International Journal of Immunology

| Peer-Reviewed |

Advancement Towards an Approved Vaccine to Target Plasmodium Falciparum Malaria

Received: 24 November 2014    Accepted: 28 November 2014    Published: 17 December 2014
Views:       Downloads:

Share This Article

Abstract

Plasmodium falciparum causes the severest form of malaria which kills well over one million persons each year, chiefly children, and results in significant debilitation in hundreds of millions more. This disease has a dramatic socioeconomic impact in endemic countries and thus it is a recurring target for global health enterprises. Increased investment in existing control measures, including insecticide-impregnated bed nets, has been paired with revitalized efforts to develop an efficacious vaccine. Sequencing of the genome of P. falciparum has provided insights into the malaria parasite’s complex lifecycle, which, combined with a deeper understanding of the human immune response to infection, has yielded many novel candidate vaccines during the past two decades. Most notable of these is RTS,S which has shown great promise over a long development process, becoming the first candidate vaccine against human malaria to advance to phase III clinical trials. Hence, there is optimism that in the near future RTS,S may become the first ever licensed vaccine against a parasitic disease in humans. However, this is qualified by the need for a better knowledge of its mechanism of protection and questions raised over its long-term therapeutic capacity. While the availability of RTS,S as a validated commercial product is not guaranteed, it is likely to contribute to the continuing campaign against malaria, if only as a forerunner to a fine-tuned second generation vaccine.

DOI 10.11648/j.iji.20140205.11
Published in International Journal of Immunology (Volume 2, Issue 5, October 2014)
Page(s) 31-39
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Plasmodium Falciparum, Malaria, Immunity, Vaccine, RTS,S

