Acute Oral Coumestrol Treatment Induces Sperm and Sex Steroid Alterations in Mice
Cell Biology
Volume 2, Issue 4, July 2014, Pages: 36-40
Received: Sep. 8, 2014; Accepted: Sep. 20, 2014; Published: Sep. 30, 2014
Views 2830      Downloads 190
Authors
Hector Serrano, Dept. of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Guillermo Mora-Ramiro, Dept. of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Sheila Peña-Corona, Dept. of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Pablo León-Ortíz, Dept. of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Arturo Salame-Mendez, Depts. of Biology of Reproduction, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Enrique Mendieta-Márques, Dept. of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
José Luis Gómez-Olivares, Dept. of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
María Dolores García-Suárez, Depts. of Biology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Article Tools
Follow on us
Abstract
Plant phytoestrogens interfere with normal estrogen-regulated functions like steroid synthesis and gonad physiology and morphology. Much evidence has been obtained by using high dose treatments or in vitro exposure to phytoestrogens but little is known about low, dietary level concentrations of these compounds, particularly coumestrol. In order to explore the possible effects on gonads and serum progesterone of oral 10, 20 or 40 μg/Kg body weight dose coumestrol were administered to three experimental groups and compared to a vehicle-only control group (n=5 animals per group) for two weeks and a similar period for treatment recovery. After treatment, testes and blood were obtained and processed for testis and sperm morphology alterations, and steroid hormone evaluation, respectively. Coumestrol treatment induces a significant dose-dependent testis volume decrease and a decrease in 17β hydroxysteroid dehydrogenase activity causing a progesterone increase in response to phytoestrogen concentration. These alterations impair the normal sperm production with an increase in abnormal head and tail shapes. These data strongly suggest a deleterious effect of oral, low concentration phytoestrogen content in adult male diets.
Keywords
Phytoestrogens, Coumestrol, Testis Alterations, Serum Progesterone, Mice
To cite this article
Hector Serrano, Guillermo Mora-Ramiro, Sheila Peña-Corona, Pablo León-Ortíz, Arturo Salame-Mendez, Enrique Mendieta-Márques, José Luis Gómez-Olivares, María Dolores García-Suárez, Acute Oral Coumestrol Treatment Induces Sperm and Sex Steroid Alterations in Mice, Cell Biology. Vol. 2, No. 4, 2014, pp. 36-40. doi: 10.11648/j.cb.20140204.12
References
[1]
E.V. Bandera, M. King, U, Chandran, L.E. Paddock, L. Rodriguez-Rodriguezand S.H. Olson, “ Phytoestrogen consumption from foods and supplements and epitelial ovarían cáncer risk: a population-based case control study.” BMC Women’s Health 11:40. Available at http://www.biomedcentral.com/1472-6874/11/40 (Accessed September 4, 2014: 22:50 Central time)
[2]
S.L. Carmichel, M.E. Cogswell, C., Ma, A. Gonzalez-Feliciano, R.S. Olney, A, Correa, and G.M. Shaw, “ Hypospadias and maternal intake of phytoestrogens. “Amer. J. Epidemiol. 178: 434-440.2013
[3]
S.L. Carmichel, A.G. Gonzalez-Feliciano, C. Ma, G.M. Shaw, and M.E. Cogswell, “Estimated dietary phytoestrogen intake and major food sources among women during the year before pregnancy. “ Nutrition J. 10: 105, 2011
[4]
C.R. Cederroth, C. Zimmermann, J.L. Beny, J. Schaad, C. Combepine, P. Descombes, D.R. Doerge, F.P. Pralong, J.D. Vasalli, and S. Nef, “ Potential detrimental effects of phytoestrogen-rich diet on male fertility in mice.” Mol. Cell Endocrinol. 321:152-160.2010.
[5]
C.R. Cederroth, C. Zimmermann, and S. Nef, “Soy, phytoestrogens and their impact on reproductive health.” Molecular and Cellular Endocrinology 355:192-200. 2011.
[6]
M.S. Kurzer, and X. Xu, X. “ Dietary phytoestrogens. “ Annu Rev Nutr 17: 353- 381.1997.
[7]
L.L LeeCole, W-H. Lee, B.R. Martin, J.A. Story, A. Arabshani, S. Barnes, and C.M. Weaver, “ Genistein, a phytoestrogen, improves total cholesterol and Synergy, a probiotic, improved calcium utilization but there were no synergistic effects.” Menopause 18:923-931. 2011.
[8]
Y. Li, C.J. Luh, K.A. Burns, K. Arao, Z. Jiang, C.T. Teng, R.R. Tice, and K.S. Korach, “Endocrine-disrupting chemicals (EDCs): In vitro mechanism of estrogenic activation and differential effects on ER target genes.“ Environ. Health Perspect .121:459-466. 2013.
[9]
G. McCarver, J. Bhatia, C. Chambers, R. Clarke, R., Etzel, W. Foster, P. Hoyer, J.S. Leeder, J.M. Peters, E. Rissman, M. Rybak, C. Sherman, J. Toppari, and K. Turner, “NTP-CERHR expert panel report on the developmental toxicity of soy infant formula.” Birth Defects Research (B) 92: 421-468. 2011.
