| Peer-Reviewed

Observation of GFP Expression in Pomegranate (Punica granatum L.) Via Pollen-Mediated Transformation

Published in Plant (Volume 4, Issue 4)
Received: 25 August 2016    Accepted: 5 September 2016    Published: 22 September 2016
Views:       Downloads:
Abstract

Pomegranate (Punica granatum L.) is an important fruit crop in the world. Genetic transformation studies of pomegranate have been hindered due to lacking efficient plant regeneration system. At the present study, we explored pollen-mediated transformation for pomegranate where the plasmid DNA harboring GFP was introduced into pollen grains with the aid of sonication. Various sonic parameters showed different effects on pollen grains where the order of effect is ultrasonic intensity > processing duration > treatment times. The observation of GFP in pollen tubes provided the base for potential application of pollen-mediated transformation in pomegranate, which could avoid the tedious tissue culture procedures and easy to apply. And most of all we have provided a novel and efficient approach for pomegranate genetic transformation.

Published in Plant (Volume 4, Issue 4)
DOI 10.11648/j.plant.20160404.11
Page(s) 23-28
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

GFP, Pomegranate, Pollen-Mediated Transformation

References
[1] E. Stover, E. W. Mercure, The pomegranate: a new look at the fruit of paradise. Sci Hortic. vol. 42, 2007, pp. 1088–1092.
[2] M. T. Jurenka, Therapeutic applications of pomegranate (Punica granatum L.): a review. Alternat Med Rev. vol. 13, 2008, pp. 128– 144.
[3] V. S. Jaiswal and M. N. Amin, Guava and jackfruit. In: Hammerschlag F. A., Litz R. E. (eds), Biotechnology of perennial fruit crops, Biotechnology in agriculture. Vol. 8. CAB International, Wallingford,UK, 1992, pp. 421-431.
[4] M. K. Rai, V. S. Jaiswal and U. Jaiswal, Alginate-encapsulation of nodal segments of guava (Psidium guajava L.) for germplasm exchange and distri-bution. J. HORT. SCI. BIOTECH. Vol. 83, 2008, pp. 569-573.
[5] A. Saxena, and N. K. Vikram, Role of selected Indian plants in management of type 2 diabetes: a review. J. Altern. Complement Med. Vol. 10, 2004, pp. 369-378.
[6] J. M. Salgado, T. R. B. Ferreira, F. D. Biazatto and C. T. S. Dias, Increased Antioxidant Content in Juice Enriched with Dried Extract of Pomegranate (Punica granatum) Peel.
[7] R. Deepika and K. Kanwar, In vitro regeneration of Punica granatum L. plants from different juvenile explants. J. Fruit Ornamental Plant Res. Vol. 18, 2010, pp. 5-22.
[8] K. L. Kakar, G. S. Dogra and A. Nath, Incidence and control of pomegranate fruit borers, Virachola isocrates Fb. and Deudorix epijarbas Moore. Indian J. Agr. Sci. Vol. 57, 1987, pp. 749-752.
[9] S. H. Jalikop, Pomegranate Breeding. Fruit, Vegetable and Cereal Sci. Biothec. Vol. 4, 2010, pp. 26-34.
[10] Vipasha Verma, Kamlesh, Kanwar, Mahak, Tufchi, and Monika Kashyap. Agrobacterium- Mediated Cry1A Gene Transfer in Punica granatum L. cv. Kandhari Kabuli Using Different In Vitro Regeneration Pathways. J. Crop Sci. Biotech. Vol. 17, No. 1, pp. 1-10, March 2014.
[11] M. A. Gomez-Lim and R. E. Litz, Genetic Transformation of Perennial Tropical Fruits. InVitro Cell Dev Biol Plant. Vol. 40, 2004, pp. 442-449.
[12] S. Agarwal, K. Kanwar and D. R. Sharma, Factors affecting secondary somatic embryogenesis and embryo maturation in Morusalba L. Sci Hortic. Vol. 102, 2004, pp. 359–368.
