| Peer-Reviewed

Functionalization of Magnetic Nano Particles: Synthesis, Characterization and Their Application in Water Purification

Received: 28 September 2016    Accepted: 21 October 2016    Published: 8 November 2016
Views:       Downloads:
Abstract

Contamination of fresh and marine sediments and water environments by oil spills, urban runoffs, industrial and domestic effluents is demonstrating to be of critical concern as the presence of contaminants affects aquatic organisms and can quickly disperse to large as highlighted by the recent Gulf oil spill disaster. Polycyclic aromatic hydrocarbons (PAHs), Poly chlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and heavy metals like mercury, lead and manganese are among the ubiquitous trace contaminants of marine and freshwater systems. Presence of these contaminants raise concerns as small quantities of the organic chemicals have been displayed to be carcinogenic to mammals and can pose a prohibition to both human health and the aquatic biota. Innovative operations for treating wastewater containing heavy metals often include technologies for reduction of toxicity. Nanotechnology has rampaged plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water meanwhile different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of pathogens and diversion of toxic materials into less toxic compounds. Today nanoparticles, nanomembrane and nanopowder used for revelation and removal of chemical and biological substances include metals (e.g. Cadmium, copper, lead, mercury, nickel, zinc), nutrients (e.g. Phosphate, ammonia, nitrate and nitrite), cyanide, organics, algae (e.g. cyanobacterial toxins) viruses, bacteria, parasites and antibiotics. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines recent development in nanotechnology for wastewater treatment. The discussion covers candidate synthesis of magnetic nanomaterials (MNPs), properties and their mechanisms in water purification.

Published in American Journal of Nanosciences (Volume 2, Issue 3)
DOI 10.11648/j.ajn.20160203.12
Page(s) 26-40
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Magnetic Nanoparticles, Wastewater Treatment, Heavy Metals, Thermal Decomposition, Hydrothermal, Sonochemical

