| Peer-Reviewed

Antioxidant Potentials of Tomato Paste Extracts Found on Major Markets in Accra Metropolis

Received: 28 July 2015    Accepted: 8 August 2015    Published: 26 August 2015
Views:       Downloads:
Abstract

The harmful effects of the free radicals on humans could be inhibited by antioxidants in fruits and vegetables. Tomato contains several antioxidants such as phenolic compounds and flavonoids. Consumption of tomatoes has been related epidemiologically to a lower incidence of cardiovascular diseases, prostate, gastrointestinal and epithelial cell cancers. In this study ten different brands of canned tomato pastes on the Ghanaian market were evaluated for their antioxidant potentials based on their polyphenolic and flavonoid contents as well as DPPH free radical scavenging activities. The amount of total phenolic compounds extracted were determined using the Folin-Ciocalteu reagent. Total flavonoid content was determined using aluminum chloride colorimetric assay method. The antioxidant activities were evaluated using the DPPH scavenging activity. Total phenolic and flavonoid contents ranged from 6.26 mg GAE/gdw to 22.82 mg GAE/gdw and between 1.83 μg QE/gdw to 45.26μg QE/gdw respectively. DPPH scavenging activity ranged from 8.03% to 29.69%. High and significant correlations existed between antioxidant activities, total phenolic and flavonoid contents of tomato paste samples analysed indicating these pastes are potentially rich sources of dietary polyphenolic compounds and antioxidants, and might contribute important health benefits to consumers.

Published in American Journal of Applied Chemistry (Volume 3, Issue 5)
DOI 10.11648/j.ajac.20150305.11
Page(s) 158-163
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Antioxidant Activity, Total Phenolics, Total Flavonoids, Tomato Pastes, Health Benefits

