Advances in Biochemistry

| Peer-Reviewed |

Endo-N-Acetyl-β-D-Glucosaminidases and Peptide-N4-(N-acetyl-β-D-Glucosaminyl) Asparagine Amidases: More Than Just Tools

Received: 13 December 2013    Accepted:     Published: 30 December 2013
Views:       Downloads:

Share This Article

Abstract

Since the discovery of endo-N-acetyl-β-D-glucosaminidases (ENGase) and peptide-N4-(N-acetyl-β-D-glucosaminyl) asparagine amidases (PNGase) most of the published work described their use for structural studies. Less attention was given to the potential roles of those enzymes in the physiology of the cells/organisms they produced them. The scope of this review is firstly to analyse the data on the occurrence and characteristics of murein-, chitin-, and N-glycan-ENGases acting on GlcNAc-containing polymers in three structural families, namely murein, chitin, and N-glycosylproteins, and of PNGases, only acting on N-glycosylproteins, and secondly to discuss the biological roles of the enzymes in the producing cells. The analysis demonstrates the remarkable diversity of the enzymes, and simultaneously the interest of studying their substrate specificity and their structural features. Many examples illustrate the importance of the structure/function relationships studies. Diverse biological roles were anticipated, e.g. they are useful for feeding purposes, are implicated in pathogenesis processes, modulate the activity of macromolecules, and help in the destruction of misfolded proteins. Their effect can be direct or indirect, through the reaction products. Current knowledge only partially explains the biological roles of ENGases and PNGases, thus further studies are expected for determining novel possibilities and elucidating other cell pathways.

DOI 10.11648/j.ab.20130105.12
Published in Advances in Biochemistry (Volume 1, Issue 5, December 2013)
Page(s) 81-99
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Engase, Pngase, Biological Functions, Murein, Chitin, N-Glycosyl Proteins

