American Journal of Bioscience and Bioengineering

| Peer-Reviewed |

Glutamic Acid Production from Rice Husk Using Corynebacterium glutamicum Isolated from Soil

Received: 26 September 2016    Accepted: 19 November 2016    Published: 17 January 2017
Views:       Downloads:

Share This Article

Abstract

Many different biomass of agricultural origin holds remarkable potential for conversion into valuable products thereby presenting a double sharp edge importance of sustainable resource supply and environmental protection. Glutamic acid was produced from rice husk using a novel strain of Corynebacterium glutamicum and effects of parameters optimization such as substrate concentration, temperature, pH and inoculum size were determined during the fermentation process. The wild-type (Novel) strain was inoculated into 13 g/L of the pre-treated rice husk previously added to basal medium (pH 7.2), after which fermentation began. Fermentation broth from each flask was taken aseptically after 96 h and was assayed qualitatively and quantitatively. The acid-treated and alkali-treated rice husk gave the best glutamic acid yield of 10.40g/L and 9.08g/L respectively with the wild-type strain under predetermined optimum fermentation conditions. Out of the four parameters optimized, only substrate concentration was not found to be significant on the performance of the wild-type strain in glutamate production (p > 0.05). Acid-treated rice husk hydrolysate was found to be a better substrate for L-glutamate production by the wild-type strain of C. glutamicum under the optimum fermentation conditions determined.

DOI 10.11648/j.bio.20160406.13
Published in American Journal of Bioscience and Bioengineering (Volume 4, Issue 6, December 2016)
Page(s) 70-76
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Rice Husk, Wild-Type, C. glutamicum, Optimization, Glutamate

References
[1] Ahmed, Y. M., Khan, J. A., Abulnaja, K. A. andAl-Maliki, A. L. (2013). Production of glutamic acid by Corynebacteriumglutamicum using dates syrup as carbon source. African Journal of Microbiology Research, 7(19): 2072.
[2] Amin, G. A. and Al-Talhi, A. (2007). Production of L-glutamic Acid by Immobilized Cell Reactor of the Bacterium CorynebacteriumglutamicumEntrapped into Carrageenan Gel Beads. World Applied Science, Journal, 2: 62-67.
[3] Bergey’s Manual of Determinative Bacteriology. (2004). Eds., John G. Holt et al., 9thedn. The Williams and Wilkins, Baltimore, p.565.
[4] Blombach, B. and Seibold, G. M. (2010) Carbohydrate metabolism in Corynebacteriumglutamicum and applications for the metabolicengineering of L-lysine production strains. Applied Microbiology and Biotechnology, 86(5): 1313-1322.
[5] Chen, X., Chen, S., Sun, M. and Yu, Z. (2008). High yield of glutamic acid production from Bacillus substilis by solid state fermentationusing swine manure as the basis as solid substrate. Bioresource Technology, 96: 1875-1879.
[6] Hadia, G., Shah, A. and Younis, N. (2012). Fermentative Production of Glutamate by Newly Isolated Soil Bacteria. International Journal of Pharmaceutical & Biological Archives, 3(6): 1368-1376.
[7] Hassan, B., Asghar, M., Nadeem, S., Zubair, H., Muzammil, H. M. and Shahid, M. (2003). Isolation and Screening of Amino acids-Producing Bacteria from Milk. Biotechnology, 2(1): 18-29.
[8] Jyothi, A. N., Sasikiran, K., Nambisan, B. and Balagopalan, C. (2005). Optimization of glutamic acid production from cassava starch factory residues using Brevibacteriumdivaricatum. Processes in Biochemistry, 40(11): 3576-3579.
[9] Levesque, R. (2007). SPSS Programming and Data Mangement. AGiude for SPSS and SAS Users, fourth edition, SPSS Inc., Chicago III.ISBN 1- 56827-390-8.
[10] Nakamura, J., Hirano, S. and Ito, H. (2006). L-Glutamic Acid Producing Microorganism and a Method for Producing L-Glutamic Acid. U.S. patent US20060141588A1.
[11] Nottebrock, D., Meyer, U., Krämer, R. and Morbach, S.(2003). Molecular and biochemical characterization of mechanosensitive channels in Corynebacteriumglutamicum. FEMS Microbiology Letters, 218: 305-309.
[12] Rakesh, K. T. and Devendra, P. S. (2013). Acid and Alkaline Pre-treatment of Lignocellulosic Biomass to Produce Ethanol as Biofuel. International Journal of Chemical Technology Research, U.S.A., 5(2): 729.
[13] Sthiannopkao, S., Danner, H. and Braun, R. (2001). Use of Grass Sap as an Ingredient in Glutamate Production. Thammasat International Journal of Science and Technology, 6: 3-4.
[14] Vijayalakshm, P. and Sarvamangala D. (2011). Production of L-glutamic acid by Arthrobacterglobiformis MTCC 4299 fruits of Mimusops Elengilinn. International Journal of Applied Biology and Pharmaceutical Technology, 2: 167-173.
Author Information
  • Department of Microbiology, Faculty of Life Science, Ahmadu Bello University, Zaria, Nigeria

