| Peer-Reviewed

Measuring High Surface Temperature in Concentrated Solar Radiation Environments

Received: 7 March 2017    Accepted: 22 March 2017    Published: 15 October 2017
Views:       Downloads:
Abstract

Surface temperature is a highly desired but difficult measurement especially in concentrated solar context. In this work a method for surface temperature measurement based on contact sensors is presented. In the case of materials with high thermal conductivity, contact sensors positioned in the back of the material sample and very close to the surface is the most accurate way to measure surface temperature. Computational Fluid Dynamics simulations have shown the truth of this statement. The higher thermal conductivity of the material, the lower the uncertainty in the measurement of surface temperature using this methodology. This measurement procedure has been applied to AISI 310S steel samples in the Plataforma Solar de Almería vertical axis solar furnace SF5 confirming the validity of the simulations.

Published in American Journal of Engineering and Technology Management (Volume 2, Issue 3)
DOI 10.11648/j.ajetm.20170203.12
Page(s) 25-35
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Contact Sensor, High Temperature, Heat Transfer, Computational Fluid Dynamics (CFD), 2D Thermal Simulation

References
[1] L. K. Matthews, R. Sierra, Measurement of temperatures in fibrous insulators subjected to concentrated solar radiation, Solar Energy 38 (1987) 1-7.
[2] B. Schaffner, A. Meier, D. Wuillemin et al., Recycling of hazardous solid waste material using high-temperature solar process heat. II: Reactor design and experimentation. Environmental Science and Technology 37 (1) (2003) 165-170.
[3] S. Kraupl, A. Steinfeld, Operational performance of a 5-kW solar chemical reactor for the co-production of zinc and syngas, Journal of Solar Energy Engineering 125 (1) (2003) 124-126.
[4] D. Hernandez, G. Olalde, G. Bonnier et al., Evaluation of the application of a solar furnace to study the suitability of metal oxides to be used as secondary reference points in the range 2000-3000 degrees C, Measurement 34 (2) (2003) 101-109.
[5] A. Meier, E. Bonaldi, G. M. Cella et al., Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime, Energy 29 (2004) 811-821.
[6] T. Osinga, U. Frommherz, A. Steinfeld et al., Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor, Journal of Solar Energy Engineering 126 (2004) 633-637.
[7] D. Hirsch, A. Steinfeld, Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor, International Journal of Hydrogen Energy 29 (2004) 47-55.
[8] M. Carasso, M. Becker, Performance Evaluation Standards for Solar Central Receivers, Springer-Verlag, Vol 3, 1990.
[9] R. Siegel and J. Howell, Thermal Radiation Heat Transfer, Third Edition, CRC Press, 1992.
[10] S. Marinetti, P. G. Cesartto, Emissivity estimation for accurate quantitative thermography, NDT&E International 51 (2012) 127-134.
[11] K. Schurer, A method for measuring infrared emissivities of near-black surfaces at ambient temperatures, Infrared Physics 16 (1976) 157-163.
[12] T. Walach, Emissivity measurements on electronic microcircuits, Measurement 41 (2008) 503-515.
[13] M. Balat-Pichelin, J. F. Robert, J. L. Sans, Emissivity measurements on carbon–carbon composites at high temperature under high vacuum, Applied Surface Science 253 (2006) 778–783.
[14] Ch. Wen, Investigation of steel emissivity behaviors: Exmination of Multiespectral Radiation Thermometry (MRT), International Journal of Heat and Mass Transfer 53 (2010) 2035-2043.
[15] J. Ballestrín, A. Marzo, I. Cañadas and J. Rodríguez, Testing a Solar-Blind Pyrometer, Metrologia 47 (2010) 646-651.