References
[1] Ray, R.C.. El Sheikha, A.F., Panda, S.H. and Montet, D. (2011) Anti-ox¬idant properties and other functional attributes of tomato. An overview Int. J. Fd. Ferm. Technol., 1, (2), 139-148.
[2] Helyes, L.A., Lugasi, A. Pogonyi, C. and Pék, Z. (2009) Effect of vari¬ety and grafting on lycopene content of tomato (Lycoper¬sicon Lycopersicum L. Karsten) fruit. Acta Aliment Hung., 38, (1), 27-34.
[3] Hernández, M. E. Rodríguez, E. and Díaz, C. (2007) Free hydroxycin¬namic acids, lycopene, and color parameters in tomato culti¬vars. J Agric Food Chem., 55, 8604-8615.
[4] Rao, A.V. and Rao, L.G. (2007) Carotenoids and human health: Pharm. Res. 55, (3), 207-216.
[5] Rohman, A., Riyanto, S., Yuniart, I.N., Saputra, W.R. and Utam, I.R. (2010) Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int. Food Res. J., 17, 97-106.
[6] Chen, C., Pearson, M.A. and Gray, I.J. (1992) Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compound. Food Chem., 43, 177-183.
[7] Valko, M., Leibfritz, D., Monco, I.J., Cronin, M. and J. Telser J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int. J of Biochem & Cell Biol., 39, (1), 44–84.
[8] Heiss, C.L.,. Keen, M. and Kelm, R. (2010) Flavanols and cardiovascular disease prevention. Eur Heart J., 31, 2583-92.
[9] Williamson, G.H., Sies, D., Heber, C.L., Keen, I.A.. Macdonald, L., Actis-Goretta, T.Y., Momma, J.I.,.Ottaviani, R.R, Holt, H.,. Schroeter, C. and Heiss, C. (2009) Functional foods for health promotion: state-of-the-science on dietary flavonoids. Nutr. Rev., 67, 736-43.
[10] Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. and Lester, P. (1999) Methods in Enzymology. Academic Press, pp.152-178.
[11] Zhishen, J., Mengcheng T. and Jianming, W. (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64, 555-559
[12] Oliveira, I., Sousa, A., Ferreira, I., Bento, A.,. Estevinho, L. and Perei¬ra, J.A. (2008) Total phenols, antioxidant potential and anti¬microbial activity of walnut (Juglans regia L.) green husk, Food Chem. Toxicol., 46, 2326-2331.
[13] Hurtado, M.C., Greve L.C. and Labavitch, J.M. (2002) Changes in cell wall pectin accompanying tomato (Lycopersicon esculentum) paste manufacture. J. Agric. Food Chem., 50, 273-278.
[14] Lapornik, M., Prosek, A. and Golc Wondra, A. (2005) Comparison of extracts prepared from plants by-products using different solvents and extraction time. J of Food Eng., 71, 214-222.
[15] Nour, V., Trandafir, I. and Ionica, M.E. (2013) Antioxidant Compounds, Mineral Content and Antioxidant Activity of Several Tomato Cultivars Grown in Southwestern Romania. Not Bot Horti Agrobo., 41, (1), 136-142.
[16] Ilahy, R., Hdiderb, C., Lenuccic, M.S., Tlilia I. and Dalessandroc G., (2011) Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy. Sci Horticult., 127, 255–261.
[17] Kalt, W., Forney, C.F., Martin A. and Prior, R.L. (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits, J Agric Food Chem., 47, 4638 – 4644.
[18] Ninfali, P. and Bacchiocca, M. (2004). Parameters for the detection of post-harvest quality in fresh or transformed horticultural crops. J. Food Agric. Environ., 2, 122 –127.
[19] Yen, G.C., Duh, P.D. and Tsai, C.L. 1993. Relationship between antioxidant activity and maturity of peanut hulls. J. Agric. Food Chem. 41, 67-70.
[20] Kahkonen, M.P., Hopia, A.I., Vuorela, H.J., Raucha, J.P. and Pihlaja, K. (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem., 47, 3954-3962.
[21] Kaur, C. and Kapoor, H.C. (2002). Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J. Food Sci. Technol., 37, 153-161.
[22] Olajire, A.A. and Azeez, L. (2011) Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. Afr J of Food Sci Technol., 2, (2), 022-029.
[23] Yeh, J.Y., Hsieh, L.H., Wu K.T. and Tsai, C.F. (2011) Antioxidant properties and antioxidant compounds of various extracts from the edible Basidiomycete grifola Frondosa (Maitake). Molecules, 16, (4) 3197-3211.
[24] Escribano-Bailon, M.T. and Santos-Buelga, C. (2003) In Methods in Polyphenol Analysis. Royal Society of Chemistry, Cambridge, United Kingdom, 1–16.
[25] Mitra, K. and Uddin, N. (2014) Total Phenolics, Flavonoids, Proanthrocyanidins, Ascorbic Acid Contents and In-Vitro Antioxidant Activities of Newly Developed Isolated Soya Protein. Disc J of Agric Food Sci., 2, (5), 160 -168.
[26] Mostapha, B.B., Hayette L. and Zina, M. (2014) Antioxidant activity of eight tomato (Lycopersicon esculentum L.) varieties grown in Algeria. J of Food Technol Res., 1 (3), 133-145.
[27] Marinova, E.M. and Yanishlieva, N.V. (1997), Antioxidative activity of extracts from selected species of the family Lamiaceae in sunflower oil, Food Chem 58, 245-248.
[28] Kim, J.H., Kim, S.J.. Park, H.R., Choi, J., Cheoul, J.Y., Chang, N.K., Kim S.J. and. Lee, S.C. (2009) The different antioxidant and anticancer activities depending on the colour of oyster mushroom. J. Med. Plants Res., 3, 1016-1020.
[29] Ramarathnam, N., Ochi H. and Takeuchi, M. (1997) Antioxidant defense system in vegetable extracts (F. Shahidi, Edition). AOCS Press, 76 – 87.
[30] Nickavar B, Kamalinejad, M. and Izadpanah, H. (2007) In vitro free radical scavenging activity of five salvia species. Pak. J. Pharm. Sci., 20, 291-294.
Cite This Article
  • APA Style

    Shadrack Donkor, Akwasi Akomeah Agyekum, Felicia Akuamoa, Nana Afua Kobi Adu-Bobi, Daniel Gyingiri Achel, et al. (2015). Antioxidant Potentials of Tomato Paste Extracts Found on Major Markets in Accra Metropolis. American Journal of Applied Chemistry, 3(5), 158-163. https://doi.org/10.11648/j.ajac.20150305.11

    Copy | Download

    ACS Style

    Shadrack Donkor; Akwasi Akomeah Agyekum; Felicia Akuamoa; Nana Afua Kobi Adu-Bobi; Daniel Gyingiri Achel, et al. Antioxidant Potentials of Tomato Paste Extracts Found on Major Markets in Accra Metropolis. Am. J. Appl. Chem. 2015, 3(5), 158-163. doi: 10.11648/j.ajac.20150305.11