References
[1] Y. Karamanos, Endo-N-acetyl-beta-D- glucosaminidases and their potential substrates: structure/function relationships, Res. Microbiol., 148 (1997) 661–671.
[2] S. Bourgerie, Y. Karamanos, T. Grard, R. Julien, Purification and characterization of an endo-N-acetyl-beta-D-glucosaminidase from the culture medium of Stigmatella aurantiaca DW4, J. Bacteriol., 176 (1994) 6170–6174.
[3] F. Maley, R.B. Trimble, A.L. Tarentino, T.H. Plummer, Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases, Anal. Biochem., 180 (1989) 195–204.
[4] D.J. Tipper, Mechanism of autolysis of isolated cell walls of Staphylococcus aureus, J. Bacteriol., 97 (1969) 837–47.
[5] T.H. Plummer, A.L. Tarentino, Facile cleavage of complex oligosaccharides from glycopeptides by almond emulsin peptide: N-glycosidase, J. Biol. Chem., 256 (1981) 10243–6.
[6] N. Takahashi, Demonstration of a new amidase acting on glycopeptides, Biochem. Biophys. Res. Commun., 76 (1977) 1194–201.
[7] W. D’Haeze, M. Holsters, Nod factor structures, responses, and perception during initiation of nodule development, Glycobiology, 12 (2002) 79R–105R.
[8] J. Montreuil, Primary structure of glycoprotein glycans: basis for the molecular biology of glycoproteins, Adv. Carbohydr. Chem. Biochem., 37 (1980) 157–223.
[9] S. Berger, A. Menudier, R. Julien, Y. Karamanos, Do de-N-glycosylation enzymes have an important role in plant cells?, Biochimie, 77 (1995) 751–60.
[10] O.K. Tollersrud, N.N. Aronson, Purification and characterization of rat liver glycosylasparaginase, Biochem. J., 260 (1989) 101–8.
[11] M. Makino, T. Kojima, T. Ohgushi, I. Yamashina, Studies on enzymes acting on glycopeptides, J. Biochem., 63 (1968) 186–92.
[12] M.J. Kuranda, N.N. Aronson, A di-N-acetylchitobiase activity is involved in the lysosomal catabolism of asparagine-linked glycoproteins in rat liver, J. Biol. Chem., 261 (1986) 5803–9.
[13] J.L. Stirling, Human N-acetyl-beta-hexosami- nidases: hydrolysis of N, N’ diacetylchitobiose by a low molecular weight enzyme, FEBS Lett., 39 (1974) 171–5.
[14] T. Baussant, G. Strecker, J.M. Wieruszeski, J. Montreuil, J.C. Michalski, Catabolism of glycoprotein glycans Characterization of a lysosomal endo-N-acetyl-beta-D-glucosaminidase specific for glycans with a terminal chitobiose residue, Eur. J. Biochem., 159 (1986) 381–5.
[15] G. Strecker, J.C. Michalski, J. Montreuil, Lysosomal catabolic pathway of N-glycosylprotein glycans, Biochimie, 70 (1988) 1505–10.
[16] N.N. Aronson, M.J. Kuranda, Lysosomal degradation of Asn-linked glycoproteins, FASEB J., 3 (1989) 2615–22.
[17] N.N. Aronson, B.A. Halloran, Optimum substrate size and specific anomer requirements for the reducing-end glycoside hydrolase di-N-acetylchitobiase, Biosci. Biotech. Bioch., 70 (2006) 1537–41.
[18] Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB), Enzyme Nomenclature, (2013).
[19] B.L. Cantarel, P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, B. Henrissat, The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics, Nucleic Acids Res., 37 (2009) D233–8.
[20] B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J., 280 ( Pt 2 (1991) 309–16.
[21] B. Henrissat, A. Bairoch, New families in the classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J., 293 ( Pt 3 (1993) 781–8.
[22] B. Henrissat, A. Bairoch, Updating the sequence-based classification of glycosyl hydrolases, Biochem. J., 316 ( Pt 2 (1996) 695–6.
[23] B. Schlesier, V.H. Nong, C. Horstmann, M. Hennig, Sequence Analysis of Concanavalin B from Canavalia ensiformis Reveals Homology to Chitinases, J. Plant Physiol., 147 (1995) 665–674.
[24] M. Hennig, S. Pfeffer-Hennig, Z. Dauter, K.S. Wilson, B. Schlesier, V.H. Nong, Crystal structure of narbonin at 18 A resolution, Acta Crystalographica. D, 51 (1995) 177–89.
[25] A.B. Boraston, D.N. Bolam, H.J. Gilbert, G.J. Davies, Carbohydrate-binding modules: fine-tuning polysaccharide recognition, Biochem. J., 382 (2004) 769–81.
[26] P. Margot, C. Mauël, D. Karamata, The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis, Mol. Microbiol., 12 (1994) 535–45.
[27] A. Dhalluin, I. Bourgeois, M. Pestel-Caron, E. Camiade, G. Raux, P. Courtin, M.-P. Chapot-Chartier, J.-L. Pons, Acd, a peptidoglycan hydrolase of Clostridium difficile with N-acetylglucosaminidase activity, Microbiology, 151 (2005) 2343–51.
[28] E. Camiade, J. Peltier, I. Bourgeois, E. Couture-Tosi, P. Courtin, A. Antunes, M.-P. Chapot-Chartier, B. Dupuy, J.-L. Pons, Characterization of Acp, a peptidoglycan hydrolase of Clostridium perfringens with N-acetylglucosaminidase activity that is implicated in cell separation and stress-induced autolysis, J. Bacteriol., 192 (2010) 2373–84.
[29] I.T. Paulsen, L. Banerjei, G.S.A. Myers, K.E. Nelson, R. Seshadri, T.D. Read, D.E. Fouts, J.A. Eisen, S.R. Gill, J.F. Heidelberg, H. Tettelin, R.J. Dodson, L. Umayam, L. Brinkac, M. Beanan, S. Daugherty, R.T. DeBoy, S. Durkin, J. Kolonay, R. Madupu, et al., Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis, Science, 299 (2003) 2071–4.
[30] C.P. Chu, R. Kariyama, L. Daneo-Moore, G.D. Shockman, Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae, J. Bacteriol., 174 (1992) 1619–25.
[31] M. Kleerebezem, J. Boekhorst, R. van Kranenburg, D. Molenaar, O.P. Kuipers, R. Leer, R. Tarchini, S.A. Peters, H.M. Sandbrink, M.W.E.J. Fiers, W. Stiekema, R.M.K. Lankhorst, P.A. Bron, S.M. Hoffer, M.N.N. Groot, R. Kerkhoven, M. de Vries, B. Ursing, W.M. de Vos, R.J. Siezen, Complete genome sequence of Lactobacillus plantarum WCFS1, Proc. Natl. Acad. Sci. USA, 100 (2003) 1990–5.
[32] G. Buist, J. Kok, K.J. Leenhouts, M. Dabrowska, G. Venema, A.J. Haandrikman, Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation, J. Bacteriol., 177 (1995) 1554–63.
[33] C. Huard, G. Miranda, F. Wessner, A. Bolotin, J. Hansen, S.J. Foster, M.-P. Chapot-Chartier, Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis, Microbiology, 149 (2003) 695–705.
[34] S.S. Chatterjee, H. Hossain, S. Otten, C. Kuenne, K. Kuchmina, S. Machata, E. Domann, T. Chakraborty, T. Hain, Intracellular gene expression profile of Listeria monocytogenes, Infect. Immun., 74 (2006) 1323–38.
[35] W. Hashimoto, A. Ochiai, K. Momma, T. Itoh, B. Mikami, Y. Maruyama, K. Murata, Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ, Biochem. Biophys. Res. Commun., 381 (2009) 16–21.
[36] S.J. Foster, Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4, J. Bacteriol., 177 (1995) 5723–5.