[16] A. Marzo, J. Ballestrín, J. Barbero et al., Solar blind pyrometry not relying on atmospheric absorption bands, Solar Energy 107 (2014) 415–422.
[17] J. Ballestrín, M. López, J. Rodríguez et al., A Solar-Blind IR camera prototype, 15th SolarPACES International Symposium. Berlin, Germany, 2009.
[18] J. Ballestrín, A. Marzo, I. Cañadas, J. Rodríguez, Testing a solar-blind pyrometer. Metrologia 47 (2010) 646-651.
[19] D. Hernandez, G. Olalde, J. M. Gineste et al., Analysis and experimental results of solar-blind temperature measurements in solar furnaces, Journal of Solar Energy Engineering 126 (2004) 645-653.
[20] D. Hernandez, J. Ballestrín, A. Neumann, First Work by the Flux and Temperature Measurement Group (F. T. M) in the SOLLAB Laboratory Alliance, Proceedings of the 13th SolarPACES International Symposium on Solar Thermal Concentrating Technologies, Seville, Spain, Paper No. B6-S6, 2006.
[21] A. Neumann, U. Groer, Experimenting with concentrated sunlight using the DLR solar furnace, Solar Energy 58 (1996) 181-190.
[22] M. Pfänder, E. Lüpfert et al., Pyrometric temperature measurements on solar thermal high temperature receivers, Journal of Solar Energy Engineering 128 (2006) 285-292.
[23] N. Rohner and A. Neumann, Measurement of high temperatures in the DLR solar furnace by UV-B detection, Journal of Solar Energy Engineering 125 (2003) 152-158.
[24] H. R. Tschudi, G. Morian, Pyrometric temperature measurements in solar furnaces. Journal of Solar Energy Engineering 123 (2001) 164-170.
[25] Agilent Technologies, Practical Temperature Measurements, 1980, Application Note 290.
[26] H. Baker, E. Ryder, N. Baker, Temperature measurement in engineering. Omega Press, Stamford, USA, 1975.
[27] J. Rodríguez, I. Cañada, E. Zarza, “PSA vertical axis solar furnace SF5”, Energy Procedia 49, 1511-1522, (2014).
[28] J. Blazek, Computational fluid dynamics: principles and applications, Elsevier, Oxford, 2008.
[29] G. K. Bachelor, An introduction to fluid dynamics, Cambridge University Press, Cambridge, 1967.
[30] J. K. Versteeg, W. Malalasequera, An introduction to computational fluid dynamics. The finite volume method, Longman Scientific & Technical, 1995.
[31] ANSYS Inc., ANSYS Fluent Meshing user’s guide: Release 16.0, Determining mesh statistics and quality, Canonsburg, PA, 2015, chapter 20.
[32] M. I. Roldán, O. Smirnova, T. Fend, J. L. Casas, E. Zarza, Thermal analysis and design of a volumetric solar absorber depending on the porosity, Renewable Energy 62 (2014) 116-128.
[33] Aurubis, Data sheet: Cu-ETP (99.99% Cu), Revision 13 05 EU, 2013.
[34] Sceram Ceramics, Data sheet: Recristalised Silicon Carbide, http://www.sceram.com.
[35] Acerinox, Data sheet: ACX 350 austenitic stainless heat-resisting steel, 2012.
[36] ThyssenKrupp Steel, Data sheet of AISI 304/AISI 304L.
[37] Fleischman, Data sheet of dense concretes, 2001.
[38] Thermal Ceramics, Data sheet of dense concretes Firecrete TM, 2001.
[39] Thermal Ceramics, Data sheet of light weight insulating concretes FireliteTM, 2002.
[40] Thermal Ceramics, Data sheet: Pyro-LogTM, Document n. 5-6-03 S 7/02, 2002.
[41] Thermal Ceramics, Data sheet: KaowoolTM Board, Document n. 5-7-22 E 1/06, 2006.
[42] J. A. Dantzig, C. L. Tucker III, Modeling in Materials Processing, Cambridge University Press, Cambridge, 2001.
[43] ANSYS Inc., ANSYS Fluent user's guide: Release 16.0, Using the solver, Canonsburg, PA, 2015, chapter 28.
[44] N. Ozalp, D. Jayakrishna, CFD analysis on the influence of helical carving in a vortex flow solar reactor, International Journal of Hydrogen Energy 35 (2010) 6248-6260.
[45] M. I. Roldán, E. Zarza, J. L. Casas, Modelling and testing of a solar-receiver system applied to high-temperature processes, Renewable Energy 76 (2015) 608-618.
Cite This Article
  • APA Style