References
[1] Moya A. & Font E. (2004). Evolution: From Molecules to Ecosystems. Oxford: Oxford University Press.
[2] Singh B., Kim Sung L., Matusop A., Radhakrishnan A., Shamsul S.S., Cox-Singh J., Thomas A. & Conway D.J. (2004). A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet, 363 (9414), 1017-1024.
[3] World Health Organization (2008). World Malaria Report 2008. Geneva: WHO.
[4] Breman J.G. (2009). Eradicating malaria. Science Progress, 92 (1), 1-38.
[5] U.S. Census Bureau (2011). International Programs - World POPClock Projection [online]. http://www.census.gov/ipc/ www/popclockworld.html. Accessed 24 November 2014.
[6] Hay S.I., Guerra C., Tatem A., Noor A. & Snow R (2004). The global distribution and population at risk of malaria: past, present, and future. Lancet Infectious Diseases, 4 (6), 327-336.
[7] Guerra C.A., Gikandi P.W., Tatem A.J., Noor A.M., Smith D.L., Hay S.I. & Snow R.W (2008). The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Medicine, 5 (2), e38.
[8] World Health Organization (2010). Malaria [online]. http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 24 November 2014.
[9] Malaria Vaccine Initiative (2010). The PATH Malaria Vaccine Initiative [online]. http://www.malariavaccines.org/ publications-factsheets.php. Accessed 24 November 2014.
[10] Malaria Vaccine Initiative (2007). Accelerating Progress Toward Malaria Vaccines [online]. http://www.malaria vaccines.org/files/080212_MVI_portfolio_bro_mvilogo_000.pdf. Accessed 24 November 2014.
[11] Sherman I.W. (1998). Malaria – Parasite Biology, Pathogenesis and Protection. Washington DC: ASM Press.
[12] Gallup J.L. & Sachs J.D. (2001). The economic burden of malaria. American Journal of Tropical Medicine and Hygiene, 64 (1-2), 85-96.
[13] Targett G.A.T. & Greenwood B.M. (2008). Malaria vaccines and their potential role in the elimination of malaria. Malaria Journal, 7, (suppl. 1), S10.
[14] Markell E.K., Voge M. & John D.T. (1992). Medical Parasitology, 7th edition. London: W.B. Saunders.
[15] Centers for Diseases Control (2011). DPDx - Malaria [online]. http://www.dpd.cdc.gov/DPDx!HTML/malaria.htm. Accessed 24 November 2014.
[16] Knell A.J. (1991). Malaria: a publication of the tropical programme of the Wellcome Trust. Oxford: Oxford University Press.
[17] Bruce-Chwatt L.J. (2002). Bruce-Chwatt's Essential Malariology, 4th edition. London: Hodder Arnold.
[18] Mueller I., Galinski M.R., Baird K., Carlton J.M., Kochar D.K., Alonso P.L. & del Portillo H.A. (2009). Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infectious Diseases, 9 (9), 555-566.
[19] Greenwood B.M. (2008). Control to elimination: implications for malaria research. Trends in Parasitology, 24 (10), 449-454.
[20] Slutsker L. & Kachur S.P. (2013). It is time to rethink tactics in the fight against malaria. Malaria Journal, 12, 140. doi:10.1186/1475-2875-12-140.
[21] Stevenson M.M. & Zavala F. (2006). Immunology of malaria infections. Parasite Immunology, 28 (1-2), 1-4.
[22] Narasimhan V. & Attaran A. (2003). Roll Back Malaria? The scarcity of international aid for malaria control. Malaria Journal, 2 (8), 1-8.
[23] Roadmap Working Group (2006). Malaria Vaccine Technology Roadmap [online]. http://www.malariavaccine roadmap.net/. Accessed 24 November 2014.
[24] Kurtis J.D., Mtalib R., Onyango F.K. & Duffy P.E. (2001). Human resistance to Plasmodium falciparum increases during puberty and is predicted by dehydroepiandrosterone sulfate levels. Infection and Immunity, 69 (1), 123-128.
[25] Baird J.K., Jones T.R., Danudirgo E.W., Annis B.A., Bangs M.J., Basri H., Purnomo & Masbar S. (1991). Age-dependent acquired protection against Plasmodium falciparum in people having two year exposure to hyperendemic malaria. American Journal of Tropical Medicine and Hygiene, 45 (1), 65-76.
[26] Baird J.K. (1998). Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Annals of Tropical Medicine and Parasitology, 92 (4), 367-390.
[27] Smith T.A., Leuenberger R. & Lengeler C. (2001). Child mortality and malaria transmission intensity in Africa. Trends in Parasitology 17 (3), 145-149.
[28] Taylor-Robinson A.W. (2010). Validity of modelling cerebral malaria in mice: argument and counter argument. Journal of Neuroparasitology. doi:10.4303/jnp/N100601.
[29] Kane E.G. & Taylor-Robinson A.W. (2011). Prospects and pitfalls of pregnancy-associated malaria vaccination based on the natural immune response to Plasmodium falciparum VAR2CSA-expressing parasites. Malaria Research and Treatment. doi:10.4061/2011/764845.
[30] Taylor-Robinson A.W., Morley L.C. & Kane E.G. (2013). Rationale for pregnancy-associated malaria vaccination predicated on antibody-mediated immunity to Plasmodium falciparum placenta-binding parasites. In: Vaccines: Benefits and Risks. iConcept Press, Sunnybank Hills, QLD, Australia, pp. 95-130.