[37] I. Bourgeois, E. Camiade, R. Biswas, P. Courtin, L. Gibert, F. Götz, M.-P. Chapot-Chartier, J.-L. Pons, M. Pestel-Caron, Characterization of AtlL, a bifunctional autolysin of Staphylococcus lugdunensis with N-acetylglucosaminidase and N-acetylmuramoyl-l-alanine amidase activities, FEMS Microbiol. Lett., 290 (2009) 105–13.
[38] K.-J. Yokoi, N. Kawahigashi, M. Uchida, K. Sugahara, M. Shinohara, K.-I. Kawasaki, S. Nakamura, A. Taketo, K.-I. Kodaira, The two-component cell lysis genes holWMY and lysWMY of the Staphylococcus warneri M phage varphiWMY: cloning, sequencing, expression, and mutational analysis in Escherichia coli, Gene, 351 (2005) 97–108.
[39] J. Hoskins, W.E. Alborn, J. Arnold, L.C. Blaszczak, S. Burgett, B.S. DeHoff, S.T. Estrem, L. Fritz, D.J. Fu, W. Fuller, C. Geringer, R. Gilmour, J.S. Glass, H. Khoja, A.R. Kraft, R.E. Lagace, D.J. LeBlanc, L.N. Lee, E.J. Lefkowitz, J. Lu, et al., Genome of the bacterium Streptococcus pneumoniae strain R6, J. Bacteriol., 183 (2001) 5709–17.
[40] T. Oshida, M. Sugai, H. Komatsuzawa, Y.M. Hong, H. Suginaka, A. Tomasz, A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization, Proc. Natl. Acad. Sci. USA, 92 (1995) 285–9.
[41] M.H. Rashid, M. Mori, J. Sekiguchi, Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization, Microbiology, 141 ( Pt 1 (1995) 2391–404.
[42] H.M. Pooley, D. Karamata, Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis, J. Bacteriol., 160 (1984) 1123–9.
[43] C. Mueller, M. Dworkin, Effects of glucosamine on lysis, glycerol formation, and sporulation in Myxococcus xanthus, J. Bacteriol., 173 (1991) 7164–75.
[44] S. Valisena, P.E. Varaldo, G. Satta, Staphylococcal endo-beta-N-acetylglucosaminidase inhibits response of human lymphocytes to mitogens and interferes with production of antibodies in mice, J. Clin. Invest., 87 (1991) 1969–76.
[45] B. De Las Rivas, J.L. Garcia, R. Lopez, P. Garcia, Purification and Polar Localization of Pneumococcal LytB, a Putative Endo- -N-Acetylglucosaminidase: the Chain-Dispersing Murein Hydrolase, J. Bacteriol., 184 (2002) 4988–5000.
[46] E. Ramos-Sevillano, M. Moscoso, P. García, E. García, J. Yuste, Nasopharyngeal colonization and invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae, PloS One, 6 (2011) e23626.
[47] J. Allignet, S. Aubert, K.G. Dyke, N. El Solh, Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a gene encoding an autolysin-binding fibronectin and the ica operon involved in biofilm formation, Infect. Immun., 69 (2001) 712–8.
[48] C. Heilmann, M. Hussain, G. Peters, F. Götz, Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface, Mol. Microbiol., 24 (1997) 1013–24.
[49] W. Hell, H.G. Meyer, S.G. Gatermann, Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties, Mol. Microbiol., 29 (1998) 871–81.
[50] H. Komatsuzawa, M. Sugai, S. Nakashima, S. Yamada, A. Matsumoto, T. Oshida, H. Suginaka, Subcellular localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus, Microbiol. Immunol., 41 (1997) 469–79.
[51] R. Hamid, M. Khan, M. Ahmad, M. Ahmad, M. Abdin, J. Musarrat, S. Javed, Chitinases: An update, J. Pharm. Bioal. Sci., 5 (2013) 21.
[52] D. Bhattacharya, A. Nagpure, R.K. Gupta, Bacterial chitinases: properties and potential, Crit. Rev. Biotechnol., 27 (2007) 21–8.
[53] R.F. Frederiksen, D.K. Paspaliari, T. Larsen, B.G. Storgaard, M.H. Larsen, H. Ingmer, M.M. Palcic, J.J. Leisner, Bacterial chitinases and chitin-binding proteins as virulence factors, Microbiology, 159 (2013) 833–47.
[54] H.T. Tran, N. Barnich, E. Mizoguchi, Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation, Histol. Histopathol., 26 (2011) 1453–64.
[55] Y. Arakane, S. Muthukrishnan, Insect chitinase and chitinase-like proteins, Cell. Mol. Life Sci., 67 (2010) 201–16.
[56] L. Duo-Chuan, Review of fungal chitinases, Mycopathologia, 161 (2006) 345–60.
[57] A. Kasprzewska, Plant chitinases--regulation and function, Cell. Mol. Biol. Lett., 8 (2003) 809–24.
[58] X. Perret, C. Staehelin, W.J. Broughton, Molecular basis of symbiotic promiscuity, Microbiol. Mol. Biol. Rev., 64 (2000) 180–201.
[59] A.O. Ovtsyna, E.A. Dolgikh, A.S. Kilanova, V.E. Tsyganov, A.Y. Borisov, I.A. Tikhonovich, C. Staehelin, Nod factors induce nod factor cleaving enzymes in pea roots Genetic and pharmacological approaches indicate different activation mechanisms, Plant Physiol., 139 (2005) 1051–64.
[60] Z. Minic, S. Brown, Y. De Kouchkovsky, M. Schultze, C. Staehelin, Purification and characterization of a novel chitinase-lysozyme, of another chitinase, both hydrolysing Rhizobium meliloti Nod factors, and of a pathogenesis-related protein from Medicago sativa roots, Biochem. J., 332 ( Pt 2 (1998) 329–35.
[61] A.O. Ovtsyna, M. Schultze, I.A. Tikhonovich, H.P. Spaink, E. Kondorosi, A. Kondorosi, C. Staehelin, Nod factors of Rhizobium leguminosarum bv viciae and their fucosylated derivatives stimulate a nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates, Mol. Plant Microbe In., 13 (2000) 799–807.
[62] C. Staehelin, M. Schultze, E. Kondorosi, A. Kondorosi, Lipo-chitooligosaccharide Nodulation Signals from Rhizobium meliloti Induce Their Rapid Degradation by the Host Plant Alfalfa, Plant Physiol., 108 (1995) 1607–1614.
[63] E. Bokma, G.A. van Koningsveld, M. Jeronimus-Stratingh, J.J. Beintema, Hevamine, a chitinase from the rubber tree Hevea brasiliensis, cleaves peptidoglycan between the C-1 of N-acetylglucosamine and C-4 of N-acetylmuramic acid and therefore is not a lysozyme, FEBS Lett., 411 (1997) 161–3.
[64] R.G. Boot, G.H. Renkema, A. Strijland, A.J. van Zonneveld, J.M. Aerts, Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages, J. Biol. Chem., 270 (1995) 26252–6.
[65] G.H. Renkema, R.G. Boot, A.O. Muijsers, W.E. Donker-Koopman, J.M. Aerts, Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins, J. Biol. Chem., 270 (1995) 2198–202.
[66] R.G. Boot, E.F. Blommaart, E. Swart, K. Ghauharali-van der Vlugt, N. Bijl, C. Moe, A. Place, J.M. Aerts, Identification of a novel acidic mammalian chitinase distinct from chitotriosidase, J. Biol. Chem., 276 (2001) 6770–8.
[67] Z. Zhu, T. Zheng, R.J. Homer, Y.-K. Kim, N.Y. Chen, L. Cohn, Q. Hamid, J.A. Elias, Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation, Science, 304 (2004) 1678–82.
[68] B.C. Brinchmann, M. Bayat, T. Brøgger, D.V. Muttuvelu, A. Tjønneland, T. Sigsgaard, A possible role of chitin in the pathogenesis of asthma and allergy, Ann. Agr. Env. Med., 18 (2011) 7–12.
