Dysregulation of Phospholipid Metabolism in Synaptic Membranes and Their Role in Encephalopathy Forming After a Hemorrhagic Shock
American Journal of BioScience
Volume 3, Issue 4, July 2015, Pages: 133-140
Received: May 31, 2015; Accepted: Jun. 14, 2015; Published: Jul. 1, 2015
Views 4270      Downloads 54
Author
Galina Fedorovna Leskova, Laboratory of nanopathology, nanotoxicology and biomedical nanotechnologies, Institute of General Pathology und Pathophysiology, Moscow, Russia
Article Tools
Follow on us
Abstract
Phospholipids (PLs) of neuronal membranes are active universal neuromodulators. They regulate many functions of the neurons, including receptors signaling, which during a hemorrhagic shock (HS) get damaged, leading to encephalopathy. An analysis of the data, presented in this review, suggests that the dysregulation of PL metabolism in synaptic membranes is a key mechanism of encephalopathy during HS. Stabilizing the PL composition of the neuronal membranes may become one of the most important treatment methods for shock-induced disorders of brain functions.
Keywords
Phospholipids, Synaptic Membranes, Hemorrhagic Shock
To cite this article
Galina Fedorovna Leskova, Dysregulation of Phospholipid Metabolism in Synaptic Membranes and Their Role in Encephalopathy Forming After a Hemorrhagic Shock, American Journal of BioScience. Vol. 3, No. 4, 2015, pp. 133-140. doi: 10.11648/j.ajbio.20150304.13
References
[1]
V. L. Kozhura, Zh.V. Solov'eva, I.S. Novoderzhkina, N.V. Nosova. “The neurochemical, molecular and ultrastructural mechanisms of the formation of latent postresuscitation encephalopathy”. Anesteziol. Reanimatol. [in Russian]. nn. 5, pp. 52-56, May 1996
[2]
V.V. Moroz. “Postreanimatological illness as dysregulation pathology.” Dysregulation Pathology [in Russian], Moskow. 2002, pp. 233-259
[3]
H.Y Kim., B.X Huang. A.A. Spector. “Phosphatidylserine in the brain: metabolism and function”. Prog Lipid Res. vol. 56, pp. 1-18, November 2014
[4]
M.C. Waugh. PIPs in neurological diseases. Biochem. Biophys. Acta, in press.
[5]
J. Klein. “Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids”. J. Neural. Transm. vol.107, pp. 1027 1063, February 2000
[6]
V.A. Tsirlin. “Bulbar vasomotor center – morpho functional and neurochemical Organization”. Arterial Hypertension [in Russian]. nn. 8, pp. 77- 81, August 2003
[7]
G.F. Leskova. “Role of synaptic membranes phospholipids in regulation of neurotransmission mechanisms in Medula Oblangata during hemorrhagic shock in cats”. Pathogenesis [in Russian]. nn. 4, pp. 57-65, April 2006
[8]
G.F. Leskova. “Changes in phospholipid composition of synaptic membranes in frontal lobes of cerebral hemispheres in cats at various stages of hemorrhagic shock”. Bull. Exp. Biol. Med. vol.146, pp. 401-404, April 2008
[9]
H. Kubista, K. Kosenburger, P. Mahlknecht, H. Drobny, S. Boehm. “Inhibition of transmitter release from rat sympathetic neurons via presynaptic M1 muscarinic acetylcholine receptors”. Br. J. Pharmacol. vol. 156, pp.1342–1352, April 2009
[10]
T.G. Borda, G. Cremaschi, L. Sterin-Borda. “Haloperidol-mediated phosphoinositide hydrolysis via direct activation of alpha1-adrenoceptors in frontal cerebral rat cortex”. Can. J. Physiol. Pharmacol. vol. 77, pp. 22-28, January 1999
[11]
M.J. Berridge, M.D. Bootman, P. Lipp. “Calcium – a life and death signal”. Nature. vol. 395, pp. 645-648, October1998
[12]
S. Koizumi, P. Rosa, G.B. Willars. “Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cell”. J. Biol. Chem. vol. 277, pp. 30315-30324, May 2002
[13]
Q. Zheng, J.A. Bobich, J. Vidugiriene. “Neuronal calcium sensor-1facilitates neuronal exocytosis through phosphatidylinositol 4-kinase”. J. Neurochim. vol. 92, pp. 442-451, February 2005
[14]
C.U.M. Smith Elements of molecular neurology. Atrium. Chister. Wiley & Sons. LTD. 2002.