References
[1] Lou X. W., et al., Advanced Materials, 2008. 20(2): P. 258-262.
[2] Li. S., et al., Advanced Energy Materials, 2011. 1(4): P. 486-490.
[3] Ye. J., et al., Small, 2010. 6(2): P. 296-306.
[4] Wen Z., et al., Electrochemistry Communications, 2013. 29: P. 67-70.
[5] Liu J., et al., Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2009. 9(13): P. 1859-1864.
[6] Song Y., et al., The Journal of Physical Chemistry C, 2010. 114(49): P. 21158-21164. Yang Z., et al., Materials Letters, 2013. 90: P. 4-7.
[7] Wang Z., S. Madhavi, and X.W. Lou, The Journal of Physical Chemistry C, 2012. 116(23): P. 12508-12513.
[8] Wang H., et al., Journal of Power Sources, 2014, 248, p. 1158-1162.
[9] Mondal A. K., et al., ACS applied materials & interfaces, 2014. 6(17): P. 14827-14835.
[10] Wang L., et al., Nanoscale, 2013. 5(9): P. 3627-3631.
[11] Sun J., et al., Advanced Materials, 2013. 25(8): P. 1125-1130.
[12] Nagaraju G., Journal of the Brazilian Chemical Society, 2013. 24(10): P. 1662-1668.
[13] Zhang B., et al., Chemical Communications, 2010. 46(48): P. 9188-9190.
[14] Bae S. Y., et al., Journal of the American Chemical Society, 2005. 127(31): P. 10802-10803.
[15] Cui R., Z. Han, and J. J. Zhu, Chemistry-A European Journal, 2011. 17(34): P. 9377-9384.
[16] Yang P., et al., Advanced Functional Materials, 2002. 12(5): P. 323-331.
[17] Wang X., et al., Chem. Commun., 2012. 48(40): P. 4812-4814.
[18] Qie L., et al., Advanced Materials, 2012. 24(15): P. 2047-2050.
[19] Ji. L. and X. Zhang, Energy & Environmental Science, 2010. 3(1): P. 124-129.
[20] Zhu G.-N., et al., Energy & Environmental Science, 2011. 4(10): P. 4016-4022.
[21] Cao F.-F., et al., The Journal of Physical Chemistry C, 2010. 114(22): P. 10308-10313.
[22] Abu-Dief A. M., et al., Mater. Chem. Phys. 2016, 174, p. 164–171.
[23] Schladt T. D., et al., Angewandte Chemie International Edition, 2010. 49(23): P. 3976-3980.
[24] Wang W., and Cui H., The Journal of Physical Chemistry C, 2008. 112(29): P. 10759-10766.
[25] Jia F., et al., Advanced Materials, 2008. 20(5): P. 1050-1054.
[26] Pawar R., et al., Current Applied Physics, 2012. 12(3): P. 778-783.
[27] Tang Y., et al., The Journal of Physical Chemistry C, 2012. 116 (4): P. 2772-2780.
[28] Zhang X., et al., Journal of the American Chemical Society, 2012. 135(1): P. 18-21.
[29] Singamaneni S., et al., Journal of Materials Chemistry, 2011. 21(42): P. 16819-16845.
[30] Abu-Dief A. M., Nassar I. F. and Elsayed W. H., Appl. Organometal. Chem. 2016, 30, p. 917–923.
[31] El-Remaily M. A. A. A., Abu-Dief A. M., Tetrahedron, 2015, 71, p. 2579-2584.
[32] Xie T., Xu L., and Liu C., Powder Technology, 2012, 217, p. 163-172.
[33] An T., et al., ACS applied materials & interfaces, 2012. 4(11): P. 5988-5996.
[34] Teymourian H., Salimi A., and Khezrian S., Biosensors and Bioelectronics, 2013, 15, p. 1-8.
[35] Zhang B., et al., Journal of Applied Polymer Science, 2013, 127, p. 2152-2159.
[36] Rashad M., and Ibrahim I., Materials Technology: Advanced Performance Materials, 2012. 27(4): p. 308-314.
[37] Frey N. A., et al., Chemical Society Reviews, 2009. 38(9): P. 2532-2542.
[38] Ge J., et al., Angewandte Chemie International Edition, 2007. 46(23): P. 4342-4345.
[39] Xu H. L., Shen Y., and Bi H., Key Engineering Materials, 2012. 519: P. 108-112.