[69] J. Zhao, L.H. Yeong, W.S.F. Wong, Dexamethasone alters bronchoalveolar lavage fluid proteome in a mouse asthma model, Int. Arch. Allergy Im., 142 (2007) 219–29.
[70] C.A. Da Silva, C. Chalouni, A. Williams, D. Hartl, C.G. Lee, J.A. Elias, Chitin is a size-dependent regulator of macrophage TNF and IL-10 production, J. Immunol., 182 (2009) 3573–82.
[71] M. Wakasugi, H. Gouda, T. Hirose, A. Sugawara, T. Yamamoto, K. Shiomi, T. Sunazuka, S. Omura, S. Hirono, Human acidic mammalian chitinase as a novel target for anti-asthma drug design using in silico screening, Bioorgan. Med. Chem., 21 (2013) 3214–20.
[72] T. Muramatsu, Demonstration of an endo-glycosidase acting on a glycoprotein, J. Biol. Chem., 246 (1971) 5535–7.
[73] N. Koide, T. Muramatsu, Endo-beta-N-acetylglucosa- minidase acting on carbohydrate moieties of glycoproteins Purification and properties of the enzyme from Diplococcus pneumoniae, J. Biol. Chem., 249 (1974) 4897–904.
[74] A.L. Tarentino, F. Maley, A comparison of the substrate specificities of endo-beta-N-acetylglucosaminidases from Streptomyces griseus and Diplococcus Pneumoniae, Biochem. Biophys. Res. Commun., 67 (1975) 455–62.
[75] A.L. Tarentino, F. Maley, Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus, J. Biol. Chem., 249 (1974) 811–7.
[76] R.B. Trimble, A.L. Tarentino, G. Evans, F. Maley, Purification and properties of endo-beta-N-acetylglucosaminidase L from Streptomyces plicatus, J. Biol. Chem., 254 (1979) 9708–13.
[77] T. Tai, K. Yamashita, A. Kobata, The substrate specificities of endo-beta-N-acetylglucosaminidases CII and H, Biochem. Biophys. Res. Commun., 78 (1977) 434–41.
[78] S. Ito, T. Muramatsu, A. Kobata, Endo-beta-N-acetylglucosaminidases acting on carbohydrate moieties of glycoproteins: purification and properties of the two enzymes with different specificities from Clostridium perfringens, Arch. Biochem. Biophys., 171 (1975) 78–86.
[79] H.H. Freeze, J.R. Etchison, Presence of a nonlysosomal endo-beta-N-acetylglucosaminidase in the cellular slime mold Dictyostelium discoideum, Arch. Biochem. Biophys., 232 (1984) 414–21.
[80] K. Takegawa, M. Nakoshi, S. Iwahara, K. Yamamoto, T. Tochikura, Induction and Purification of Endo-beta-N-Acetylglucosaminidase from Arthrobacter protophormiae Grown in Ovalbumin, Appl. Environ. Microb., 55 (1989) 3107–12.
[81] K. Takegawa, K. Yamabe, K. Fujita, M. Tabuchi, M. Mita, H. Izu, A. Watanabe, Y. Asada, M. Sano, A. Kondo, I. Kato, S. Iwahara, Cloning, sequencing, and expression of Arthrobacter protophormiae endo-beta-N-acetylglucosaminidase in Escherichia coli, Arch. Biochem. Biophys., 338 (1997) 22–8.
[82] T. Kato, K. Fujita, M. Takeuchi, K. Kobayashi, S. Natsuka, K. Ikura, H. Kumagai, K. Yamamoto, Identification of an endo-beta-N-acetylglucosaminidase gene in Caenorhabditis elegans and its expression in Escherichia coli, Glycobiology, 12 (2002) 581–7.
[83] J.H. Elder, S. Alexander, endo-beta-N-acetylglucosa- minidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins, Proc. Natl. Acad. Sci. USA, 79 (1982) 4540–4.
[84] P. Vandamme, J.-F. Bernadet, P. Segers, K. Kersters, B. Holmes, NOTES: New Perspectives in the Classification of the Flavobacteria: Description of Chryseobacterium gen nov, Bergeyella gen nov, and Empedobacter nom rev, Int. J. Syst. Bacteriol., 44 (1994) 827–831.
[85] K.K. Kim, M.K. Kim, J.H. Lim, H.Y. Park, S.-T. Lee, Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen nov as Elizabethkingia meningoseptica comb nov and Elizabethkingia miricola comb nov, Int. J. Syst. Evol. Micr., 55 (2005) 1287–93.
[86] T.H. Plummer, J.H. Elder, S. Alexander, A.W. Phelan, A.L. Tarentino, Demonstration of peptide:N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations, J. Biol. Chem., 259 (1984) 10700–4.
[87] R.B. Trimble, P.H. Atkinson, A.L. Tarentino, T.H. Plummer, F. Maley, K.B. Tomer, Transfer of glycerol by Endo-beta-N-acetylglucosaminidase F to oligosaccharides during chitobiose core cleavage, J. Biol. Chem., 261 (1986) 12000–5.
[88] R.B. Trimble, A.L. Tarentino, Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3 Endo F1 and endo H hydrolyze only high mannose and hybrid glycans, J. Biol. Chem., 266 (1991) 1646–51.
[89] A.L. Tarentino, G. Quinones, L.M. Changchien, T.H. Plummer, Multiple endoglycosidase F activities expressed by Flavobacterium meningosepticum endoglycosidases F2 and F3 Molecular cloning, primary sequence, and enzyme expression, J. Biol. Chem., 268 (1993) 9702–8.
[90] A.L. Tarentino, G. Quinones, W.P. Schrader, L.M. Changchien, T.H. Plummer, Multiple endoglycosidase (Endo) F activities expressed by Flavobacterium meningosepticum Endo F1: molecular cloning, primary sequence, and structural relationship to Endo H, J. Biol. Chem., 267 (1992) 3868–72.
[91] K. Takegawa, B. Mikami, S. Iwahara, Y. Morita, K. Yamamoto, T. Tochikura, Complete amino acid sequence of endo-beta-N-acetylglucosaminidase from Flavobacterium sp, Eur. J. Biochem., 202 (1991) 175–80.
[92] K. Fujita, H. Takami, K. Yamamoto, K. Takegawa, Characterization of endo-beta-N-acetylglucosaminidase from alkaliphilic Bacillus halodurans C-125, Biosci. Biotech. Bioch., 68 (2004) 1059–66.
[93] H. Takami, K. Nakasone, C. Hirama, Y. Takaki, N. Masui, F. Fuji, Y. Nakamura, A. Inoue, An improved physical and genetic map of the genome of alkaliphilic Bacillus sp C-125, Extremophiles, 3 (1999) 21–8.
[94] M. Collin, A. Olsén, EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG, EMBO J., 20 (2001) 3046–55.
[95] M. Collin, V.A. Fischetti, A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and ribonuclease B, J. Biol. Chem., 279 (2004) 22558–70.
[96] L.A. Bøhle, G. Mathiesen, G. Vaaje-Kolstad, V.G.H. Eijsink, An endo-β-N-acetylglucosaminidase from Enterococcus faecalis V583 responsible for the hydrolysis of high-mannose and hybrid-type N-linked glycans, FEMS Microbiol. Lett., 325 (2011) 123–9.
[97] F. Renzi, P. Manfredi, M. Mally, S. Moes, P. Jenö, G.R. Cornelis, The N-glycan glycoprotein deglycosylation complex (Gpd) from Capnocytophaga canimorsus deglycosylates human IgG, PLoS Pathog., 7 (2011) e1002118.
[98] D. Garrido, C. Nwosu, S. Ruiz-Moyano, D. Aldredge, J.B. German, C.B. Lebrilla, D.A. Mills, Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins, Mol. Cell. Proteomics, 11 (2012) 775–85.
[99] M. Nishigaki, T. Muramatsu, A. Kobata, Endoglycosidases acting on carbohydrate moieties of glycoproteins: demonstration in mammalian tissue, Biochem. Biophys. Res. Commun., 59 (1974) 638–45.