[15]
R.,Masgrau, J.M. Servitja, K.W.Yong, R. Pardo, E. Sarri, S.R. Nahorski, F. Picatoste. “Characterization of the metabotropic glutamate receptors mediating phospholipase C activation and calcium release in cerebellar granule cells: calcium-dependence of the phospholipase C response”. Eur. J. Neurosci. vol. 13, pp. 248-256, January 2001
[16]
A.A. Boldyrev. “Functional interaction between various glutamate receptors”. Bull. Exp. Biol. Med. [in Russian]. vol. 130, pp. 244-251, September 2000
[17]
I.I. Abramez, I.B. Komissarova. “Glutamatergic mechanisms of brain Ischemic damages”. J. AMN Ukraina [in Russian]. nn. 7, pp. 613-633, July 2001
[18]
P.V. Avdonin. “The structura and signal properties of G-protein-coupled receptors complexes”. Biol. Membr. [in Russian]. vol. 22, pp. 3-26, January 2005
[19]
V.A.Tkachuk. “Molecular mechanisms of neuroendocrine regulation”. Soros. Educational J. [in Russian]. nn. 6, pp. 16-20, June 1998
[20]
C.P. Morgan, A. Skippen, B. Segui, A. Ball, V. Allen-Baume, B. Larijani, J., Murray-Rust, N. McDonald, G. Sapkota, N. Morrice, S. Cockcroft. “Phosphorylation of a distinct structural form of phosphatidylinositol transfer protein alpha at Ser16 by protein kinase C disrupts receptor-mediated phospholipase C signaling by inhibiting deliver of phosphatidylinositol to membranes”. J. Biol. Chem. vol. 279, pp. 47159-47171, November 2004
[21]
S.M. Baijalieh, R.H. Scheller. “The biochemistry of neurotransmitter secretion”. J. Biol. Chem. vol. 270, pp. 1971-1974, February 1995
[22]
S.K. DebBurman, J. Ptasienski, E. E. Boetticher, J.W. Lomasney, J.L.Benovic, M.M. Hosey. “Lipid-mediated regulation of G protein-coupled receptor kinases 2 and 3. J. Biol. Chem. vol. 270, pp. 5742-5747, March 1995
[23]
K.W. Young, D. Billups, C.P. Nelson, N. Johnston, J.M. Willets, M.J. Schell, R.A. Challiss, S.R. Nahorski. “Muscarinic acetylcholine receptor activation enhances hippocampal neuron excitability and potentiates synaptically evoked Ca(2+) signals via phosphatidylinositol 4,5-bisphosphate depletion”. Mol. Cell. Neurosci. vol, 30, pp. 48-57, September 2005
[24]
S.J. Veerasingham, M.,Yamazato, K.H. Berecek, J.M. Wyss, M.K. Raizada. “Increased PI3-kinase in presympathetic brain areas of the spontaneously hypertensive rat”. Circ. Res. vol. 96, pp. 277-279, January 2005
[25]
T.T. Ching, D.S. Wang, A.L. Hsu, P.J. Lu, C.S. Chen. “Identification of multiple phosphoinositide-specific phospholipases D as new regulatory enzymes for phosphatidylinositol 3,4, 5-trisphosphate”. J. Biol. Chem. vol. 274, pp. 8611-8617, March 1999
[26]
Y. Sang, D. Cui, X. Wang. “Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis”. Plant Physiol. vol.126, pp. 449-458, August 2001
[27]
S.T. Kim, Y.H. Chung, H.S. Lee, S.J. Chung, J.H. Lee, U.D. Sohn, Y.K. Shin, E.S. Park, H.C. Kim, J.H. Jeong. “Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci., in press.
