| Peer-Reviewed

Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red

Received: 29 September 2016    Accepted: 19 October 2016    Published: 3 November 2016
Views:       Downloads:
Abstract

Well-dispersed, uniform Y2O3:Yb3+/Er3+ nanospheres have been successfully prepared at 160°C via a facile hydrothermal route without using any templates, followed by a subsequent calcination process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and upconversion photoluminescence spectra were employed to characterize the samples. The SEM and TEM images indicate that the samples consist of separated spheres with a mean diameter of about 75 nm. Under the excitation of 980-nm laser, the Y2O3:Yb3+/Er3+ phosphors exhibit bright upconversion photoluminescence from green to red with different Yb3+ content, which is easily observed by our naked eyes. Due to multicolor tunable luminescence, ideal spherical shape, and cheap materials of Y2O3 host, the as-prepared phosphors are potentially applied for color displays, back light, UC lasers, photonics, and biomedicine.

Published in Nanoscience and Nanometrology (Volume 2, Issue 2)
DOI 10.11648/j.nsnm.20160202.11
Page(s) 41-45
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Y2O3 Nanosphere, Hydrothermal Synthesis, Yb→Er Energy Transfer, Upconversion Luminescence

References
[1] Y. Zhang, W. T. Gong, J. J. Yu, Z. Y. Cheng, G. L. Ning, RSC Adv. 2016, 6, 30886.
[2] X. He, B. Yan, J. Mater. Chem. C, 2014, 2, 2368.
[3] L. Zhou, L. Yuan, X. J. Zhou, S. S. Hu, Y. Luo, J. Yang, Chemistry Select, 2016, 1, 1848.
[4] S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, S. J. Kwon, J. Electrochem. Soc., 2000, 147, 3143.
[5] H. Wang, C. K. Lin, X. M. Liu, J. Lin, Appl. Phys. Lett., 2005, 87, 181907.
[6] B. Alken, W. P. Hsu, E. Matijevic, J. Am. Ceram. Soc., 1988, 71, 845.
[7] Z. H. Xu, Y. Gao, T. Liu, L. M. Wang, S. S. Bian, J. Lin, J. Mater. Chem., 2012, 22, 21695.
[8] M. S. Palmer, M. Neurock, M. M. Olken, J. Am. Chem. Soc., 2002, 124, 8452.
[9] J. A. Nelson, E. L. Brant, M. J. Wagner, Chem. Mater., 2003, 15, 688.
[10] S. S. Hu, H. G. Zhang, J. Yang, Z. H. Qiao, J. Nanosci. Nanotechnol. 2014, 14, 3853.
[11] X. Bai, H. W. Song, L. X. Yu, L. M. Yang, Z. X. Liu, G. H. Pan, S. Z. Lu, X. G. Ren, Y. Q. Lei, L. B. Fan, J. Phys. Chem. B, 2005, 109, 15236.
[12] J. Yang, C. M. Zhang, C. X. Li, Y. N. Yu, J. Lin, Inorg. Chem., 2008, 47, 7262.
[13] Y. W. Zhang, S. Jin, S. J. Tian, G. B. Li, T. Jia, C. S. Liao, C. H. Yan, Chem. Mater. 2001, 13, 372.
[14] A. W. Xu, Y. P. Fang, L. P. You, and H. Q. Liu, J. Am. Chem. Soc, 2003, 125, 1494.
[15] W. B. Pei, B. Chen, L. L. Wang, J. S. Wu, X. Teng, R. Lau, L. Huang, W. Huang, Nanoscale, 2015, 7, 4048.
[16] G. K. Das, T. Y. Tan, J. Phys. Chem. C 2008, 112, 11211.
[17] D. Matsuura, Appl. Phys. Lett. 2002, 81, 4526.
[18] A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad, J. Phys. Chem. B 2002, 106, 1909.
[19] S. Sivakumar, F. C. J. M. van Veggel, M. Raudsepp, J. Am. Chem. Soc. 2005, 127, 12464.
[20] X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, L. B. Fan, J. Phys. Chem. C, 2007, 111, 13611.
[21] G. Y. Chen, Y. G. Zhang, G. Somesfalen, Z. G. Zhang, Q. Sun, F. P. Wang, Appl. Phys. Lett. 2006, 89, 163105.
[22] F. Vetrone, J. C. Boyer, J. A. Capobianco, J. Appl. Phys. 2004, 96, 661.
[23] J. J. Cao, L. Yuan, J. F. Tang, X. J. Zhou, J. Yang, CrystEngComm, 2016, 18, 5940.
Cite This Article
  • APA Style