[100] A.L. Tarentino, F. Maley, Purification and properties of an endo-beta-N-acetylglucosaminidase from hen oviduct, J. Biol. Chem., 251 (1976) 6537–43.
[101] T. Kato, K. Hatanaka, T. Mega, S. Hase, Purification and characterization of endo-beta-N-acetylglucosaminidase from hen oviduct, J. Biochem., 122 (1997) 1167–73.
[102] R.J. Pierce, G. Spik, J. Montreuil, Demonstration and cytosolic location of an endo-N-acetyl-beta-D-glucosaminidase activity towards an asialo-N-acetyl-lactosaminic-type substrate in rat liver, Biochem. J., 185 (1980) 261–4.
[103] R.J. Pierce, G. Spik, J. Montreuil, Cytosolic location of an endo-N-acetyl-beta-D-glucosaminidase activity in rat liver and kidney, Biochem. J., 180 (1979) 673–76.
[104] Y. Tachibana, K. Yamashita, A. Kobata, Substrate specificity of mammalian endo-beta-N-acetylglucosaminidase: study with the enzyme of rat liver, Arch. Biochem. Biophys., 214 (1982) 199–210.
[105] B. Overdijk, W.M. van der Kroef, J.J. Lisman, R.J. Pierce, J. Montreuil, G. Spik, Demonstration and partial characterization of endo-N-acetyl-beta-D-glucosaminidase in human tissues, FEBS Lett., 128 (1981) 364–6.
[106] J. Montreuil, [Lysosomal glycosidases and glycoproteinoses], CR Soc. Biol., 175 (1981) 694–707.
[107] J.F. Haeuw, J.C. Michalski, G. Strecker, G. Spik, J. Montreuil, Cytosolic glycosidases: do they exist?, Glycobiology, 1 (1991) 487–92.
[108] R. Cacan, A. Verbert, Transport of free and N-linked oligomannoside species across the rough endoplasmic reticulum membranes, Glycobiology, 10 (2000) 645–8.
[109] R. DeGasperi, Y.T. Li, S.C. Li, Presence of two endo-beta-N-acetylglucosaminidases in human kidney, J. Biol. Chem., 264 (1989) 9329–34.
[110] T. Suzuki, K. Yano, S. Sugimoto, K. Kitajima, W.J. Lennarz, S. Inoue, Y. Inoue, Y. Emori, Endo-beta-N-acetylglucosaminidase, an enzyme involved in processing of free oligosaccharides in the cytosol, Proc. Natl. Acad. Sci. USA, 99 (2002) 9691–6.
[111] S. Kadowaki, K. Yamamoto, M. Fujisaki, K. Izumi, T. Tochikura, T. Yokoyama, Purification and characterization of a novel fungal endo-beta-N-acetylglucosaminidase acting on complex oligosaccharides of glycoproteins, Agric. Biol. Chem., 54 (1990) 97–106.
[112] S. Kadowaki, K. Yamamoto, M. Fujisaki, T. Tochikura, Microbial endo-beta-N-acetylglucosaminidases acting on complex-type sugar chains of glycoproteins, J. Biochem., 110 (1991) 17–21.
[113] K. Ito, Y. Okada, K. Ishida, N. Minamiura, Human salivary endo-beta-N-acetylglucosaminidase HS specific for complex type sugar chains of glycoproteins, J. Biol. Chem., 268 (1993) 16074–81.
[114] Y. Kimura, S. Matsuo, S. Tsurusaki, M. Kimura, I. Hara-Nishimura, M. Nishimura, Subcellular localization of endo-beta-N-acetylglucosaminidase and high-mannose type free N-glycans in plant cell, Biochim. Biophys. Acta, 1570 (2002) 38–46.
[115] K. Nakamura, M. Inoue, T. Yoshiie, K. Hosoi, Y. Kimura, Changes in structural features of free N-glycan and endoglycosidase activity during tomato fruit ripening, Biosci. Biotech. Bioch., 72 (2008) 2936–45.
[116] Y. Kimura, S. Matsuo, Free N-glycans already occur at an early stage of seed development, J. Biochem., 127 (2000) 1013–9.
[117] Y. Kimura, E. Kitahara, Structural analysis of free N-glycans occurring in soybean seedlings and dry seeds, Biosci. Biotech. Bioch., 64 (2000) 1847–55.
[118] B. Priem, J. Solokwan, J.-M. Wieruszeski, G. Strecker, H. Nazih, H. Morvan, Isolation and characterization of free glycans of the oligomannoside type from the extracellular medium of a plant cell suspension, Glycoconjugate J., 7 (1990) 121–132.
[119] B. Priem, R. Gitti, C.A. Bush, K.C. Gross, Structure of ten free N-glycans in ripening tomato fruit Arabinose is a constituent of a plant N-glycan, Plant Physiol., 102 (1993) 445–58.
[120] B. Priem, H. Morvan, K.C. Gross, Unconjugated N-glycans as a new class of plant oligosaccharins, Biochem. Soc. T., 22 (1994) 398–402.
[121] K. Nakamura, M. Inoue, M. Maeda, R. Nakano, K. Hosoi, K. Fujiyama, Y. Kimura, Molecular cloning and gene expression analysis of tomato endo-beta-N-acetylglucosaminidase, an endoglycosidase involved in the production of high-mannose type free N-glycans during tomato fruit ripening, Biosci. Biotech. Bioch., 73 (2009) 461–4.
[122] C. Faugeron, J. Mollet, Y. Karamanos, H. Morvan, Activities of de-N-glycosylation enzymes are ubiquitously found in tomato plant, Acta Physiol. Planta, 28 (2006) 557–565.
[123] M. Maeda, M. Kimura, Y. Kimura, Intracellular and extracellular free N-glycans produced by plant cells: occurrence of unusual plant complex-type free N-glycans in extracellular spaces, J. Biochem., 148 (2010) 681–92.
[124] Y. Kimura, Y. Takeoka, M. Inoue, M. Maeda, K. Fujiyama, Double-knockout of putative endo-β-N-acetylglucosaminidase (ENGase) genes in Arabidopsis thaliana: loss of ENGase activity induced accumulation of high-mannose type free N-glycans bearing N,N’-acetylchitobiosyl unit, Biosci. Biotech. Bioch., 75 (2011) 1019–21.
[125] R.M. Fischl, J. Stadlmann, J. Grass, F. Altmann, R. Léonard, The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels, Plant Mol. Biol., 77 (2011) 275–84.
[126] S. Hase, K. Fujimura, M. Kanoh, T. Ikenaka, Studies on heterogeneity of Taka-amylase A: isolation of an amylase having one N-acetylglucosamine residue as the sugar chain, J. Biochem., 92 (1982) 265–70.
[127] R.J. Chalkley, A. Thalhammer, R. Schoepfer, A.L. Burlingame, Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides, Proc. Natl. Acad. Sci. USA, 106 (2009) 8894–9.
[128] M.R. Islam, S.S. Kung, Y. Kimura, G. Funatsu, N-acetyl-D-glucosamine-asparagine structure in ribosome-inactivating proteins from the seeds of Luffa cylindrica and Phytolacca americana, Agric. Biol. Chem., 55 (1991) 1375–81.
[129] Z.-H. Zeng, X.-L. He, H.-M. Li, Z. Hu, D.-C. Wang, Crystal structure of pokeweed antiviral protein with well-defined sugars from seeds at 18Å resolution, J. Struct. Biol., 141 (2003) 171–178.
[130] T. Rademacher, M. Sack, E. Arcalis, J. Stadlmann, S. Balzer, F. Altmann, H. Quendler, G. Stiegler, R. Kunert, R. Fischer, E. Stoger, Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans, Plant Biotech. J., 6 (2008) 189–201.
[131] Y.-C. Kim, N. Jahren, M.D. Stone, N.D. Udeshi, T.W. Markowski, B.A. Witthuhn, J. Shabanowitz, D.F. Hunt, N.E. Olszewski, Identification and origin of N-linked β-D-N-acetylglucosamine monosaccharide modifications on Arabidopsis proteins, Plant Physiol., 161 (2013) 455–64.