[28]
T. Hirabayashi, T. Murayama, T. Shimiza. “Regulatory mechanism and physiological role of cytosolic phospholipase A2.” Biol. Pharmacol. Bull. vol. 27, pp. 1168-1173, August 2004
[29]
G. Massicotte. “Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity.” Cell. Mol. Life Sci. vol. 57, pp. 1542-1550, October 2000
[30]
F. St-Gelas, C. Menard, P. Congar, L.E. Trudeau, G. Massicotte. Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus. vol.14, pp. 319-325, January 2004
[31]
H. Nishio, T. Takeuchi, F. Hata, O. Yagasaki. “Ca(2+)-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in vitro”. Biochem. J. vol. 318 (3), pp. 981-987, September 1996
[32]
M.A. DeCoster, G. Lambeau, M. Lazdunski, N.G. Bazan. “Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures”. J. Neurosci. Res. vol. 67, pp. 634-645, March 2002
[33]
A.L. Taylor, S.J. Hewett. “Potassium-evoked glutamate release liberates arachidonic acid from cortical neurons”. J. Biol. Chem. vol. 277, pp. 43881-43887, November 1992
[34]
Q. Chen, D.P. Li, H.L. Pan. “Presynaptic alpha1 adrenergic receptors differentially regulate synaptic glutamate and GABA release to hypothalamic presympathetic neurons”. J. Pharmacol. Exp. Ther. vol. 316, pp. 733-742, 2006
[35]
J.D., Navarro-Lopez, J.M. Delgado-Garcia, J. Yajeya. “Cooperative glutamatergic and cholinergic mechanisms generate short-term modifications of synaptic effectiveness in prepositus hypoglossi neurons”. J. Neurosci. vol. 25, pp. 9902-9906, February 2005
[36]
F. Facchinetti, N.J. Hack, R. Balázs. “Calcium influx via ionotropic glutamate receptors causes long lasting inhibition of metabotropic glutamate receptor-coupled phosphoinositide hydrolysis”. Neurochem. Int. vol. 33, pp. 263-270, September 1998
[37]
F.E. Sieber, R.J. Traystman, L.J. Martin. “Delayed neuronal death after global incomplete ischemia in dogs is accompanied by changes in phospholipase C protein expression”. J. Cereb. Blood Flow. Metab. vol.17, 527- 533, May 1997
[38]
M.M. http://www.ncbi.nlm.nih.gov/pubmed/2201284Billah, J.C. Anthes. “The regulation and cellular functions of phosphatidylcholine hydrolysis”. Biochem J. vol. 269, pp. 281-291, July 1990
[39]
S. Llahi, J.N. Fain. “Alpha 1-adrenergic receptor mediated activation of phospholipase D in rat cerebral cortex”. J. Biol. Chem. vol.. 267, pp. 3679-3685, February 1992
[40]
N.G. Bazan, B. Tu, E.B. Rodriguez de Turco. “What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis”. Prog. Brain Res. vol. 135, pp. 175-185, 2002
[41]
W.B. Bollag, X. Zhong, M.E. Dodd, D.M. Hardy, X. Zheng, W.T. Allred. “Phospholipased signaling and extracellular signal-regulated kinase-1and –2 phosphorylation (activation) are required for maximal phorbol ester-induced transglutaminase activity, a marker of keratinocyte differentiation”. J. Pharmacol. Exp. Ther. vol. 312, pp.1223-1231, March 2005
[42]
Min D.S., Park S.K., Exton J.H. “Characterization of a rat brain phospholipase D isozyme”. J. Biol. Chem. vol. 273, pp. 7044-7051, March 1998
[43]
M.R Castillo, J.R. Babson. “Ca(2+)-dependent mechanisms of cell injury in cultured cortical neurons”. Neurosci. vol. 86, pp. 1133-1144, October 1998
[44]
M. McDermontti, M.J. Wakelam, A.J. Morris. “Phospholipase D”. Biochem. Cell. Biol. vol. 82, pp. 225-253, February 2004
[45]
M. Liscovitch, V., Chalifa, P. Pertile, C.S. Chen, L.C Cantley.”Novel function of phosphatidylinositol 4, 5-bisphosphate as a cofactor for brain membrane phospholipase D”. J. Biol. Chem. vol. 269, pp. 21403-21406, August 1994