[31] Abdel-Wahab A., Abdel-Muhsin A.M., Ali E., Suleiman S., Ahmed S., Walliker D. & Babiker H.A. (2002). Dynamics of gametocytes among Plasmodium falciparum clones in natural infections in an area of highly seasonal transmission. Journal of Infectious Diseases, 185 (12), 1838-1842.
[32] Schofield L. & Mueller I. (2006). Clinical immunity to malaria. Current Molecular Medicine, 6 (2), 205-221.
[33] Taylor-Robinson A.W. (2002). A model of development of acquired immunity to malaria in humans living under endemic conditions. Medical Hypotheses, 58 (2), 148-156.
[34] Malaria Vaccine Initiative (2004). Clinical Trials: Crucial Steps on the Road to a Malaria Vaccine [online]. http://wwwmalariavaccine.org/files/MVI_clinical_trials_ paper.pdf. Accessed 24 November 2014.
[35] Morley L.C. & Taylor-Robinson A.W. (2012). Understanding how Plasmodium falciparum binds to the placenta and produces pathology provides a rationale for pregnancy- associated malaria vaccine development. Open Vaccine Journal, 5, 8-27. doi: 10.2174/1875035401205010008.
[36] Denny J.W.L. & Taylor-Robinson A.W. (2012). The development pathway of the most advanced candidate vaccine against malaria, RTS,S. Journal of Malaria Research, 2 (1), 1-29.
[37] Malaria Vaccine Initiative (2008). Fighting malaria today and tomorrow [online]. http://www.malariavaccines.org/ publications-factsheets.php. Accessed 24 November 2014.
[38] World Health Organization (2009). World Malaria Report 2009. Geneva: WHO.
[39] Hill A.V.S. (2006). Pre-erythrocytic malaria vaccines: towards greater efficacy. Nature Reviews Immunology 6 (1), 21-32.
[40] Mikolajczak S.A., Aly A.S.I. & Kappe, S.H.I. (2007). Pre-erythrocytic malaria vaccine development. Current Opinion in Infectious Diseases, 20 (5), 461-466.
[41] Malaria Vaccine Initiative (2006). Fact Sheet: RTS,S Malaria Vaccine Clinical Trials. http://www.malaria vaccine.org/ files/FS_RTSS_FINAL.pdf. Accessed 24 November 2014.
[42] Ballou W.R., Arevalo-Herrera M., Carucci D., Richie T.L., Corradin G., Diggs C., Druilhe P., Giersing B.K., Saul A., Heppner D.G., Kester K.E., Lanar D.E., Lyon J., Hill A.V.S., Pan W. & Cohen J.D. (2004). Update on the clinical development of candidate malaria vaccines. American Journal of Tropical Medicine and Hygiene, 71 (suppl. 2), S239-247.
[43] Ballou W.R. & Cahill C.P. (2007). Two decades of commitment to malaria vaccine development: Glaxo SmithKline biologicals. American Journal of Tropical Medicine and Hygiene, 77 (6), 289-295.
[44] Stoute J.A., Kester K.E., Krzych U., Wellde B.T., Hall T., White K., Glenn G., Ockenhouse C.F., Garcon N., Schwenk R., Lanar D.E., Sun P., Mornin P., Wirtz R.A., Golenda C., Slaoui M., Wortmann G., Holland C., Dowler M., Cohen J. & Ballou W.R. (1998). Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine. Journal of Infectious Diseases, 178 (4), 1139-1144.
[45] Waitumbi J.N., Anyona S.B., Hunja C.W., Kifude C.M., Polhemus M.E., Walsh D.S., Ockenhouse C.F., Heppner D.G., Leach A., Lievens M., Ballou W.R., Cohen J.D. & Sutherland C.J. (2009). Impact of RTS,S/AS02(A) and RTS,S/AS01(B) on genotypes of P. falciparum in adults participating in a malaria vaccine clinical trial. PLoS One, 4 (11), e7849.
[46] Ambroise-Thomas P. (1997). Vaccination against malaria. Disappointments and hopes. Bulletin de l'Académie Nationale de Médecine, 181 (8), 1637-1648.
[47] Doolan D.L. & Martinez-Alier N. (2006). Immune response to pre-erythrocytic stages of malaria parasites. Current Molecular Medicine, 6 (2), 169-185.
[48] Plebanski M. & Hill A.V.S. (2000). The immunology of malaria infection. Current Opinion in Immunology, 12 (4), 437-441.
[49] Perlmann P. & Troye-Blomberg M. (2002). Malaria Immunology, 2nd edition. Basel: Karger.
[50] Reece W.H., Pinder M., Gothard P.K., Milligan P., Bojang K., Doherty T., Plebanski M., Akinwunmi P., Everaere S., Watkins K.R., Voss G., Tomieporth N., Alloueche A., Greenwood B.M., Kester K.E., McAdam K.P., Cohen J. & Hill A.V.S. (2004). A CD4+ T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nature Medicine, 10 (4), 406-410.
[51] Cruse J.M. & Lewis R.E. (2004). Atlas of Immunology, 2nd edition. London: CRC Press.
[52] Malaria Vaccine Initiative (2009). Sanaria PfSPZ malaria vaccine candidate [online]. http://www.malariavaccines.org/ pub1ications-factsheets.php. Accessed 24 November 2014.
[53] Richie T. High road, low road? (2006). Choices and challenges on the pathway to a malaria vaccine. Parasitology 133, (suppl.), S113-144.
[54] Sun, P., Schwenk R., White K., Stoute J.A., Cohen J., Ballou W.R., Voss G., Kester K.E., Heppner D.G. & Krzych U. (2003). Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein­specific CD4+ and CD8+ T cells producing IFN-. Journal of Immunology, 171 (12), 6961-6967.
[55] World Health Organization (2011). WHO - Parasitic Diseases [online]. http://www.who.int/vaccine_research/diseases/soa_ parasitic/en/index4.html#pre-erythrocytic% 20 vaccines. Accessed 24 November 2014.
[56] Antigenics Inc. (2010). QS-21 immune adjuvant [online]. http://www.antigenics.com/products/tech/qs2. Accessed 24 November 2014.