[40] Yoon T., et al., Energies, 2013. 6(9): P. 4830-4840.
[41] Wei H., et al., Materials Letters, 2012. 82: P. 224-226.
[42] Wu Y., et al., Nano letters, 2013. 13(2): P. 818-823.
[43] Bychko, I., E.Y. Kalishin, and P. Strizhak, Theoretical and Experimental Chemistry, 2011. 47(4): p. 219-224.
[44] Liu Z., et al., Small, 2008. 4(4): p. 462-466.
[45] Sun Y., et al., Journal of electronic materials, 2012. 41(3): p. 519-523.
[46] Yang Y. X., Liu M. L., Zhu H., Chen Y. R., Mu M. L., Zhu H., Chen Y.R., Mu G. J., X. N., Jia Y.Q., J. Magn. Magn. Mater. 2008, 320, p.132- 136.
[47] Tartaj P., Morales M. P., Veintemillas- Verdagaer S., Teresita Gonzalez- Carreno T., Carlos Serna J., J. Phys. D: Appl. Phys. 2003, 36, p. 182 –197.
[48] Babel S., Kurniawan T. A., Chemosphere 2004, 54 (7), p. 951–967.
[49] Mangun C. L., Yue Z., Economy J., Maloney S., Kemme P., Cropek D. Chemistry of Materials, 2001, 13(7): P. 2356–2360
[50] Abdel-Rahman L. H., Abu-Dief A. M., El-Khatib R. M., Abdel-Fatah S. M., J. Photochem. Photobio. B. 2016, 162, p. 298–308.
[51] Ponder S. M., Darab J. G.; Mallouk T. E., Environ. Sci. Technol. 2000, 34, p. 2564–2569.
[52] Diallo M. S.; Christie S.; Swaminathan P.; Johnson Jr, J. H.; Environ. Sci. Technol. 2005, 39, p. 1366–1377.
[53] Lowry G. V., Johnson K. M., Environmental Science & Technology, 2004, 38(19): 5208–5216.
[54] Chen C., Magnetism and Metallurgy of Soft Magnetic Materials, Dover Publications, Inc., New York, 1986.
[55] Sorensen, C. M., in: K.J. Klabunde (Ed.), Nanoscale Materials in Chemistry, Wiley, New York, 2001.
[56] Jeong U., Teng X., Wang Y., Yang H., Xia Y., Adv. Mater. 2007, 19, P. 33-60.
[57] Teja A. S., and Koh P.-Y., Progress in Crystal Growth and Characterization of Materials, 2009. 55(1): P. 22-45.
[58] Jia, C. J., et al., Angewandte Chemie, 2005. 117(28): P. 4402-4407
[59] Mathew D. S., Juang R.-S., Chem. Eng. J. 2007, 129, P.51-65.
[60] Morrish A. H., The Physical Principles of Magnetism, Wiley, New York, 1965.
[61] Jeong U., Teng X., Wang Y., Yang H., Xia Y., Adv. Mater. 2007, 19, P. 33-66.
[62] Lu A.-H., Salabas F. Schüth, Angew. Chem., Int. Ed. 46, 2007, P.1222-1244.
[63] Lopez Perez, J. A., Lopez-Quintela, M.A., Mira J., Rivas J., IEEE Trans. Magn. 1997, 33, P. 4359-4362.
[64] Dresco P. A., Zaitsev V. S., Gambino R. J., Chu B., Langmuir 1999, 15, P. 1945.
[65] Jana N. R., Chen Y., and Peng X., Chemistry of materials, 2004. 16(20): P. 3931- 3935.
[66] Rockenberger J., Scher E. C., and Alivisatos A. P., Journal of the American Chemical Society, 1999. 121(49): P. 11595-11596.
[67] Zeng H., et al., Nature, 2002, 420, 6914, P. 395-398.
[68] Salazar-Alvarez G., et al., Journal of the American Chemical Society, 2008. 130(40): P. 13234-13239.
[69] Zhang H., et al., Chemistry of materials, 2009. 21(21): P. 5222-5228.
[70] Butter K., K. Kassapidou, G.J. Vroege, A.P. Philipse, J. Colloid Interface Sci. 2005, 287, p. 485-495.
[71] Mao B., Kang Z., Wang E., Lian S., Gao L., Tian C., Wang C., Mater. Res. Bull. 2006, 4, P. 2226-2231.
[72] Zhu H., Yang D., Zhu L., Surf. Coat. Technol. 2007, 201, p.5870-5874.
[73] Giri S., Samanta S., Maji S., Ganguli S., Bhaumik A., J. Magn. Magn. Mater. 2005, 285, P. 296-302.
[74] Wang J., Sun J., Sun Q., Chen Q., Mater. Res. Bull. 2003, 38, P. 1113-1118.
[75] Géziiak, F., Köseoğlu Y., Baykal A., Kavas H., J. Magn. Magn. Mater. 2009, 321, p. 2170-2177.