    Jie Yang, Jiali Gu, Renhe Yang, Qinyu Shang, Jun Yang. (2016). Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red. Nanoscience and Nanometrology, 2(2), 41-45. https://doi.org/10.11648/j.nsnm.20160202.11

    Copy | Download

    ACS Style

    Jie Yang; Jiali Gu; Renhe Yang; Qinyu Shang; Jun Yang. Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red. Nanosci. Nanometrol. 2016, 2(2), 41-45. doi: 10.11648/j.nsnm.20160202.11

    Copy | Download

    AMA Style

    Jie Yang, Jiali Gu, Renhe Yang, Qinyu Shang, Jun Yang. Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red. Nanosci Nanometrol. 2016;2(2):41-45. doi: 10.11648/j.nsnm.20160202.11

    Copy | Download

  • @article{10.11648/j.nsnm.20160202.11,
      author = {Jie Yang and Jiali Gu and Renhe Yang and Qinyu Shang and Jun Yang},
      title = {Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red},
      journal = {Nanoscience and Nanometrology},
      volume = {2},
      number = {2},
      pages = {41-45},
      doi = {10.11648/j.nsnm.20160202.11},
      url = {https://doi.org/10.11648/j.nsnm.20160202.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nsnm.20160202.11},
      abstract = {Well-dispersed, uniform Y2O3:Yb3+/Er3+ nanospheres have been successfully prepared at 160°C via a facile hydrothermal route without using any templates, followed by a subsequent calcination process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and upconversion photoluminescence spectra were employed to characterize the samples. The SEM and TEM images indicate that the samples consist of separated spheres with a mean diameter of about 75 nm. Under the excitation of 980-nm laser, the Y2O3:Yb3+/Er3+ phosphors exhibit bright upconversion photoluminescence from green to red with different Yb3+ content, which is easily observed by our naked eyes. Due to multicolor tunable luminescence, ideal spherical shape, and cheap materials of Y2O3 host, the as-prepared phosphors are potentially applied for color displays, back light, UC lasers, photonics, and biomedicine.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red
    AU  - Jie Yang
    AU  - Jiali Gu
    AU  - Renhe Yang
    AU  - Qinyu Shang
    AU  - Jun Yang
    Y1  - 2016/11/03
    PY  - 2016
    N1  - https://doi.org/10.11648/j.nsnm.20160202.11
    DO  - 10.11648/j.nsnm.20160202.11
    T2  - Nanoscience and Nanometrology
    JF  - Nanoscience and Nanometrology
    JO  - Nanoscience and Nanometrology
    SP  - 41
    EP  - 45
    PB  - Science Publishing Group
    SN  - 2472-3630
    UR  - https://doi.org/10.11648/j.nsnm.20160202.11
    AB  - Well-dispersed, uniform Y2O3:Yb3+/Er3+ nanospheres have been successfully prepared at 160°C via a facile hydrothermal route without using any templates, followed by a subsequent calcination process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and upconversion photoluminescence spectra were employed to characterize the samples. The SEM and TEM images indicate that the samples consist of separated spheres with a mean diameter of about 75 nm. Under the excitation of 980-nm laser, the Y2O3:Yb3+/Er3+ phosphors exhibit bright upconversion photoluminescence from green to red with different Yb3+ content, which is easily observed by our naked eyes. Due to multicolor tunable luminescence, ideal spherical shape, and cheap materials of Y2O3 host, the as-prepared phosphors are potentially applied for color displays, back light, UC lasers, photonics, and biomedicine.
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China

  • School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China

  • School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China

  • School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China

  • School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China

  • Sections