[57] Stewart M.J. & Vanderberg J.P. (1988). Malaria sporozoites leave behind trails of circumsporozoite protein during gliding motility. Journal of Protozoology, 35 (3), 389-393.
[58] Leach A., Vekemans J., Lievens M., Ofori-Anyinam O., Cahill C., Owusu-Agyei S., Abdulla S., Macete E., Njuguna P., Savarese B., Loucq C., Ballou W.R. & Clinical Trials Partnership Committee (2011). Design of a phase III multicenter trial to evaluate the efficacy of the RTS,S/AS01 malaria vaccine in children across diverse transmission settings in Africa. Malaria Journal, 10, 224. doi: 10.1186/1475-2875-10-224
[59] Agnandji S.T., Lell B., Soulanoudjingar S.S., Fernandes J.F., Abossolo B.P., Conzelmann C., Methogo B.G., Doucka Y., Flamen A., Mordmüller B., Issifou S., Kremsner P.G., Sacarlal J., Aide P., Lanaspa M., Aponte J.J., Nhamuave A., Quelhas D., Bassat Q., Mandjate S., Macete E., Alonso P., Abdulla S., Salim N., Juma O., Shomari M., Shubis K., Machera F., Hamad A.S., Minja R., Mtoro A., Sykes A., Ahmed S., Urassa A.M., Ali A.M., Mwangoka G., Tanner M., Tinto H., D'Alessandro U., Sorgho H., Valea I., Tahita M.C., Kaboré W., Ouédraogo S., Sandrine Y., Guiguemdé R.T., Ouédraogo J.B., Hamel M.J., Kariuki S., Odero C., Oneko M., Otieno K., Awino N., Omoto J., Williamson J., Muturi-Kioi V., Laserson K.F., Slutsker L., Otieno W., Otieno L., Nekoye O., Gondi S., Otieno A., Ogutu B., Wasuna R., Owira V., Jones D., Onyango A.A., Njuguna P., Chilengi R., Akoo P., Kerubo C., Gitaka J., Maingi C., Lang T., Olotu A., Tsofa B., Bejon P., Peshu N., Marsh K., Owusu-Agyei S., Asante K.P., Osei-Kwakye K., Boahen O., Ayamba S., Kayan K., Owusu-Ofori R., Dosoo D., Asante I., Adjei G., Adjei G., Chandramohan D., Greenwood B., Lusingu J., Gesase S., Malabeja A., Abdul O., Kilavo H., Mahende C., Liheluka E., Lemnge M., Theander T., Drakeley C., Ansong D., Agbenyega T., Adjei S., Boateng H.O., Rettig T., Bawa J., Sylverken J., Sambian D., Agyekum A., Owusu L., Martinson F., Hoffman I., Mvalo T., Kamthunzi P., Nkomo R., Msika A., Jumbe A., Chome N., Nyakuipa D., Chintedza J., Ballou W.R., Bruls M., Cohen J., Guerra Y., Jongert E., Lapierre D., Leach A., Lievens M., Ofori-Anyinam O., Vekemans J., Carter T., Leboulleux D., Loucq C., Radford A., Savarese B., Schellenberg D., Sillman M., Vansadia P. & RTS,S Clinical Trials Partnership (2011). First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. New England Journal of Medicine, 365 (20), 1863-1875.
[60] RTS,S Clinical Trials Partnership, Agnandji S.T., Lell B., Fernandes J.F., Abossolo B.P., Methogo B.G., Kabwende A.L., Adegnika A.A., Mordmüller B., Issifou S., Kremsner P.G., Sacarlal J., Aide P., Lanaspa M., Aponte J.J., Machevo S., Acacio S., Bulo H., Sigauque B., Macete E., Alonso P., Abdulla S., Salim N., Minja R., Mpina M., Ahmed S., Ali A.M., Mtoro A.T., Hamad A.S., Mutani P., Tanner M., Tinto H., D'Alessandro U., Sorgho H., Valea I., Bihoun B., Guiraud I., Kaboré B., Sombié O., Guiguemdé R.T., Ouédraogo J.B., Hamel M.J., Kariuki S., Oneko M., Odero C., Otieno K., Awino N., McMorrow M., Muturi-Kioi V., Laserson K.F., Slutsker L., Otieno W., Otieno L., Otsyula N., Gondi S., Otieno A., Owira V., Oguk E., Odongo G., Woods J.B., Ogutu B., Njuguna P., Chilengi R., Akoo P., Kerubo C., Maingi C., Lang T., Olotu A., Bejon P., Marsh K., Mwambingu G., Owusu-Agyei S., Asante K.P., Osei-Kwakye K., Boahen O., Dosoo D., Asante I., Adjei G., Kwara E., Chandramohan D., Greenwood B., Lusingu J., Gesase S., Malabeja A., Abdul O., Mahende C., Liheluka E., Malle L., Lemnge M., Theander T.G., Drakeley C., Ansong D., Agbenyega T., Adjei S., Boateng H.O., Rettig T., Bawa J., Sylverken J., Sambian D., Sarfo A., Agyekum A., Martinson F., Hoffman I., Mvalo T., Kamthunzi P., Nkomo R., Tembo T., Tegha G., Tsidya M., Kilembe J., Chawinga C., Ballou W.R., Cohen J., Guerra Y., Jongert E., Lapierre D., Leach A., Lievens M., Ofori-Anyinam O., Olivier A., Vekemans J., Carter T., Kaslow D., Leboulleux D., Loucq C., Radford A., Savarese B., Schellenberg D., Sillman M. & Vansadia P. (2012). A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. New England Journal of Medicine, 367 (24), 2284-2295.
[61] Birkett A.J., Moorthy V.S., Loucq C., Chitnis C.E. & Kaslow D.C. (2013). Malaria vaccine R&D in the decade of vaccines: breakthroughs, challenges and opportunities. Vaccine 31, (suppl. 2), B233-243.
[62] Denny J.W.L. & Taylor-Robinson A.W. (2012). Progress with RTS,S – the most advanced candidate vaccine against malaria. In: Peterson A.M. & Calamandrei G.E. (eds.), Malaria: Etiology, Pathogenesis and Treatments. Nova Science Publishers, Hauppauge, NY, USA, pp. 39-67.
[63] Willyard C. (2014). Malaria vaccine, destined for Africa, seeks OK from Europe. Nature Medicine 20 (9), 968-969.
Author Information
  • School of Medical & Applied Sciences, Central Queensland University, Rockhampton, Australia