[132] S. Grass, C.F. Lichti, R.R. Townsend, J. Gross, J.W. St Geme, The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin, PLoS Pathog., 6 (2010) e1000919.
[133] K. Yamamoto, S. Kadowaki, M. Fujisaki, H. Kumagai, T. Tochikura, Novel specificities of Mucor hiemalis endo-beta-N-acetylglucosaminidase acting complex asparagine-linked oligosaccharides, Biosci. Biotech. Bioch., 58 (1994) 72–7.
[134] K. Fujita, K. Kobayashi, A. Iwamatsu, M. Takeuchi, H. Kumagai, K. Yamamoto, Molecular cloning of Mucor hiemalis endo-beta-N-acetylglucosaminidase and some properties of the recombinant enzyme, Arch. Biochem. Biophys., 432 (2004) 41–9.
[135] S. Murakami, Y. Takaoka, H. Ashida, K. Yamamoto, H. Narimatsu, Y. Chiba, Identification and characterization of endo-β-N-acetylglucosaminidase from methylotrophic yeast Ogataea minuta, Glycobiology, (2013).
[136] I. Stals, B. Samyn, K. Sergeant, T. White, K. Hoorelbeke, A. Coorevits, B. Devreese, M. Claeyssens, K. Piens, Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina, FEMS Microbiol. Lett., 303 (2010) 9–17.
[137] T. Hamaguchi, T. Ito, Y. Inoue, T. Limpaseni, P. Pongsawasdi, K. Ito, Purification, characterization and molecular cloning of a novel endo-beta-N-acetylglucosaminidase from the basidiomycete, Flammulina velutipes, Glycobiology, 20 (2010) 420–32.
[138] I. Stals, S. Karkehabadi, S. Kim, M. Ward, A. Van Landschoot, B. Devreese, M. Sandgren, High resolution crystal structure of the endo-N-Acetyl-β-D-glucosaminidase responsible for the deglycosylation of Hypocrea jecorina cellulases, PloS One, 7 (2012) e40854.
[139] G. Davies, B. Henrissat, Structures and mechanisms of glycosyl hydrolases, Structure, 3 (1995) 853–9.
[140] A.C. Terwisscha van Scheltinga, S. Armand, K.H. Kalk, A. Isogai, B. Henrissat, B.W. Dijkstra, Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis, Biochemistry, 34 (1995) 15619–23.
[141] I. Greig, Glycoside Hydrolase Family 20, CAZypedia, (2013).
[142] G. Davies, N. Juge, V. , Eijsink, Glycoside Hydrolase Family 18, CAZypedia, (2013).
[143] W. Abbott, Glycoside Hydrolase Family 85, CAZypedia, (2013).
[144] F. Vincent, Glycoside Hydrolases Family 73, CAZYpedia, (2013).
[145] N. Takahashi, H. Nishibe, Some characteristics of a new glycopeptidase acting on aspartylglycosylamine linkages, J. Biochem., 84 (1978) 1467–73.
[146] T. Takahashi, H. Nishibe, Almond glycopeptidase acting on aspartylglycosylamine linkages Multiplicity and substrate specificity, Biochim. Biophys. Acta, 657 (1981) 457–67.
[147] E.M. Taga, A. Waheed, R.L. Van Etten, Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond, Biochemistry, 23 (1984) 815–22.
[148] J.M. Risley, R.L. Van Etten, 1H NMR evidence that almond "peptide: N-glycosidase" is an amidase Kinetic data and trapping of the intermediate, J. Biol. Chem., 260 (1985) 15488–94.
[149] P. Kuhn, C. Guan, T. Cui, A.L. Tarentino, T.H. Plummer, P. Van Roey, Active site and oligosaccharide recognition residues of peptide-N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase F, J. Biol. Chem., 270 (1995) 29493–7.
[150] L. Faye, M.J. Chrispeels, Transport and processing of the glycosylated precursor of Concanavalin A in jack-bean, Planta, 170 (1987) 217–224.
[151] D.J. Bowles, S.E. Marcus, D.J. Pappin, J.B. Findlay, E. Eliopoulos, P.R. Maycox, J. Burgess, Posttranslational processing of concanavalin A precursors in jackbean cotyledons, J. Cell Biol., 102 (1986) 1284–97.
[152] C. Ramis, V. Gomord, P. Lerouge, L. Faye, Deglycosylation is necessary but not sufficient for activation of proconcanavalin A, J. Exp. Bot., 52 (2001) 911–7.
[153] A. Seko, K. Kitajima, Y. Inoue, S. Inoue, Peptide:N-glycosidase activity found in the early embryos of Oryzias latipes (Medaka fish) The first demonstration of the occurrence of peptide:N-glycosidase in animal cells and its implication for the presence of a de-N-glycosylation system in living or, J. Biol. Chem., 266 (1991) 22110–4.
[154] T. Suzuki, A. Seko, K. Kitajima, Y. Inoue, S. Inoue, Purification and enzymatic properties of peptide:N-glycanase from C3H mouse-derived L-929 fibroblast cells Possible widespread occurrence of post-translational remodification of proteins by N-deglycosylation, J. Biol. Chem., 269 (1994) 17611–8.
[155] T. Suzuki, A. Seko, K. Kitajima, Y. Inoue, S. Inoue, Identification of peptide:N-glycanase activity in mammalian-derived cultured cells, Biochem. Biophys. Res. Commun., 194 (1993) 1124–30.
[156] A. Seko, K. Kitajima, T. Iwamatsu, Y. Inoue, S. Inoue, Identification of two discrete peptide: N-glycanases in Oryzias latipes during embryogenesis, Glycobiology, 9 (1999) 887–95.
[157] T. Suzuki, H. Park, N.M. Hollingsworth, R. Sternglanz, W.J. Lennarz, PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase, J. Cell Biol., 149 (2000) 1039–52.
[158] T. Suzuki, H. Park, K. Kitajima, W.J. Lennarz, Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity, J. Biol. Chem., 273 (1998) 21526–30.
[159] S. Katiyar, T. Suzuki, B.J. Balgobin, W.J. Lennarz, Site-directed mutagenesis study of yeast peptide:N-glycanase Insight into the reaction mechanism of deglycosylation, J. Biol. Chem., 277 (2002) 12953–9.
[160] G. Zhao, G. Li, X. Zhou, I. Matsuo, Y. Ito, T. Suzuki, W.J. Lennarz, H. Schindelin, Structural and mutational studies on the importance of oligosaccharide binding for the activity of yeast PNGase, Glycobiology, 19 (2009) 118–25.
[161] R. Bernasconi, M. Molinari, ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER, Curr. Opin. Cell Biol., 23 (2011) 176–83.
[162] Y. Funakoshi, Y. Negishi, J.P. Gergen, J. Seino, K. Ishii, W.J. Lennarz, I. Matsuo, Y. Ito, N. Taniguchi, T. Suzuki, Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster, PloS One, 5 (2010) e10545.
[163] H. Hirayama, J. Seino, T. Kitajima, Y. Jigami, T. Suzuki, Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae, J. Biol. Chem., 285 (2010) 12390–404.
[164] A. Hosomi, K. Tanabe, H. Hirayama, I. Kim, H. Rao, T. Suzuki, Identification of an Htm1 (EDEM)-dependent, Mns1-independent Endoplasmic Reticulum-associated Degradation (ERAD) pathway in Saccharomyces cerevisiae: application of a novel assay for glycoprotein ERAD, J. Biol. Chem., 285 (2010) 24324–34.
[165] T. Suzuki, Cytoplasmic peptide:N-glycanase and catabolic pathway for free N-glycans in the cytosol, Semin. Cell Dev. Biol., 18 (2007) 762–9.
