High Resolution Imaging of a Multi-Walled Carbon Nanotube with Energy-Filtered Photoemission Electron Microscopy
American Journal of Nano Research and Applications
Volume 2, Issue 6-1, December 2014, Pages: 27-33
Received: Nov. 15, 2014; Accepted: Nov. 19, 2014; Published: Dec. 23, 2014
Views 2713      Downloads 184
Andreas Neff, Leibniz Institute of Surface Modification (IOM), Chemical Department, Permoser Strasse 15, 04318 Leipzig, Germany
Olga Naumov, Leibniz Institute of Surface Modification (IOM), Chemical Department, Permoser Strasse 15, 04318 Leipzig, Germany
Timna-Josua Kühn, FOCUS GmbH, Neukirchner Strasse 2, 65510 Hünstetten, Germany
Nils Weber, FOCUS GmbH, Neukirchner Strasse 2, 65510 Hünstetten, Germany
Michael Merkel, FOCUS GmbH, Neukirchner Strasse 2, 65510 Hünstetten, Germany
Bernd Abel, Leibniz Institute of Surface Modification (IOM), Chemical Department, Permoser Strasse 15, 04318 Leipzig, Germany
Aron Varga, Leibniz Institute of Surface Modification (IOM), Chemical Department, Permoser Strasse 15, 04318 Leipzig, Germany
Katrin R. Siefermann, Leibniz Institute of Surface Modification (IOM), Chemical Department, Permoser Strasse 15, 04318 Leipzig, Germany
Article Tools
Follow on us
Photoemission electron microscopy (PEEM) is a powerful and well established tool in surface science. In recent years, PEEM has been increasingly applied to new terrain, such as imaging of complex nano-objects and functional molecular materials, as well as time-resolved experiments. When applying PEEM to such new terrain, information on the mechanisms causing contrast in the PEEM image is particularly valuable. Here, we present a PEEM study on a complex nano-object – an individual multi-walled carbon nanotube (CNT) – to shed light on the origin of PEEM contrast. The presented PEEM images of the nanotube are of unsurpassed resolution and feature intensity variations along the nanotube. Complementary scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements on the same nanotube reveal topography as the dominant cause for the contrast observed along the nanotube. Energy-filtered PEEM measurements demonstrate that the contrast between nanotube and substrate mainly originates from their different electronic structures. The measurements further demonstrate that energy-filtered PEEM has the potential to image electronic structure variations of complex nano-objects and materials on nanometer length scales.
Photoemission Electron Microscopy, PEEM, Carbon Nanotube, CNT, High Resolution Imaging, Contrast Mechanisms
To cite this article
Andreas Neff, Olga Naumov, Timna-Josua Kühn, Nils Weber, Michael Merkel, Bernd Abel, Aron Varga, Katrin R. Siefermann, High Resolution Imaging of a Multi-Walled Carbon Nanotube with Energy-Filtered Photoemission Electron Microscopy, American Journal of Nano Research and Applications. Special Issue:Advanced Functional Materials. Vol. 2, No. 6-1, 2014, pp. 27-33. doi: 10.11648/j.nano.s.2014020601.14
A. Bailly, O. Renault, N. Barrett, L.F. Zagonel, P. Gentile, N. Pauc, et al., Direct quantification of gold along a single Si nanowire., Nano Lett. 8 (2008) 3709–3714.
L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, et al., Short range plasmon resonators probed by photoemission electron microscopy., Nano Lett. 8 (2008) 935–940.
M. Hjort, J. Wallentin, R. Timm, a. a. Zakharov, J.N. Andersen, L. Samuelson, et al., Doping profile of InP nanowires directly imaged by photoemission electron microscopy, Appl. Phys. Lett. 99 (2011) 233113.
S.J. Peppernick, A.G. Joly, K.M. Beck, W.P. Hess, Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy., J. Chem. Phys. 134 (2011) 034507.
L. Chelaru, M. Horn-von Hoegen, D. Thien, F.-J. Meyer zu Heringdorf, Fringe fields in nonlinear photoemission microscopy, Phys. Rev. B. 73 (2006) 115416.
Y. Takamura, R. V Chopdekar, A. Scholl, A. Doran, J.A. Liddle, B. Harteneck, et al., Tuning magnetic domain structure in nanoscale La0.7Sr0.3MnO3 islands., Nano Lett. 6 (2006) 1287–1291.
R. Könenkamp, R.C. Word, G.F. Rempfer, T. Dixon, L. Almaraz, T. Jones, 5.4 Nm Spatial Resolution in Biological Photoemission Electron Microscopy., Ultramicroscopy. 110 (2010) 899–902.
