwaan GJ (1997). Benthic foraminiferal extinction and repopulation in response to latest Paleocene Tethyan anoxia. Geology 25:683-686. doi: 10.1130/0091-7613(1997)025<0683:BFEARI>2.3.CO;2. http://geology.gsapubs.org/content/25/8/683.abstract.
[51] Speijer RP, Van der Zwaan, GJ, Schmitz B (1996b). The impact of Paleocene/Eocene boundary events on middle neritic benthic foraminiferal assemblages from Egypt. Marine Micropaleontology 28:99-132. http://www.sciencedirect.com/science/article/pii/0377839895000798.
[52] Tantawy AA, Keller G, Adatte T, Stinnesbeck W, Kassab A, Schulte P (2001). Maastrichtian to Paleocene depositional environment of the Dakhla Formation, Western Desert, Egypt: Sedimentology, mineralogy, and integrated micro- and macrofossil biostratigraphies. Cretaceous Research 22:795-827. doi:10.1006/cres.2001.0291. http://www.sciencedirect.com/science/article/pii/S0195667101902915.
[53] Thomas E, Shackleton NJ (1996). The latest Paleocene benthic foraminiferal extinction and stable isotope anomalies. In: Knox RO, Corfield RM, Dunay RE, editors. Correlation of the Early Paleogene in Northwest Europe. Geological Society London, Special Publication 101:401-441.
[54] Tremolada F, Bralower TJ (2004). Nannofossil assemblage fluctuations during the Paleocene–Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): palaeoceanographic implications. Marine Micropaleontology 52:107-116. doi:10.1016/j.marmicro.2004.04.002. http://www.sciencedirect.com/science/article/pii/S0377839804000520.
[55] Wei W, Wise JR (1990). Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean. Palaeogeograhy Palaeoclimatology Palaeoecology 79:29–61. doi:10.1016/0031-0182(90)90104-F. http://www.sciencedirect.com/science/article/pii/003101829090104F.
[56] Youssef MM (2004). The benthonic foraminifera turnover at the Paleocene/ Eocene Thermal Maximum Event (PETM) in the southwestern Nile Valley, Egypt. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 234(1-1):261-289.
Cite This Article
  • APA Style

    Khaled A. Al Wosabi. (2015). Calcareous Nannofossils Boistratigraphy and Paleoecology of the Late Paleocene/Early Eocene of Wadi Nukhul, Westcentral Sinai, Egypt. Earth Sciences, 4(2), 59-71. https://doi.org/10.11648/j.earth.20150402.11

    Copy | Download

    ACS Style

    Khaled A. Al Wosabi. Calcareous Nannofossils Boistratigraphy and Paleoecology of the Late Paleocene/Early Eocene of Wadi Nukhul, Westcentral Sinai, Egypt. Earth Sci. 2015, 4(2), 59-71. doi: 10.11648/j.earth.20150402.11

    Copy | Download

    AMA Style

    Khaled A. Al Wosabi. Calcareous Nannofossils Boistratigraphy and Paleoecology of the Late Paleocene/Early Eocene of Wadi Nukhul, Westcentral Sinai, Egypt. Earth Sci. 2015;4(2):59-71. doi: 10.11648/j.earth.20150402.11

    Copy | Download

  • @article{10.11648/j.earth.20150402.11,
      author = {Khaled A. Al Wosabi},
      title = {Calcareous Nannofossils Boistratigraphy and Paleoecology of the Late Paleocene/Early Eocene of Wadi Nukhul, Westcentral Sinai, Egypt},
      journal = {Earth Sciences},
      volume = {4},
      number = {2},
      pages = {59-71},
      doi = {10.11648/j.earth.20150402.11},
      url = {https://doi.org/10.11648/j.earth.20150402.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.earth.20150402.11},
      abstract = {The calcareous nannofossil biozones NP7/8 through NP12 were identified from the Esna and base of the Thebes formations at Wadi Nukhul, westcentral Sinai. The Subzone NP9a spans the lower part of Esna Formation. The Zone NP10 is easily differentiated into 4 subzones (a-d). The NP9/NP10 zonal boundary can be identified at the level of increase frequency of Neochiastozygus junctus. Zone NP11 occupies the topmost part of the Esna Formation and the base of the Thebes Formation indicating conformable relation between them. The Paleocene/Eocene boundary is traced between the NP9a/NP9b subzonal boundary which is marked by the first- appearances of Rhomboaster spp. It is located at the basal part of the Esna Formation and conforms lithologic change from blackish calcareous shale to brown calcarenite. On the basis of nannofossils, the Paleocene Eocene Thermal maximum (PETM) interval can be divided into two parts (lower and upper). The major assemblage shift across the P/E boundary suggests a change from colder, more productive surface waters to warmer, more oligotrophic conditions. Above the PETM interval, the niche of Fasciculithus spp. was filled by Neochiastozygus juncts and Rhabdolithus solus, the cooler and more eutrophic taxa.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Calcareous Nannofossils Boistratigraphy and Paleoecology of the Late Paleocene/Early Eocene of Wadi Nukhul, Westcentral Sinai, Egypt
    AU  - Khaled A. Al Wosabi
    Y1  - 2015/03/14
    PY  - 2015
    N1  - https://doi.org/10.11648/j.earth.20150402.11
    DO  - 10.11648/j.earth.20150402.11
    T2  - Earth Sciences
    JF  - Earth Sciences
    JO  - Earth Sciences
    SP  - 59
    EP  - 71
    PB  - Science Publishing Group
    SN  - 2328-5982
    UR  - https://doi.org/10.11648/j.earth.20150402.11
    AB  - The calcareous nannofossil biozones NP7/8 through NP12 were identified from the Esna and base of the Thebes formations at Wadi Nukhul, westcentral Sinai. The Subzone NP9a spans the lower part of Esna Formation. The Zone NP10 is easily differentiated into 4 subzones (a-d). The NP9/NP10 zonal boundary can be identified at the level of increase frequency of Neochiastozygus junctus. Zone NP11 occupies the topmost part of the Esna Formation and the base of the Thebes Formation indicating conformable relation between them. The Paleocene/Eocene boundary is traced between the NP9a/NP9b subzonal boundary which is marked by the first- appearances of Rhomboaster spp. It is located at the basal part of the Esna Formation and conforms lithologic change from blackish calcareous shale to brown calcarenite. On the basis of nannofossils, the Paleocene Eocene Thermal maximum (PETM) interval can be divided into two parts (lower and upper). The major assemblage shift across the P/E boundary suggests a change from colder, more productive surface waters to warmer, more oligotrophic conditions. Above the PETM interval, the niche of Fasciculithus spp. was filled by Neochiastozygus juncts and Rhabdolithus solus, the cooler and more eutrophic taxa.
    VL  - 4
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Applied Geology, Taiz University, Taiz, Yemen

  • Sections