[10]
J.J. Perez-Rivero, J.J., Martinez-Maya, M. Perez-Martinez, A. Aguilar-Setien, M.D. Garcia-Suarez, and H. Serrano, “Phytoestrogen treatment induces testis alteration in dogs. Potential use in population control.” Vet. Res. Commun. 33:87-95. 2009.
[11]
C.A. Awoniyi, D. Roberts, V. Chandreshekar, and W.D. Schlaff.”Neonatal exposure to coumestrol, a phytoestrogen, doesnot alter spermatogenic potential in rats”. Endocrine 7: 337-341. 1997.
[12]
T. Sathyapalan, A.M. Manuchehri, N.J. Thatcher, A.S. Rigby, T. Chapman, E.S. Kilpatrick, and S.L. Atkin, “ The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: A randomized, double-blind, crossover study.” J. Clin. Endocrinol. Metab. 96: 1442-1449. 2011.
[13]
H. Serrano, J.J. Pérez-Rivero, A. Aguilar-Setién, O. de Paz, and A. Villa-Godoy, “Vampire bat reproductive control by a naturally occurring phytoestrogen.” Reprod. Fertil. Develop. 19:470-472. 2007
[14]
M.M. Terzic, J. Dotlic, S. Maricic, T. Mihailovic, and B. Tosic-Race, “ Influence of red clover-derived isoflavones on serum lipid profile in postmenopausal women.” J. Obstet. Gynaecol. Res. 35:1091-1095. 2009.
[15]
P. Whitten, and B. Patisaul B. “Cross-species and interassay comparisons of phytoestrogen action.” Environ. Health Perspect. 109: 5-20. 2001.
[16]
P.L.Whitten, C. Lewis, E. Russel, and F. Naftolin, “Potential adverse effects of phytoestrogens.” J. Nutr. 125: 771S-776S. 1995a.
[17]
H. Tinwell, A. R. Soames, J.R. Foster, and J Ashby, “Estradiol-type activity of coumestrol in mature and immature ovariectomized rat utrotrophic assays.” Environ Health Perspect 108: 631-634. 2000.
[18]
K.F Klomberg, T. Garland, J.G. Swallow, and P.A. Carter, “Dominance, plasma testosterone levels, and testis size in house mice artificially selected for high activity levels.” Physiology Behav. 77:27-38. 2002.
[19]
L. Björnström, and M. Sjöberg, “Mechaisms of estrogen receptor signaling: convergence of genomic and nongenomic actions in target genes.” Mol. Endocrinol. 19: 833- 842. 2005.
[20]
S. Barnes, “The biochemistry, chemistry and physiology of the isoflavones in soybeans and thir food products.” Lymphatic Research and Biology 8:89-98. 2010.
[21]
L. Ye, Z.J. Su, and R.S. Ge, “Inhibitors of testosterone biosynthetic and metabolic activation enzymes.” Molecules 16: 9983-10001.2011.
[22]
W. Jefferson, H.B. Patisaul, and C.J. Williams, “Reproductive consequences of developmental phytoestrogen exposure.” Reproduction 143: 247-260. 2012.
[23]
W. Zawatski, and M.M. Lee. “Male pubertal development: are endocrine-disrupting compounds shifting the norms?” J. Endocrinol. 218: R1-R12.2013.
[24]
K.S. Korach.. “Endocrine-disrupting chemicals (EDCs): In vitro mechanism of estrogenic activation and differential effects on ER target genes”. Environ . Health Prespect. 121:459-466. 2013.
[25]
D.C. Vitale, C. Piazza, B. Melilli, F. Drago, and S. Salomone,. “Isoflavones: estrogenic activity, biological effect and bioavailability”. Eur. J. Drug Metab. Pharmacokinet 38:15-25. 2013.
[26]
D. Roberts, D.N.Rao Veeramacheneni, W.D. Sclaff, and C.A. Awoniyi. “Effects of chronic dietary exposure to genistein, a phytoestrogen, during various stages of development on reproductive hormones and spermatogenesis in rats. Endocrine 13: 281 286. 2000.
[27]
R. Tarragó-Castellanos, M. García-Lorenzana, V. Díaz-Sánchez, and J. Velázquez-Moctezuma. “Gonadotropin levels and morphological testicular features in rats after different doses of the phytoestrogen coumestrol”. NeuroEndocrinol. Letters 27:487-492. 2006.
[28]
G. Fuentes-Mascorro, M. Vergara-Onofre, E. Mercado, O. Hernández-Pérez, and A. Rosado. “Participation of DNA structure on sperm chromatin organization” Arch. Androl. 45: 61-71. 2000.
[29]
R. Yanagimachi. “Mammalian fertilization” In: E. Knobil, J.D. Neill, (eds) The Physiology of Reproduction, vol. I, 2nd. Edition, Raven Press (New York): 189-317. 1994.
[30]
G.E. Kerr, J.C. Young, K. Horvay, H.E. Abud, and K.L. Loveland. “Regulated Wnt/beta catenin signaling sustains adult spermatogenesis in mice. Biol. Reprod. 90: 1-12. 2014.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186