R.C. Word, J.P.S. Fitzgerald, R. Könenkamp, Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM., Opt. Express. 21 (2013) 30507–30520.
C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, et al., Mapping surface plasmon polariton propagation via counter-propagating light pulses., Opt. Express. 20 (2012) 12877–12884.
N.M. Buckanie, P. Kirschbaum, S. Sindermann, F.-J. Meyer zu Heringdorf, Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy., Ultramicroscopy. 130 (2013) 49–53.
K. Fukumoto, K. Onda, Y. Yamada, T. Matsuki, T. Mukuta, S. Tanaka, et al., Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors., Rev. Sci. Instrum. 85 (2014) 083705.
A Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, et al., Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains., Rev. Sci. Instrum. 80 (2009) 123703.
K. Siegrist, E.D. Williams, V.W. Ballarotto, Characterizing topography-induced contrast in photoelectron emission microscopy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 21 (2003) 1098.
S.A. Nepijko, N.N. Sedov, C.H. Ziethen, G. Schönhense, M. Merkel, M. Escher, Peculiarities of imaging one- and two-dimensional structures in an emission electron microscope. 1. Theory, J. Microsc. 199 (2000) 124–129.
S.A. Nepijko, N.N. Sedov, O. Schmidt, G. Schönhense, X. Bao, W. Huang, Imaging of three-dimensional objects in emission electron microscopy., J. Microsc. 202 (2001) 480–487.
M. Lavayssière, M. Escher, O. Renault, D. Mariolle, N. Barrett, Electrical and physical topography in energy-filtered photoelectron emission microscopy of two-dimensional silicon pn junctions, J. Electron Spectros. Relat. Phenomena. 186 (2013) 30–38.
V.K. Sangwan, V.W. Ballarotto, K. Siegrist, E.D. Williams, Characterizing voltage contrast in photoelectron emission microscopy., J. Microsc. 238 (2010) 210–217.
S. Suzuki, Y. Watanabe, Y. Homma, S. Fukuba, S. Heun, A. Locatelli, Work functions of individual single-walled carbon nanotubes, Appl. Phys. Lett. 85 (2004) 127.
S. Suzuki, Y. Watanabe, Y. Homma, S. Fukuba, A. Locatelli, S. Heun, Photoemission electron microscopy of individual single-walled carbon nanotubes, J. Electron Spectros. Relat. Phenomena. 144-147 (2005) 357–360.
V.K. Sangwan, Carbon Nanotube Thin Film as an Electronic Material, PhD thesis, University of Maryland, 2009.
D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, et al., Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction., Angew. Chemie. 52 (2013) 371–375.
R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes--the route toward applications., Science (80-. ). 297 (2002) 787–792.
W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications, Nanotechnology. 18 (2007) 412001.
V. Popov, Carbon nanotubes: properties and application, Mater. Sci. Eng. R Reports. 43 (2004) 61–102.
S. Suzuki, C. Bower, Y. Watanabe, O. Zhou, Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles, Appl. Phys. Lett. 76 (2000) 4007.
S. Suzuki, Y. Watanabe, S. Heun, Photoelectron spectroscopy and microscopy of carbon nanotubes, Curr. Opin. Solid State Mater. Sci. 10 (2006) 53–59.
J.W. Chiou, C.L. Yueh, J.C. Jan, H.M. Tsai, W.F. Pong, I.-H. Hong, et al., Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy, Appl. Phys. Lett. 81 (2002) 4189.
S. Suzuki, Y. Watanabe, T. Kiyokura, K. Nath, T. Ogino, S. Heun, et al., Electronic structure at carbon nanotube tips studied by photoemission spectroscopy, Phys. Rev. B. 63 (2001) 245418.
S. Suzuki, Y. Watanabe, T. Ogino, S. Heun, L. Gregoratti, a. Barinov, et al., Electronic structure of carbon nanotubes studied by photoelectron spectromicroscopy, Phys. Rev. B. 66 (2002) 035414.
W. Li, Y. Zhou, H.-J. Fitting, W. Bauhofer, Imaging mechanism of carbon nanotubes on insulating and conductive substrates using a scanning electron microscope, J. Mater. Sci. 46 (2011) 7626–7632.
Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, D. Takagi, Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy, Appl. Phys. Lett. 84 (2004) 1750.
Á. Varga, M. Pfohl, N. a Brunelli, M. Schreier, K.P. Giapis, S.M. Haile, Carbon nanotubes as electronic interconnects in solid acid fuel cell electrodes., Phys. Chem. Chem. Phys. 15 (2013) 15470–15476.