[166] A. Verbert, Biosynthesis 2b From Glc3Man9GlcNAc2-protein to Man5GlcNAc2-protein: transfer "en bloc" and processing, in: J. Montreuil, J. Vliegenthart, H. Schachter (Eds.), Glycoproteins I (New Comprehensive Biochemistry, Vol. 29), 1st ed., Elsevier, Amsterdam, 1995: pp. 145–152.
[167] S.S. Vembar, J.L. Brodsky, One step at a time: endoplasmic reticulum-associated degradation, Nat. Rev. Mol. Cell Bio., 9 (2008) 944–57.
[168] A. Kobata, Exo- and endoglycosidases revisited, Proc. Jpn. Acad. B, 89 (2013) 97–117.
[169] T. Suzuki, H. Park, W.J. Lennarz, Cytoplasmic peptide:N-glycanase (PNGase) in eukaryotic cells: occurrence, primary structure, and potential functions, FASEB J., 16 (2002) 635–41.
[170] T. Suzuki, H. Park, E.A. Till, W.J. Lennarz, The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway, Biochem. Biophys. Res. Commun., 287 (2001) 1083–7.
[171] M. Della Mea, D. Caparrós-Ruiz, I. Claparols, D. Serafini-Fracassini, J. Rigau, AtPng1p The first plant transglutaminase, Plant Physiol., 135 (2004) 2046–54.
[172] A. Diepold, G. Li, W.J. Lennarz, T. Nürnberger, F. Brunner, The Arabidopsis AtPNG1 gene encodes a peptide: N-glycanase, Plant J., 52 (2007) 94–104.
[173] Y. Masahara-Negishi, A. Hosomi, M. Della Mea, D. Serafini-Fracassini, T. Suzuki, A plant peptide: N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast, Biochim. Biophys. Acta, 1820 (2012) 1457–62.
[174] S. Inoue, M. Iwasaki, K. Ishii, K. Kitajima, Y. Inoue, Isolation and structures of glycoprotein-derived free sialooligosaccharides from the unfertilized eggs of Tribolodon hakonensis, a dace Intracellular accumulation of a novel class of biantennary disialooligosaccharides, J. Biol. Chem., 264 (1989) 18520–6.
[175] A. Seko, K. Kitajima, M. Iwasaki, S. Inoue, Y. Inoue, Structural studies of fertilization-associated carbohydrate-rich glycoproteins (hyosophorin) isolated from the fertilized and unfertilized eggs of flounder, Paralichthys olivaceus Presence of a novel penta-antennary N-linked glycan chain in the tandem re, J. Biol. Chem., 264 (1989) 15922–9.
[176] R.J. Doyle, R.E. Marquis, Elastic, flexible peptidoglycan and bacterial cell wall properties, Trends Microbiol., 2 (1994) 57–60.
[177] Y. Karamanos, S. Bourgerie, J.P. Barreaud, R. Julien, Are there biological functions for bacterial endo-N-acetyl-beta-D-glucosaminidases?, Res. Microbiol., 146 (1995) 437–443.
[178] H. Nothaft, C.M. Szymanski, Bacterial protein N-glycosylation: new perspectives and applications, J. Biol. Chem., 288 (2013) 6912–20.
[179] N.M. Young, J.-R. Brisson, J. Kelly, D.C. Watson, L. Tessier, P.H. Lanthier, H.C. Jarrell, N. Cadotte, F. St Michael, E. Aberg, C.M. Szymanski, Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni, J. Biol. Chem., 277 (2002) 42530–9.
[180] M.A. Schell, M. Karmirantzou, B. Snel, D. Vilanova, B. Berger, G. Pessi, M.-C. Zwahlen, F. Desiere, P. Bork, M. Delley, R.D. Pridmore, F. Arigoni, The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract, Proc. Natl. Acad. Sci. USA, 99 (2002) 14422–7.
[181] H. Tettelin, K.E. Nelson, I.T. Paulsen, J.A. Eisen, T.D. Read, S. Peterson, J. Heidelberg, R.T. DeBoy, D.H. Haft, R.J. Dodson, A.S. Durkin, M. Gwinn, J.F. Kolonay, W.C. Nelson, J.D. Peterson, L.A. Umayam, O. White, S.L. Salzberg, M.R. Lewis, D. Radune, et al., Complete genome sequence of a virulent isolate of Streptococcus pneumoniae, Science, 293 (2001) 498–506.
[182] H. Muramatsu, H. Tachikui, H. Ushida, X. Song, Y. Qiu, S. Yamamoto, T. Muramatsu, Molecular cloning and expression of endo-beta-N-acetylglucosaminidase D, which acts on the core structure of complex type asparagine-linked oligosaccharides, J. Biochem., 129 (2001) 923–8.
[183] M. Salanoubat, K. Lemcke, M. Rieger, W. Ansorge, M. Unseld, B. Fartmann, G. Valle, H. Blöcker, M. Perez-Alonso, B. Obermaier, M. Delseny, M. Boutry, L.A. Grivell, R. Mache, P. Puigdomènech, V. De Simone, N. Choisne, F. Artiguenave, C. Robert, P. Brottier, et al., Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana, Nature, 408 (2000) 820–2.
[184] J. Xu, M.K. Bjursell, J. Himrod, S. Deng, L.K. Carmichael, H.C. Chiang, L. V Hooper, J.I. Gordon, A genomic view of the human-Bacteroides thetaiotaomicron symbiosis, Science, 299 (2003) 2074–6.
[185] S. Fukuda, H. Toh, K. Hase, K. Oshima, Y. Nakanishi, K. Yoshimura, T. Tobe, J.M. Clarke, D.L. Topping, T. Suzuki, T.D. Taylor, K. Itoh, J. Kikuchi, H. Morita, M. Hattori, H. Ohno, Bifidobacteria can protect from enteropathogenic infection through production of acetate, Nature, 469 (2011) 543–7.
[186] P. Manfredi, F. Renzi, M. Mally, L. Sauteur, M. Schmaler, S. Moes, P. Jenö, G.R. Cornelis, The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation, Mol. Microbiol., 81 (2011) 1050–60.
[187] P.W. Robbins, R.B. Trimble, D.F. Wirth, C. Hering, F. Maley, G.F. Maley, R. Das, B.W. Gibson, N. Royal, K. Biemann, Primary structure of the Streptomyces enzyme endo-beta-N-acetylglucosaminidase H, J. Biol. Chem., 259 (1984) 7577–83.
[188] K. Sugiyama, H. Ishihara, S. Tejima, N. Takahashi, Demonstration of a new glycopeptidase, from jack-bean meal, acting on aspartylglucosylamine linkages, Biochem. Biophys. Res. Commun., 112 (1983) 155–160.
[189] M.G. Yet, F. Wold, Purification and characterization of two glycopeptide hydrolases from jack beans, J. Biol. Chem., 263 (1988) 118–22.
[190] T.H. Plummer, A.W. Phelan, A.L. Tarentino, Detection and quantification of peptide-N4-(N-acetyl-beta- glucosaminyl)asparagine amidases, Eur. J. Biochem., 163 (1987) 167–73.
[191] S. Lhernould, Y. Karamanos, S. Bourgerie, G. Strecker, R. Julien, H. Morvan, Peptide-N4-(N-acetylglucosaminyl) asparagine amidase (PNGase) activity could explain the occurrence of extracellular xylomannosides in a plant cell suspension, Glycoconjugate J., 9 (1992) 191–7.
[192] S. Lhernould, Y. Karamanos, B. Priem, H. Morvan, Carbon starvation increases endoglycosidase activities and production of "unconjugated N-glycans" in Silene alba cell-suspension cultures, Plant Physiol., 106 (1994) 779–84.
[193] S. Berger, A. Menudier, R. Julien, Y. Karamanos, Endo-N-acetyl-beta-D-glucosaminidase and peptide-N4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus, Phytochemistry, 39 (1995) 481–7.
[194] M.A. Hossain, R. Nakano, K. Nakamura, Y. Kimura, Molecular identification and characterization of an acidic peptide:N-glycanase from tomato (Lycopersicum esculentum) fruits, J. Biochem., 147 (2010) 157–65.
Author Information
  • Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences – Université d’Artois, Lens, France