[76] Wang J., Ren F., Yi R., Yan A., Qiu X. Liu, J. Alloys Compd. 2009, 479, P. 791-796.
[77] Teja A. S., L. J. Holm, in: Y. P. Sun (Ed.), Production of Magnetic Oxide Nanoparticles, Supercritical FluidTechnology in Materials Science and Engineering: Synthesis, Properties and Applications, Elsevier, 2002, p. 327-349.
[78] Hao Y., Teja A. S., J. Mater. Res. 2003, 18, P. 415-422.
[79] Xu C., Teja A. S., J. Supercrit. Fluids 2008, 44, P. 85-91.
[80] Komarneni S., Katsuki H., Pure Appl. Chem. 2002, 74, P. 1537-1543.
[81] Sreeja V., Joy P. A., Mater. Res. Bull. 2007, 42, P. 1570-1576.
[82] Green M., Brien P. O’, Chem. Commun. 2001, P.1912-1913.
[83] Sun Y.-P., Li X.-Q., Zhang W.-X., Wang H.P., Colloid Surf. A 2007, 308, P. 60-66.
[84] Mason J.P. Lorimal, Applied Sonochemistry, New York, Wiley, 2002.
[85] Kima E. H., Lee H. S., Kwak B. K., Kim B.-K., J. Magn. Magn. Mater. 2005, 289, P. 328.
[86] Bureau U.S., of Reclamation and Sandia National Laboratories, 2003. Desalination and water purification technology roadmap a report of the executive committee Water Purification.
[87] US Environmental Protection Agency, 1998b. Microbial and disinfection by-product rules. Federal Register, 63: 69389-69476.
[88] US Environmental Protection Agency, 1999. Alternative disinfectants and oxidants guidance manual. EPA Office of Water Report 815-R-99014.
[89] World Health Organization, 1996. Guidelines for drinking-water quality. Geneva: WHO, Vol: 2.
[90] US Environmental Protection Agency, 1998.Variance technology findings for contaminants regulated before 1996. EPA Opace of Water Report 815-R-98-003.
[91] Ichinose N., Ozaki Y., and Kashu S., 1992. Superfine particle technology. Springer, London, (Book).
[92] Stoimenov P. K., Klinger R. L., Marchin G. L., and Klabunde, K. J., Langmuir, 2002, 18,p. 6679-668.
[93] Mamadou S. D., and Savage N., J. Nano. Res., 2005, 7, p. 325-330.
[94] Nair A. S., and Pradeep T., Applied Nanoscience, 2004, P. 59- 63.
[95] Diallo M. S., Christie S., Swaminathan P., Johnson J. H., and Goddard W. A., Environ. Sci. Technol., 2005, 39, p. 1366- 1377.
[96] A product manufactured by American Biotechnology Inc. (Baltimore, MD), under the name ASAP.
[97] Oberdörster G., 2001. Pulmonary effects of inhaled ultrafine particles. Intl. Arch. Occup. Environ. Health, 74, p. 1-8.
[98] Ishibashi K.I., 2000. J. Phys. Chem. B, 104, P. 4934-4938.
[99] Yantasee W., Warner C. L., Sangvanich T., Addleman R. S., Carter T. G., Wiacek R. J., Fryxell G. E., Timchalk C., and Warner M.G., Environmental Science and Technology 2007, 41, P.5114-5119.
[100] Liu J. F., Zhao S. Z., and Jiang G.-B., Environ. Sci. Technol. 2008, 42, P. 6949–6954.
[101] Wu Y., Zhang J., Tong Y., and Xu X., Journal of Hazardous Materials 172, 2009, P. 1640-1645.
[102] Yuwei C., Wang Jianlong Chemical Engineering Journal 2011, 168, P.286–292.
[103] Ge F., Li M.-M., Ye H., Zhao B.-X., Journal of Hazardous Materials 211– 212, 2012, P. 366–372.
[104] Mahmoud M. E., Ahmed S. B., Osman M. M., Abdel-Fattah T. M, Fuel, 2015,. 139, p. 614-621.
[105] Aftabtalab A., Sadabadi H., J. Pet. Environ. Biotechnol. 2015, 6, p. 1-3.
[106] Xu Y., Li C., Zhu X., Huang W. E., Zhang D., Environmental Engineering and Management Journal, 2014, p. 2023-2029.
Cite This Article
  • APA Style