[46]
T. Gasull, E. Sarri., N. Degregorio-Rocasolano, R. Trullas. “NMDA receptor overactivation inhibits phospholipid synthesis by decreasing choline ethanolamine phosphotransferase activity”. J. Neurosci. vol. 23, pp. 4100-4107, May 2003
[47]
R.M. Adibhatla, J.F. Hatcher, R.J. Dempsey. “Cytidine-5'-diphosphocholine affects CTP phosphocholine cytidylyltransferase and lyso phosphatidylcholine after transient brain ischemia”. J. Neurosci. Res. vol. 76, pp. 390-396, May 2004
[48]
V. L. Kozhura. “Neurobiological mechanisms of massive blood loss”. Anaestheziol. Reanimatol. [in Russian]. nn. 6, pp. 51-53javascript:babSpeakIt('английский',170574);, June 2001
[49]
S. Persard, V. Panagia. “Abnormal synthesis of N-methylated phospholipids during calcium paradox of the heart”. J. Mol. Cell. Cardiol. vol. 27, pp. 579-587, 1995
[50]
A.A. Vartanyan, G.V. Apikyan, V.F Vanyushin. “Methylation of phospholipids and synaptic capture of mediator amino acids”. Izv. AN USSR [in Russian], ser. Biol., nn. 5, pp. 786-789, May November 1990
[51]
O.S. Belokoneva, O.V. Zaycev. “Role of membrane lipids in regulation of neuromediators receptors functioning”. Biochemistry [in Russian]. vol. 58, pp. 1685-1708, November 1993
[52]
[52] V.P. Fisenko. “Neurochemical laws of opioid analgesics action on cortex. Bull. Exp. Biol. Med. [in Russian]. vol. 132, pp. 4-11, July 2001
[53]
W. Zhu Z.Z. Pan. “Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons”. Neuroscience. vol.133, pp. 97-103, 2005
[54]
V. L. Kozhura, N.V. Nosova. “Apoptosis as the mechanism of delayed posthypoxic encephalopathy”. Bull. Exp. Biol. Med. [in Russian]. appendix 2, pp. 30-32, 2000
[55]
D.M. Faller, D.M. Schilde. “Molecular Вiology of Сell”. [in Russian]. Moskow. 2003.
[56]
M.A. McDaniel, S.F. Maier, G.O. Einstein. "Brain-specific" nutrients: a memory cure?” Nutrition. vol. 19, pp. 957-975, November – December 2003
[57]
M. Kingsley. “Effects of phosphatidylserine supplementation on exercising Humans”. Sports Med. vol. 36, pp. 657-669, 2006
[58]
J.T. Wong, K. Tran, G.N. Pierce, A.C. Chan, K. O, P.C. Choy. “Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells”. J. Biol Chem. vol. 273, pp. 6830-6836, March 1998
[59]
H. Ozaka, K. Ishii, H. Arai, N. Kume, T. Kita. “Lysophosphatidylcholine activates mitogen-activated protein kinases by a tyrosine kinase-dependent pathway in bovine aortic endothelial cells”. Atherosclerosis. vol. 143, pp. 261-266, April 1999
[60]
B.V., Bassa, D.D. Roh, N.D. Varzirl, M.A. Kirschenbaum, V.S. Kamanna. “Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCgamma-1 and tyrosine kinase-Ras pathways”. Am. J. Physiol. Renal. Physiol. vol. 277 (2), pp. F328-F337, September 1999
[61]
S.Y. Liu, C.H. Yu, J.A. Hays, V. Panagia, N.S. Dhalla. “Modification of heart sarcolemmal phosphoinositide pathway by lysophosphatidylcholine”. Biochim. Biophys. Acta. vol.1349, pp. 264-274, November 1997
[62]
D.A. Cox, M.L. Cohen. “Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: role of PKC”. Am. J. Phisiol. vol. 271 (2), pp. H1706-H1710, October 1996
[63]
L.S. Golfman, N.J. Haughey, J.T. Wong, J.Y. Jiang, D. Lee, J.D. Geiger, P.C. Choy. “Lysophosphatidylcholine induces arachidonic acid release and calcium overload in cardiac myoblastic H9c2 cells”. J. Lipid. Res. vol. 40, pp. 1818-1826, October 1999.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186