Tailored Nano- and Micrometer Sized Structures of Gold-Nanoparticles at Polymeric Surfaces Via Photochemical and Kinetic Control of the Synthesis and Deposition Process
American Journal of Nano Research and Applications
Volume 2, Issue 6-1, December 2014, Pages: 1-8
Received: Nov. 2, 2014; Accepted: Nov. 4, 2014; Published: Dec. 23, 2014
Views 2888      Downloads 138
Authors
Christian Elsner, Leibniz Institute of Surface Modification, Chemical Department, Permoser Strasse 15, D-04318 Leipzig, Germany
Andrea Prager, Leibniz Institute of Surface Modification, Chemical Department, Permoser Strasse 15, D-04318 Leipzig, Germany
Ulrich Decker, Leibniz Institute of Surface Modification, Chemical Department, Permoser Strasse 15, D-04318 Leipzig, Germany
Sergej Naumov, Leibniz Institute of Surface Modification, Chemical Department, Permoser Strasse 15, D-04318 Leipzig, Germany
Bernd Abel, Leibniz Institute of Surface Modification, Chemical Department, Permoser Strasse 15, D-04318 Leipzig, Germany
Article Tools
Follow on us
Abstract
The goal of the present work is to elucidate complex nano- and micrometer surface modification of soft materials via photochemical and kinetic control of the synthesis and deposition process of gold-nanoparticles. The key to this technology is the synthesis of gold-nanoparticles from different HAuCl4 precursor solutions with photons of a defined short wavelength emitted by Xe2* (172 nm) and XeCl* (308 nm) vacuum UV and UV-C excimer lamps. The size and plasmonic properties of the spherical nanoparticles are tailored by the application of different irradiation conditions. Additionally, with 172 nm irradiation porous nanomembranes are generated. Furthermore, the spatial and density controlled immobilization of nanoparticles on to solid supports such as paper and PES membranes is demonstrated leading to defined 2-dimensional structures in the micrometer range. The synthesis of high gold content structures on paper substrates allows for the rapid and simple generation of conductive paths in electronic circuits. The generated micro– and nanosystems are characterized by scanning electron and light microscopy, photoelectron spectroscopy, dynamic light scattering and UV/VIS spectroscopy. In order to shed light into the kinetic mechanism quantum chemical calculations are employed that help to identify preferred reaction paths of the photo-induced reduction of Au(III) to Au(0).
Keywords
Excimer Lamps, Printed Electronics, Conductive Structures, Membranes, UV
To cite this article
Christian Elsner, Andrea Prager, Ulrich Decker, Sergej Naumov, Bernd Abel, Tailored Nano- and Micrometer Sized Structures of Gold-Nanoparticles at Polymeric Surfaces Via Photochemical and Kinetic Control of the Synthesis and Deposition Process, American Journal of Nano Research and Applications. Special Issue:Advanced Functional Materials. Vol. 2, No. 6-1, 2014, pp. 1-8. doi: 10.11648/j.nano.s.2014020601.11
References
[1]
Daniel, M. C.; Astruc, D., Chem Rev 2004, 104 (1), 293-346. DOI 10.1021/cr030698+.
[2]
Link, S.; El-Sayed, M. A., Journal of Physical Chemistry B 1999, 103 (21), 4212-4217. DOI 10.1021/jp984796o.
[3]
Link, S.; El-Sayed, M. A., Int. Rev. Phys. Chem. 2000, 19 (3), 409-453. DOI 10.1080/01442350050034180.
[4]
Watanabe, S.; Yamamoto, S.; Yoshida, K.; Shinkawa, K.; Kumagawa, D.; Seguchi, H., Supramolecular Chemistry 2011, 23 (3-4), 297-303. DOI Pii 936375251Doi 10.1080/10610278.2010.527977.
[5]
Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Chemical Reviews 2008, 108 (2), 494-521. DOI 10.1021/cr068126n.
[6]
Boronat, M.; Corma, A., Journal of Catalysis 2011, 284 (2), 138-147. DOI DOI 10.1016/j.jcat.2011.09.010.
[7]
Della Pina, C.; Falletta, E.; Rossi, M., Chem Soc Rev 2012, 41 (1), 350-69. DOI 10.1039/c1cs15089h.
[8]
Haruta, M.; Date, M., Applied Catalysis a-General 2001, 222 (1-2), 427-437.
[9]
Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J. L.; Delcourt, M. O., New Journal of Chemistry 1998, 22 (11), 1239-1255. DOI 10.1039/a801445k.
[10]
Henglein, A., Langmuir 1999, 15 (20), 6738-6744. DOI 10.1021/la9901579.