    Ahmed M. Abu-Dief, Samar Kamel Hamdan. (2016). Functionalization of Magnetic Nano Particles: Synthesis, Characterization and Their Application in Water Purification. American Journal of Nanosciences, 2(3), 26-40. https://doi.org/10.11648/j.ajn.20160203.12

    Copy | Download

    ACS Style

    Ahmed M. Abu-Dief; Samar Kamel Hamdan. Functionalization of Magnetic Nano Particles: Synthesis, Characterization and Their Application in Water Purification. Am. J. Nanosci. 2016, 2(3), 26-40. doi: 10.11648/j.ajn.20160203.12

    Copy | Download

    AMA Style

    Ahmed M. Abu-Dief, Samar Kamel Hamdan. Functionalization of Magnetic Nano Particles: Synthesis, Characterization and Their Application in Water Purification. Am J Nanosci. 2016;2(3):26-40. doi: 10.11648/j.ajn.20160203.12

    Copy | Download

  • @article{10.11648/j.ajn.20160203.12,
      author = {Ahmed M. Abu-Dief and Samar Kamel Hamdan},
      title = {Functionalization of Magnetic Nano Particles: Synthesis, Characterization and Their Application in Water Purification},
      journal = {American Journal of Nanosciences},
      volume = {2},
      number = {3},
      pages = {26-40},
      doi = {10.11648/j.ajn.20160203.12},
      url = {https://doi.org/10.11648/j.ajn.20160203.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajn.20160203.12},
      abstract = {Contamination of fresh and marine sediments and water environments by oil spills, urban runoffs, industrial and domestic effluents is demonstrating to be of critical concern as the presence of contaminants affects aquatic organisms and can quickly disperse to large as highlighted by the recent Gulf oil spill disaster. Polycyclic aromatic hydrocarbons (PAHs), Poly chlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and heavy metals like mercury, lead and manganese are among the ubiquitous trace contaminants of marine and freshwater systems. Presence of these contaminants raise concerns as small quantities of the organic chemicals have been displayed to be carcinogenic to mammals and can pose a prohibition to both human health and the aquatic biota. Innovative operations for treating wastewater containing heavy metals often include technologies for reduction of toxicity. Nanotechnology has rampaged plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water meanwhile different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of pathogens and diversion of toxic materials into less toxic compounds. Today nanoparticles, nanomembrane and nanopowder used for revelation and removal of chemical and biological substances include metals (e.g. Cadmium, copper, lead, mercury, nickel, zinc), nutrients (e.g. Phosphate, ammonia, nitrate and nitrite), cyanide, organics, algae (e.g. cyanobacterial toxins) viruses, bacteria, parasites and antibiotics. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines recent development in nanotechnology for wastewater treatment. The discussion covers candidate synthesis of magnetic nanomaterials (MNPs), properties and their mechanisms in water purification.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Functionalization of Magnetic Nano Particles: Synthesis, Characterization and Their Application in Water Purification
    AU  - Ahmed M. Abu-Dief
    AU  - Samar Kamel Hamdan
    Y1  - 2016/11/08
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajn.20160203.12
    DO  - 10.11648/j.ajn.20160203.12
    T2  - American Journal of Nanosciences
    JF  - American Journal of Nanosciences
    JO  - American Journal of Nanosciences
    SP  - 26
    EP  - 40
    PB  - Science Publishing Group
    SN  - 2575-4858
    UR  - https://doi.org/10.11648/j.ajn.20160203.12
    AB  - Contamination of fresh and marine sediments and water environments by oil spills, urban runoffs, industrial and domestic effluents is demonstrating to be of critical concern as the presence of contaminants affects aquatic organisms and can quickly disperse to large as highlighted by the recent Gulf oil spill disaster. Polycyclic aromatic hydrocarbons (PAHs), Poly chlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and heavy metals like mercury, lead and manganese are among the ubiquitous trace contaminants of marine and freshwater systems. Presence of these contaminants raise concerns as small quantities of the organic chemicals have been displayed to be carcinogenic to mammals and can pose a prohibition to both human health and the aquatic biota. Innovative operations for treating wastewater containing heavy metals often include technologies for reduction of toxicity. Nanotechnology has rampaged plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water meanwhile different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of pathogens and diversion of toxic materials into less toxic compounds. Today nanoparticles, nanomembrane and nanopowder used for revelation and removal of chemical and biological substances include metals (e.g. Cadmium, copper, lead, mercury, nickel, zinc), nutrients (e.g. Phosphate, ammonia, nitrate and nitrite), cyanide, organics, algae (e.g. cyanobacterial toxins) viruses, bacteria, parasites and antibiotics. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines recent development in nanotechnology for wastewater treatment. The discussion covers candidate synthesis of magnetic nanomaterials (MNPs), properties and their mechanisms in water purification.
    VL  - 2
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Departamento de Quimica Organica e Inorganica, Faculad de Quimica, Universdad de Oviedo, Oviedo, Spain; Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt

  • Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt

  • Sections