    Jesús Ballestrín, María-Isabel Roldán. (2017). Measuring High Surface Temperature in Concentrated Solar Radiation Environments. American Journal of Engineering and Technology Management, 2(3), 25-35. https://doi.org/10.11648/j.ajetm.20170203.12

    Copy | Download

    ACS Style

    Jesús Ballestrín; María-Isabel Roldán. Measuring High Surface Temperature in Concentrated Solar Radiation Environments. Am. J. Eng. Technol. Manag. 2017, 2(3), 25-35. doi: 10.11648/j.ajetm.20170203.12

    Copy | Download

    AMA Style

    Jesús Ballestrín, María-Isabel Roldán. Measuring High Surface Temperature in Concentrated Solar Radiation Environments. Am J Eng Technol Manag. 2017;2(3):25-35. doi: 10.11648/j.ajetm.20170203.12

    Copy | Download

  • @article{10.11648/j.ajetm.20170203.12,
      author = {Jesús Ballestrín and María-Isabel Roldán},
      title = {Measuring High Surface Temperature in Concentrated Solar Radiation Environments},
      journal = {American Journal of Engineering and Technology Management},
      volume = {2},
      number = {3},
      pages = {25-35},
      doi = {10.11648/j.ajetm.20170203.12},
      url = {https://doi.org/10.11648/j.ajetm.20170203.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajetm.20170203.12},
      abstract = {Surface temperature is a highly desired but difficult measurement especially in concentrated solar context. In this work a method for surface temperature measurement based on contact sensors is presented. In the case of materials with high thermal conductivity, contact sensors positioned in the back of the material sample and very close to the surface is the most accurate way to measure surface temperature. Computational Fluid Dynamics simulations have shown the truth of this statement. The higher thermal conductivity of the material, the lower the uncertainty in the measurement of surface temperature using this methodology. This measurement procedure has been applied to AISI 310S steel samples in the Plataforma Solar de Almería vertical axis solar furnace SF5 confirming the validity of the simulations.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Measuring High Surface Temperature in Concentrated Solar Radiation Environments
    AU  - Jesús Ballestrín
    AU  - María-Isabel Roldán
    Y1  - 2017/10/15
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajetm.20170203.12
    DO  - 10.11648/j.ajetm.20170203.12
    T2  - American Journal of Engineering and Technology Management
    JF  - American Journal of Engineering and Technology Management
    JO  - American Journal of Engineering and Technology Management
    SP  - 25
    EP  - 35
    PB  - Science Publishing Group
    SN  - 2575-1441
    UR  - https://doi.org/10.11648/j.ajetm.20170203.12
    AB  - Surface temperature is a highly desired but difficult measurement especially in concentrated solar context. In this work a method for surface temperature measurement based on contact sensors is presented. In the case of materials with high thermal conductivity, contact sensors positioned in the back of the material sample and very close to the surface is the most accurate way to measure surface temperature. Computational Fluid Dynamics simulations have shown the truth of this statement. The higher thermal conductivity of the material, the lower the uncertainty in the measurement of surface temperature using this methodology. This measurement procedure has been applied to AISI 310S steel samples in the Plataforma Solar de Almería vertical axis solar furnace SF5 confirming the validity of the simulations.
    VL  - 2
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • CIEMAT-Plataforma Solar de Almería, Solar Concentrating Systems Unit, Almería, Spain

  • CIEMAT-Plataforma Solar de Almería, Solar Concentrating Systems Unit, Almería, Spain

  • Sections