[11]
Sau, T. K.; Pal, A.; Jana, N. R.; Wang, Z. L.; Pal, T., Journal of Nanoparticle Research 2001, 3 (4), 257-261. DOI 10.1023/a:1017567225071.
[12]
Esumi, K.; Matsuhisa, K.; Torigoe, K., Langmuir 1995, 11 (9), 3285-3287. DOI 10.1021/la00009a002.
[13]
Watanabe, M.; Takamura, H.; Sugai, H., Nanoscale Res. Lett. 2009, 4 (6), 565-573. DOI 10.1007/s11671-009-9281-2.
[14]
Biswal, J.; Ramnani, S. P.; Shirolikar, S.; Sabharwal, S., Radiat. Phys. Chem. 2011, 80 (1), 44-49. DOI 10.1016/j.radphyschem.2010.08.016.
[15]
Liang, X.; Wang, Z. J.; Liu, C. J., Nanoscale Res. Lett. 2010, 5 (1), 124-129. DOI 10.1007/s11671-009-9453-0.
[16]
Bond, G. C.; Louis, C.; Thompson, D. T., Preparation of Supported Gold Catalysts. In Catalysis by Gold, Hutchings, G. J., Ed. Imperial College Press: 2006; Vol. 6, pp 72-120.
[17]
Kogelschatz, U., Appl. Surf. Sci. 1992, 54 (C), 410-423.
[18]
Scherzer, T.; Knolle, W.; Naumov, S.; Mehnert, R., Nucl. Instr. Meth. Phys. Res. B. 2003, 208 (1-4), 271-276.
[19]
Elsner, C.; Lenk, M.; Prager, L.; Mehnert, R., Appl. Surf. Sci. 2006, 252 (10), 3616-3624.
[20]
Prager, L.; Dierdorf, A.; Liebe, H.; Naumov, S.; Stojanovic, S.; Heller, R.; Wennrich, L.; Buchmeiser, M. R., Chem. Eur. J. 2007, 13 (30), 8522-8529.
[21]
Zhao, Y.; Truhlar, D. G., Theoretical Chemistry Accounts 2008, 120 (1-3), 215-241. DOI 10.1007/s00214-007-0310-x.
[22]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., Journal of Chemical Physics 2010, 132 (15). DOI 10.1063/1.3382344.
[23]
Wadt, W. R.; Hay, P. J., Journal of Chemical Physics 1985, 82 (1), 284-298. DOI 10.1063/1.448800.
[24]
Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.; Goddard, W. A.; Honig, B., Journal of the American Chemical Society 1994, 116 (26), 11875-11882. DOI 10.1021/ja00105a030.
[25]
Kurihara, K.; Kizling, J.; Stenius, P.; Fendler, J. H., Journal of the American Chemical Society 1983, 105 (9), 2574-2579. DOI 10.1021/ja00347a011.
[26]
Dey, G. R.; El Omar, A. K.; Jacob, J. A.; Mostafavi, M.; Belloni, J., J. Phys. Chem. A 2011, 115 (4), 383-391. DOI 10.1021/jp1096597.
[27]
Huang, W. C.; Chen, Y. C., Journal of Nanoparticle Research 2008, 10 (4), 697-702. DOI DOI 10.1007/s11051-007-9293-8.
[28]
Shang, Y. Z.; Min, C. Z.; Hu, J.; Wang, T. M.; Liu, H. L.; Hu, Y., Solid State Sci. 2013, 15, 17-23. DOI 10.1016/j.solidstatesciences.2012.09.002.
[29]
Bastus, N. G.; Comenge, J.; Puntes, V., Langmuir 2011, 27 (17), 11098-11105. DOI 10.1021/la201938u.
[30]
Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Journal of Physical Chemistry B 2006, 110 (14), 7238-7248. DOI 10.1021/jp057170o.
[31]
Rozand, C., Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33 (2), 147-156. DOI 10.1007/s10096-013-1945-2.
[32]
Veigas, B.; Jacob, J. M.; Costa, M. N.; Santos, D. S.; Viveiros, M.; Inacio, J.; Martins, R.; Barquinha, P.; Fortunato, E.; Baptista, P. V., Lab on a Chip 2012, 12 (22), 4802-4808. DOI 10.1039/c2lc40739f.
[33]
Spano, F.; Castellano, A.; Massaro, A.; Fragouli, D.; Cingolani, R.; Athanassiou, A., Journal of Nanoscience and Nanotechnology 2012, 12 (6), 4820-4824. DOI 10.1166/jnn.2012.4931.
[34]
Elsner, C.; Naumov, S.; Zajadacz, J.; Buchmeiser, M. R., Thin Solid Films 2009, 517 (24), 6772-6776. DOI 10.1016/j.tsf.2009.05.041.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931