J. Lin, N. Weber, A. Wirth, S.H. Chew, M. Escher, M. Merkel, et al., Time of flight-photoemission electron microscope for ultrahigh spatiotemporal probing of nanoplasmonic optical fields., J. Phys. Condens. Matter. 21 (2009) 314005.
C. Ziethen, O. Schmidt, G.H. Fecher, C.M. Schneider, G. Schönhense, R. Frömter, et al., Fast elemental mapping and magnetic imaging with high lateral resolution using a novel photoemission microscope, J. Electron Spectros. Relat. Phenomena. 88-91 (1998) 983–989.
S.A. Nepijko, N.N. Sedov, Resolution deterioration in emission and electron microscopy due to object roughness, Ann. Phys. 9 (2000) 441–451.
J. Stöhr, S. Anders, X-ray spectro-microscopy of complex materials and surfaces, IBM J. Res. Dev. 44 (2000) 535–551.
M. Wiets, M. Weinelt, T. Fauster, Electronic structure of SiC(0001) surfaces studied by two-photon photoemission, Phys. Rev. B. 68 (2003) 125321.
V. Van Elsbergen, T. Kampen, W. Mönch, Surface analysis of 6H-SiC, Surf. Sci. 365 (1996) 443–452.
T. Jikimoto, J.L. Wang, T. Saito, M. Hirai, M. Kusaka, M. Iwami, et al., Atomic and electronic structures of heat treated 6H–SiC surface, Appl. Surf. Sci. 130-132 (1998) 593–597.
S. Kennou, An x-ray photoelectron spectroscopy and work-function study of the Er/α-SiC(0001) interface, J. Appl. Phys. 78 (1995) 587.
S. Kennou, A. Siokou, I. Dontas, S. Ladas, An interface study of vapor-deposited rhenium with the two (0001) polar faces of single crystal 6H-SiC, Diam. Relat. Mater. 6 (1997) 1424–1427.
J. Pelletier, D. Gervais, C. Pomot, Application of wide-gap semiconductors to surface ionization: Work functions of AlN and SiC single crystals, J. Appl. Phys. 55 (1984) 994.
C. Benesch, M. Fartmann, H. Merz, k-resolved inverse photoemission of four different 6H-SiC (0001) surfaces, Phys. Rev. B. 64 (2001) 205314.
Z. Xu, X.D. Bai, E.G. Wang, Z.L. Wang, Field emission of individual carbon nanotube with in situ tip image and real work function, Appl. Phys. Lett. 87 (2005) 163106.
R. Gao, Z. Pan, Z.L. Wang, Work function at the tips of multiwalled carbon nanotubes, Appl. Phys. Lett. 78 (2001) 1757.
P. Liu, Q. Sun, F. Zhu, K. Liu, K. Jiang, L. Liu, et al., Measuring the work function of carbon nanotubes with thermionic method., Nano Lett. 8 (2008) 647–651.
H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, et al., Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J. Phys. Chem. B. 103 (1999) 8116–8121.
M. Shiraishi, M. Ata, Work function of carbon nanotubes, Carbon N. Y. 39 (2001) 1913–1917.
W. Schottky, Influence of structure-action, especially the Thomson constructive force, on the electron emission of metals, Phys. Zeitschrift. 15 (1914).
G. Busch, J. Wullschleger, Der Schottky-Effekt an reinen Silizium-Oberflächen, Phys. Der Kondens. Mater. 12 (1970) 47–71.
Q.B. Wen, L. Qiao, W.T. Zheng, Y. Zeng, C.Q. Qu, S.S. Yu, et al., Theoretical investigation on different effects of nitrogen and boron substitutional impurities on the structures and field emission properties for carbon nanotubes, Phys. E Low-Dimensional Syst. Nanostructures. 40 (2008) 890–893.
C. Kim, Y.S. Choi, S.M. Lee, J.T. Park, B. Kim, Y.H. Lee, The Effect of Gas Adsorption on the Field Emission Mechanism of Carbon Nanotubes, J. Am. Chem. Soc. 124 (2002) 9906–9911.
M. Yu, T. Kowalewski, R. Ruoff, Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force, Phys. Rev. Lett. 85 (2000) 1456–1459.
T. Hertel, R. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B. 58 (1998) 13870–13873.
R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, B. Chan, Radial deformation of carbon nanotubes by van der Waals forces, Nature. 364 (1993) 514–516.
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931