  • Department of Microbiology, Faculty of Life Science, Ahmadu Bello University, Zaria, Nigeria

  • Department of Microbiology, Faculty of Life Science, Ahmadu Bello University, Zaria, Nigeria

Cite This Article
  • APA Style

    Musa Bishir, Ado Saleh Alhaji, Abdullahi Isa Obansa. (2017). Glutamic Acid Production from Rice Husk Using Corynebacterium glutamicum Isolated from Soil. American Journal of Bioscience and Bioengineering, 4(6), 70-76. https://doi.org/10.11648/j.bio.20160406.13

    Copy | Download

    ACS Style

    Musa Bishir; Ado Saleh Alhaji; Abdullahi Isa Obansa. Glutamic Acid Production from Rice Husk Using Corynebacterium glutamicum Isolated from Soil. Am. J. BioSci. Bioeng. 2017, 4(6), 70-76. doi: 10.11648/j.bio.20160406.13

    Copy | Download

    AMA Style

    Musa Bishir, Ado Saleh Alhaji, Abdullahi Isa Obansa. Glutamic Acid Production from Rice Husk Using Corynebacterium glutamicum Isolated from Soil. Am J BioSci Bioeng. 2017;4(6):70-76. doi: 10.11648/j.bio.20160406.13

    Copy | Download

  • @article{10.11648/j.bio.20160406.13,
      author = {Musa Bishir and Ado Saleh Alhaji and Abdullahi Isa Obansa},
      title = {Glutamic Acid Production from Rice Husk Using Corynebacterium glutamicum Isolated from Soil},
      journal = {American Journal of Bioscience and Bioengineering},
      volume = {4},
      number = {6},
      pages = {70-76},
      doi = {10.11648/j.bio.20160406.13},
      url = {https://doi.org/10.11648/j.bio.20160406.13},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.bio.20160406.13},
      abstract = {Many different biomass of agricultural origin holds remarkable potential for conversion into valuable products thereby presenting a double sharp edge importance of sustainable resource supply and environmental protection. Glutamic acid was produced from rice husk using a novel strain of Corynebacterium glutamicum and effects of parameters optimization such as substrate concentration, temperature, pH and inoculum size were determined during the fermentation process. The wild-type (Novel) strain was inoculated into 13 g/L of the pre-treated rice husk previously added to basal medium (pH 7.2), after which fermentation began. Fermentation broth from each flask was taken aseptically after 96 h and was assayed qualitatively and quantitatively. The acid-treated and alkali-treated rice husk gave the best glutamic acid yield of 10.40g/L and 9.08g/L respectively with the wild-type strain under predetermined optimum fermentation conditions. Out of the four parameters optimized, only substrate concentration was not found to be significant on the performance of the wild-type strain in glutamate production (p > 0.05). Acid-treated rice husk hydrolysate was found to be a better substrate for L-glutamate production by the wild-type strain of C. glutamicum under the optimum fermentation conditions determined.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Glutamic Acid Production from Rice Husk Using Corynebacterium glutamicum Isolated from Soil
    AU  - Musa Bishir
    AU  - Ado Saleh Alhaji
    AU  - Abdullahi Isa Obansa
    Y1  - 2017/01/17
    PY  - 2017
    N1  - https://doi.org/10.11648/j.bio.20160406.13
    DO  - 10.11648/j.bio.20160406.13
    T2  - American Journal of Bioscience and Bioengineering
    JF  - American Journal of Bioscience and Bioengineering
    JO  - American Journal of Bioscience and Bioengineering
    SP  - 70
    EP  - 76
    PB  - Science Publishing Group
    SN  - 2328-5893
    UR  - https://doi.org/10.11648/j.bio.20160406.13
    AB  - Many different biomass of agricultural origin holds remarkable potential for conversion into valuable products thereby presenting a double sharp edge importance of sustainable resource supply and environmental protection. Glutamic acid was produced from rice husk using a novel strain of Corynebacterium glutamicum and effects of parameters optimization such as substrate concentration, temperature, pH and inoculum size were determined during the fermentation process. The wild-type (Novel) strain was inoculated into 13 g/L of the pre-treated rice husk previously added to basal medium (pH 7.2), after which fermentation began. Fermentation broth from each flask was taken aseptically after 96 h and was assayed qualitatively and quantitatively. The acid-treated and alkali-treated rice husk gave the best glutamic acid yield of 10.40g/L and 9.08g/L respectively with the wild-type strain under predetermined optimum fermentation conditions. Out of the four parameters optimized, only substrate concentration was not found to be significant on the performance of the wild-type strain in glutamate production (p > 0.05). Acid-treated rice husk hydrolysate was found to be a better substrate for L-glutamate production by the wild-type strain of C. glutamicum under the optimum fermentation conditions determined.
    VL  - 4
    IS  - 6
    ER  - 

    Copy | Download

  • Sections