Displacement Fields of Sedimentary Layers Controlled by Fault Parameters: The Discrete Element Method of Controlling Basement Motions by Dislocation Solutions
Earth Sciences
Volume 4, Issue 3, June 2015, Pages: 89-94
Received: Apr. 15, 2015; Accepted: Apr. 26, 2015; Published: May 8, 2015
Views 2063      Downloads 122
Shigekazu Kusumoto, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku, Toyama, Japan
Yasuto Itoh, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka Japan
Keiji Takemura, Institute for Geothermal Sciences, Graduate School of Science, Kyoto University, Kitashirakawa oiwake-cho, Sakyo-ku, Kyoto, Japan
Tomotaka Iwata, Disaster Prevension Research Institute, Kyoto University, Gokasho, Uji, Kyoto, Japan
Article Tools
Follow on us
In the two-dimensional discrete element modeling of displacement of sedimentary layers caused by faulting within the basement, we attempted to move a rigid basement as if it were an elastic basement by controlling its motion through application of dislocation solutions. An advantage of our modeling procedure is that we can discuss displacement fields of sedimentary layers in connection with fault parameters. We simulated displacement fields of the sedimentary layers by means of our modeling procedure and found that our simulated fields are different from the fields obtained in rigid basement models and are dependent on the selected fault parameters.
Displacement Fields of Sedimentary Layers, Two-Dimensional Discrete Element Modeling, Dislocation Solutions, Fault Parameters, Rigid Basement, Elastic Basement
To cite this article
Shigekazu Kusumoto, Yasuto Itoh, Keiji Takemura, Tomotaka Iwata, Displacement Fields of Sedimentary Layers Controlled by Fault Parameters: The Discrete Element Method of Controlling Basement Motions by Dislocation Solutions, Earth Sciences. Vol. 4, No. 3, 2015, pp. 89-94. doi: 10.11648/j.earth.20150403.11
P. A., Cundall, “A computer model for simulating progressive large scale movements in blocky rock systems,” in Proceedings of the Symposium of the International Society of Rock Mechanics, Nancy, vol. 1, Paper No. II-8, October 1971, pp. 129-136.
P. A., Cundall, and O. D. L., Strack, “A discrete numerical model for granular assemblies,” Géotechnique, vol. 29, 1979, pp. 47-65.
M., Cai, P. K., Kaiser, H., Morioka, M., Minami, T., Maejim, Y., Tasak, and H., Kurose, “FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations,” Int. J. Rock Mech. Min. Sci., vol. 44, 2007, pp. 550–564. doi:10.1016/j.ijrmms.2006.09.013.
J., Hadjigeorgiou, K., Esmaieli, and M., “Grenon, Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model,” Tunnel. Undergr. Space Technol., vol. 24, 2009, pp. 296–308. doi:10.1016/j.tust.2008.10.002.
M. A., Antonellini, and D. D., Pollard, “Distinct element modelling of deformation bands in sandstone,” J. Struct. Geol., vol. 17, 1995, pp. 1165-1182.
L. M., Strayer, and P. J., Huddleston, “Numerical modelling of fold initiation at thrust ramps,” J. Struct. Geol., vol. 19, 1997, pp. 551-566.
J., Imbera, G. W., Tuckwell, C., Childs, J. J., Walsh, T., Manzocchi, A. E., Heath, C. G., Bonson, and J., Strand, “Three-dimensional distinct element modelling of relay growth and breaching along normal faults,” J. Struct. Geol., vol. 26, 2004, pp. 1897–1911. doi:10.1016/j.jsg.2004.02.010.
T., Vietor, and O., Oncken, “Controls on the shape and kinematics of the Central Andean plateau flanks: Insights from numerical modeling,” Earth Planet. Sci. Let., vol. 236, 2005, pp. 814–827. doi:10.1016/j.epsl.2005.06.004.
S., Hardy, and E., Finch, “Discrete-element modelling of detachment folding,” Basin Res., vol. 17, 2005, pp. 507–520. doi: 10.1111/j.1365-2117.2005.00280.x.
S., Hardy, “Structural evolution of calderas: Insights from two-dimensional discrete element simulations,” Geology, vol. 36, 2008, pp. 927-930. doi:10.1130/G25133A.1.
D. Y., Wyrick, and K. J., Smart, “Dike-induced deformation and Martian graben systems,” J. Volcanol. Geotherm. Res., vol. 185, 2009, pp. 1–11. doi:10.1016/j.jvolgeores.2008.11.022.
S., Hardy, K., McClayc, and J. A., Muñoz, “Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges,” Mar. Petrol. Geol., vol. 26, 2009, pp. 232–248. doi:10.1016/j.marpetgeo.2007.12.003.
E. P., Holohan, M. P. J., Schöpfer, J. J., Walsh, “Mechanical and geometric controls on the structural evolution of pit crater and caldera subsidence,” J. Geophys. Res., vol. 116, 2011, B07202. doi:10.1029/2010JB008032.
N., Sakai, S., Kusumoto, and Y., Shimizu, “Numerical simulations of middle-high viscous magma extrusion by means of discrete element modeling,” Bull. Volcanol. Soc. Jpn., vol. 58, 2013, pp. 551-555. (in Japanese with English abstract)
Y., Yamada, K., Baba, A., Miyakawa, and T., Matsuoka, “Granular experiments of thrust wedges: Insights relevant to methane hydrate exploration at the Nankai accretionary prism,” Mar. Petrol. Geol., vol. 51, 2014, pp. 34-48. doi: 10.1016/j.marpetgeo.2013.11.008.
E., Finch, S., Hardy, and R., Gawthorpe, “Discrete element modelling of contractional fault-propagation folding above rigid basement blocks,” J. Struct. Geol., vol. 25, 2003, pp. 515–528.
E., Finch, S., Hardy, and R., Gawthorpe, “Discrete element modelling of extensional fault-propagation folding above rigid basement fault blocks,” Basin Res., vol. 16, 2004, pp. 489–506. doi: 10.1111/j.1365-2117.2004.00241.x.
S., Hardy, “Cover deformation above steep, basement normal faults: Insights from 2D discrete element modeling,” Mar. Petrol. Geol., vol. 28, 2011, pp. 966-972. doi:10.1016/j.marpetgeo.2010.11.005.
S., Hardy, and E., Finch, “Mechanical stratigraphy and the transition from trishear to kink-band fault-propagation fold forms above blind basement thrust faults: A discrete-element study,” Mar. Petrol. Geol., vol. 24, 2007, pp. 75–90. doi:10.1016/j.marpetgeo.2006.09.001.
Y., Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am., vol. 75, 1985, pp. 1135–1154.
Itasca, 2008, “PFC2D - Particle Flow Code in 2 Dimensions,” ver.4.0, Minneapolis, Minnesota.
J. R., Rice, and M. P., Cleary, “Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents,” Rev. Geophys. Space Phys., vol. 14, 1976, pp. 227-241.
Rundle, J. B., 1978, Viscoelastic crustal deformation by finite quasi-static sources: Journal of Geophysical Research, v. 83, p. 5937–5945.
J. B., Rundle, “Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered earth,” J. Geophys. Res., vol. 87, 1982, pp. 7787–7796.
M., Matsu’ura, T., Tanimoto, and T., Iwasaki, “Quasi-static displacements due to faulting in a layered half-space with an intervenient viscoelastic layer,” J. Phys. Earth, vol. 29, 1981, pp. 23-54.
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931