Cite This Article
  • APA Style

    Yannis Karamanos. (2013). Endo-N-Acetyl-β-D-Glucosaminidases and Peptide-N4-(N-acetyl-β-D-Glucosaminyl) Asparagine Amidases: More Than Just Tools. Advances in Biochemistry, 1(5), 81-99. https://doi.org/10.11648/j.ab.20130105.12

    Copy | Download

    ACS Style

    Yannis Karamanos. Endo-N-Acetyl-β-D-Glucosaminidases and Peptide-N4-(N-acetyl-β-D-Glucosaminyl) Asparagine Amidases: More Than Just Tools. Adv. Biochem. 2013, 1(5), 81-99. doi: 10.11648/j.ab.20130105.12

    Copy | Download

    AMA Style

    Yannis Karamanos. Endo-N-Acetyl-β-D-Glucosaminidases and Peptide-N4-(N-acetyl-β-D-Glucosaminyl) Asparagine Amidases: More Than Just Tools. Adv Biochem. 2013;1(5):81-99. doi: 10.11648/j.ab.20130105.12

    Copy | Download

  • @article{10.11648/j.ab.20130105.12,
      author = {Yannis Karamanos},
      title = {Endo-N-Acetyl-β-D-Glucosaminidases and Peptide-N4-(N-acetyl-β-D-Glucosaminyl) Asparagine Amidases: More Than Just Tools},
      journal = {Advances in Biochemistry},
      volume = {1},
      number = {5},
      pages = {81-99},
      doi = {10.11648/j.ab.20130105.12},
      url = {https://doi.org/10.11648/j.ab.20130105.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ab.20130105.12},
      abstract = {Since the discovery of endo-N-acetyl-β-D-glucosaminidases (ENGase) and peptide-N4-(N-acetyl-β-D-glucosaminyl) asparagine amidases (PNGase) most of the published work described their use for structural studies. Less attention was given to the potential roles of those enzymes in the physiology of the cells/organisms they produced them. The scope of this review is firstly to analyse the data on the occurrence and characteristics of murein-, chitin-, and N-glycan-ENGases acting on GlcNAc-containing polymers in three structural families, namely murein, chitin, and N-glycosylproteins, and of PNGases, only acting on N-glycosylproteins, and secondly to discuss the biological roles of the enzymes in the producing cells. The analysis demonstrates the remarkable diversity of the enzymes, and simultaneously the interest of studying their substrate specificity and their structural features. Many examples illustrate the importance of the structure/function relationships studies. Diverse biological roles were anticipated, e.g. they are useful for feeding purposes, are implicated in pathogenesis processes, modulate the activity of macromolecules, and help in the destruction of misfolded proteins. Their effect can be direct or indirect, through the reaction products. Current knowledge only partially explains the biological roles of ENGases and PNGases, thus further studies are expected for determining novel possibilities and elucidating other cell pathways.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Endo-N-Acetyl-β-D-Glucosaminidases and Peptide-N4-(N-acetyl-β-D-Glucosaminyl) Asparagine Amidases: More Than Just Tools
    AU  - Yannis Karamanos
    Y1  - 2013/12/30
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ab.20130105.12
    DO  - 10.11648/j.ab.20130105.12
    T2  - Advances in Biochemistry
    JF  - Advances in Biochemistry
    JO  - Advances in Biochemistry
    SP  - 81
    EP  - 99
    PB  - Science Publishing Group
    SN  - 2329-0862
    UR  - https://doi.org/10.11648/j.ab.20130105.12
    AB  - Since the discovery of endo-N-acetyl-β-D-glucosaminidases (ENGase) and peptide-N4-(N-acetyl-β-D-glucosaminyl) asparagine amidases (PNGase) most of the published work described their use for structural studies. Less attention was given to the potential roles of those enzymes in the physiology of the cells/organisms they produced them. The scope of this review is firstly to analyse the data on the occurrence and characteristics of murein-, chitin-, and N-glycan-ENGases acting on GlcNAc-containing polymers in three structural families, namely murein, chitin, and N-glycosylproteins, and of PNGases, only acting on N-glycosylproteins, and secondly to discuss the biological roles of the enzymes in the producing cells. The analysis demonstrates the remarkable diversity of the enzymes, and simultaneously the interest of studying their substrate specificity and their structural features. Many examples illustrate the importance of the structure/function relationships studies. Diverse biological roles were anticipated, e.g. they are useful for feeding purposes, are implicated in pathogenesis processes, modulate the activity of macromolecules, and help in the destruction of misfolded proteins. Their effect can be direct or indirect, through the reaction products. Current knowledge only partially explains the biological roles of ENGases and PNGases, thus further studies are expected for determining novel possibilities and elucidating other cell pathways.
    VL  - 1
    IS  - 5
    ER  - 

    Copy | Download

  • Sections