    Copy | Download

    AMA Style

    Shadrack Donkor, Akwasi Akomeah Agyekum, Felicia Akuamoa, Nana Afua Kobi Adu-Bobi, Daniel Gyingiri Achel, et al. Antioxidant Potentials of Tomato Paste Extracts Found on Major Markets in Accra Metropolis. Am J Appl Chem. 2015;3(5):158-163. doi: 10.11648/j.ajac.20150305.11

    Copy | Download

  • @article{10.11648/j.ajac.20150305.11,
      author = {Shadrack Donkor and Akwasi Akomeah Agyekum and Felicia Akuamoa and Nana Afua Kobi Adu-Bobi and Daniel Gyingiri Achel and Isaac Kwabena Asare and Josephine Kyei},
      title = {Antioxidant Potentials of Tomato Paste Extracts Found on Major Markets in Accra Metropolis},
      journal = {American Journal of Applied Chemistry},
      volume = {3},
      number = {5},
      pages = {158-163},
      doi = {10.11648/j.ajac.20150305.11},
      url = {https://doi.org/10.11648/j.ajac.20150305.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20150305.11},
      abstract = {The harmful effects of the free radicals on humans could be inhibited by antioxidants in fruits and vegetables. Tomato contains several antioxidants such as phenolic compounds and flavonoids. Consumption of tomatoes has been related epidemiologically to a lower incidence of cardiovascular diseases, prostate, gastrointestinal and epithelial cell cancers. In this study ten different brands of canned tomato pastes on the Ghanaian market were evaluated for their antioxidant potentials based on their polyphenolic and flavonoid contents as well as DPPH free radical scavenging activities. The amount of total phenolic compounds extracted were determined using the Folin-Ciocalteu reagent. Total flavonoid content was determined using aluminum chloride colorimetric assay method. The antioxidant activities were evaluated using the DPPH scavenging activity. Total phenolic and flavonoid contents ranged from 6.26 mg GAE/gdw to 22.82 mg GAE/gdw and between 1.83 μg QE/gdw to 45.26μg QE/gdw respectively. DPPH scavenging activity ranged from 8.03% to 29.69%. High and significant correlations existed between antioxidant activities, total phenolic and flavonoid contents of tomato paste samples analysed indicating these pastes are potentially rich sources of dietary polyphenolic compounds and antioxidants, and might contribute important health benefits to consumers.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Antioxidant Potentials of Tomato Paste Extracts Found on Major Markets in Accra Metropolis
    AU  - Shadrack Donkor
    AU  - Akwasi Akomeah Agyekum
    AU  - Felicia Akuamoa
    AU  - Nana Afua Kobi Adu-Bobi
    AU  - Daniel Gyingiri Achel
    AU  - Isaac Kwabena Asare
    AU  - Josephine Kyei
    Y1  - 2015/08/26
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajac.20150305.11
    DO  - 10.11648/j.ajac.20150305.11
    T2  - American Journal of Applied Chemistry
    JF  - American Journal of Applied Chemistry
    JO  - American Journal of Applied Chemistry
    SP  - 158
    EP  - 163
    PB  - Science Publishing Group
    SN  - 2330-8745
    UR  - https://doi.org/10.11648/j.ajac.20150305.11
    AB  - The harmful effects of the free radicals on humans could be inhibited by antioxidants in fruits and vegetables. Tomato contains several antioxidants such as phenolic compounds and flavonoids. Consumption of tomatoes has been related epidemiologically to a lower incidence of cardiovascular diseases, prostate, gastrointestinal and epithelial cell cancers. In this study ten different brands of canned tomato pastes on the Ghanaian market were evaluated for their antioxidant potentials based on their polyphenolic and flavonoid contents as well as DPPH free radical scavenging activities. The amount of total phenolic compounds extracted were determined using the Folin-Ciocalteu reagent. Total flavonoid content was determined using aluminum chloride colorimetric assay method. The antioxidant activities were evaluated using the DPPH scavenging activity. Total phenolic and flavonoid contents ranged from 6.26 mg GAE/gdw to 22.82 mg GAE/gdw and between 1.83 μg QE/gdw to 45.26μg QE/gdw respectively. DPPH scavenging activity ranged from 8.03% to 29.69%. High and significant correlations existed between antioxidant activities, total phenolic and flavonoid contents of tomato paste samples analysed indicating these pastes are potentially rich sources of dietary polyphenolic compounds and antioxidants, and might contribute important health benefits to consumers.
    VL  - 3
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra, Ghana

  • Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra, Ghana

  • Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra, Ghana

  • Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra, Ghana

  • Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra, Ghana

  • Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon, Accra, Ghana

  • V Mane Fils Ghana Limited, East Legon, Accra, Ghana

  • Sections