[13] T. Tsukamoto, M. Gao, K. Negoro, H. Hanada, R. Tao, M. Kawabe and K. Yonemori, Somatic embryogenesis and plant regeneration from immature cotyledons of Prunus mume ‘Nanko’. Acta Horticult. Vol. 738, 2007, pp. 697–701.
[14] O. Perez-Tornero, C. I. Tallon and I. Porras, An efficient protocol for micropropagation of lemon (Citrus limon) from mature nodal segments. Plant Cell Tissue Organ. Vol. 100, 2010, pp. 263–27.
[15] F. G. Skiada, K. Grigoriadou and E. P. Eleftheriou, Micropropagation of Vitis vinifera L. cv. ‘Malagouzia’ and ‘Xinomavro’. Cent Eur J Biol. Vol. 5, 2010, pp. 839–852.
[16] D. M. Mahishi, A. Muralkrishna, G. Shivashankar and R. S. Kulkarni, Shoot tip culture method for rapid clonal propagation of pomegranate (Punica granatum L.). Horticultural – New Tech and App. 1990, pp. 215-217.
[17] S. K. Naik, S. Pattnaik and P. K. Chand, In vitro propagation of pomegranate (Punica granatum L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Sci Hortic. Vol. 79, 1999, pp. 175–183.
[18] R. R. Bhansali, Somatic embryogenesis and regeneration of plant-lets in pomegranate. Ann Bot. Vol. 66, No. 3, 1990, pp. 249–253.
[19] K. Nataraja and G. K. Neelambika, Somatic embryogenesis and plant-let formation from petal cultures of pomegranate (Punica granatum L.). Indian J Exp Biol. Vol. 34, No. 7, 1996, pp. 719–721.
[20] T. Moriguchi, M. Omura, N. Matsuta and I. Kozaki, In vitro adventitious shoot formation form anthers of pomegranate. Hort Sci. Vol. 22, 1987, pp. 947–948.
[21] M. Omura, N. Matsuta, T. Moriguchi, I. Kozaki and T. Sanada, Establishment of tissue culture methods in dwarf pomegranate (Punica granatum L. var. Nana) and application for the induction of variants. Bull Fruit Tree Res Station. Vol. 14, 1987, pp. 17–44.
[22] S. K. Naik and P. K. Chand, Silver nitrate and aminoethoxy vinylglycine promote in vitro adventitious shoot regeneration of pome-granate (Punica granatum L.). J Plant Physiol. Vol. 160, No. 4, 2003, pp.423–430.
[23] A. A. Murkute, S. Patil, B. N. Patil and M. Kumari, Micropropagation in pomegranate, callus induction and differentiation. South Indian Hortic. Vol. 50, No.1, 3, 2002, pp. 49–55.
[24] K. Kanwar, J. Joseph and D. Raj, Comparison of in vitro regeneration pathways in Punica granatum L. Plant Cell Tiss Org Cult. Vol. 100, 2010, pp. 199–207.
[25] S. K. Naik, and P. K. Chand, Tissue Culture-Mediated Biotechnological Intervention in Pomegranate: a Review. Plant Cell Rep. Vol.30, 2011, pp.707–721.
[26] Wang, Jin-xue., Sun, Yi., Cui, gui-mei., and Hu, Jing-jing.Transgenic Maize Plants Obtained by Pollen mediated Transformation. Actor Botanica Sinica. Vol. 43, No.3, 2001, pp.275-279.
[27] Wang, Wei-quan., Wang, Jing-xue., and Yang, Cui-ping.Pollen-mediated transformation of Sorghum bicolor plants. Biotechnology and Applied Biochemistry. Vol. 48, 2007, pp. 79-83.
[28] S. Eapen, Pollen grains as a target for introduction of foreign genes into plants: an assessment. Physiol Mol Biol Plants. Vol. 17, No. 1, pp. 1-8, March 2011.
[29] J. Sambrook, D. Russell, Molecular cloning: A Laboratory Manual (3nd edition), Science Press: Beijing, 2002.
[30] G. Booy, F. A. Krens and H. J. Huizing, Attempted pollen-mediated transformation of maize. J Plant Physiol. Vol. 135, 1989, pp. 319-324.
Cite This Article
  • APA Style

    L. Y. Yang, X. Y. Guo, Y. Q. Di, Y. Sun. (2016). Observation of GFP Expression in Pomegranate (Punica granatum L.) Via Pollen-Mediated Transformation. Plant, 4(4), 23-28. https://doi.org/10.11648/j.plant.20160404.11

    Copy | Download

    ACS Style

    L. Y. Yang; X. Y. Guo; Y. Q. Di; Y. Sun. Observation of GFP Expression in Pomegranate (Punica granatum L.) Via Pollen-Mediated Transformation. Plant. 2016, 4(4), 23-28. doi: 10.11648/j.plant.20160404.11

    Copy | Download

    AMA Style

    L. Y. Yang, X. Y. Guo, Y. Q. Di, Y. Sun. Observation of GFP Expression in Pomegranate (Punica granatum L.) Via Pollen-Mediated Transformation. Plant. 2016;4(4):23-28. doi: 10.11648/j.plant.20160404.11

    Copy | Download

  • @article{10.11648/j.plant.20160404.11,
      author = {L. Y. Yang and X. Y. Guo and Y. Q. Di and Y. Sun},
      title = {Observation of GFP Expression in Pomegranate (Punica granatum L.) Via Pollen-Mediated Transformation},
      journal = {Plant},
      volume = {4},
      number = {4},
      pages = {23-28},
      doi = {10.11648/j.plant.20160404.11},
      url = {https://doi.org/10.11648/j.plant.20160404.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.plant.20160404.11},
      abstract = {Pomegranate (Punica granatum L.) is an important fruit crop in the world. Genetic transformation studies of pomegranate have been hindered due to lacking efficient plant regeneration system. At the present study, we explored pollen-mediated transformation for pomegranate where the plasmid DNA harboring GFP was introduced into pollen grains with the aid of sonication. Various sonic parameters showed different effects on pollen grains where the order of effect is ultrasonic intensity > processing duration > treatment times. The observation of GFP in pollen tubes provided the base for potential application of pollen-mediated transformation in pomegranate, which could avoid the tedious tissue culture procedures and easy to apply. And most of all we have provided a novel and efficient approach for pomegranate genetic transformation.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Observation of GFP Expression in Pomegranate (Punica granatum L.) Via Pollen-Mediated Transformation
    AU  - L. Y. Yang
    AU  - X. Y. Guo
    AU  - Y. Q. Di
    AU  - Y. Sun
    Y1  - 2016/09/22
    PY  - 2016
    N1  - https://doi.org/10.11648/j.plant.20160404.11
    DO  - 10.11648/j.plant.20160404.11
    T2  - Plant
    JF  - Plant
    JO  - Plant
    SP  - 23
    EP  - 28
    PB  - Science Publishing Group
    SN  - 2331-0677
    UR  - https://doi.org/10.11648/j.plant.20160404.11
    AB  - Pomegranate (Punica granatum L.) is an important fruit crop in the world. Genetic transformation studies of pomegranate have been hindered due to lacking efficient plant regeneration system. At the present study, we explored pollen-mediated transformation for pomegranate where the plasmid DNA harboring GFP was introduced into pollen grains with the aid of sonication. Various sonic parameters showed different effects on pollen grains where the order of effect is ultrasonic intensity > processing duration > treatment times. The observation of GFP in pollen tubes provided the base for potential application of pollen-mediated transformation in pomegranate, which could avoid the tedious tissue culture procedures and easy to apply. And most of all we have provided a novel and efficient approach for pomegranate genetic transformation.
    VL  - 4
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department Life Science, Shanxi Normal University, Linfen, P.R. China

  • Department Life Science, Shanxi Normal University, Linfen, P.R. China

  • Department Life Science, Shanxi Normal University, Linfen, P.R. China

  • The Biotechnology Research Centre,Shanxi Academy of Agricultural Sciences, Taiyuan, P.R. China;Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan, P.R. China

  • Sections