Cite This Article
  • APA Style

    Andrew W. Taylor-Robinson. (2014). Advancement Towards an Approved Vaccine to Target Plasmodium Falciparum Malaria. International Journal of Immunology, 2(5), 31-39. https://doi.org/10.11648/j.iji.20140205.11

    Copy | Download

    ACS Style

    Andrew W. Taylor-Robinson. Advancement Towards an Approved Vaccine to Target Plasmodium Falciparum Malaria. Int. J. Immunol. 2014, 2(5), 31-39. doi: 10.11648/j.iji.20140205.11

    Copy | Download

    AMA Style

    Andrew W. Taylor-Robinson. Advancement Towards an Approved Vaccine to Target Plasmodium Falciparum Malaria. Int J Immunol. 2014;2(5):31-39. doi: 10.11648/j.iji.20140205.11

    Copy | Download

  • @article{10.11648/j.iji.20140205.11,
      author = {Andrew W. Taylor-Robinson},
      title = {Advancement Towards an Approved Vaccine to Target Plasmodium Falciparum Malaria},
      journal = {International Journal of Immunology},
      volume = {2},
      number = {5},
      pages = {31-39},
      doi = {10.11648/j.iji.20140205.11},
      url = {https://doi.org/10.11648/j.iji.20140205.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.iji.20140205.11},
      abstract = {Plasmodium falciparum causes the severest form of malaria which kills well over one million persons each year, chiefly children, and results in significant debilitation in hundreds of millions more. This disease has a dramatic socioeconomic impact in endemic countries and thus it is a recurring target for global health enterprises. Increased investment in existing control measures, including insecticide-impregnated bed nets, has been paired with revitalized efforts to develop an efficacious vaccine. Sequencing of the genome of P. falciparum has provided insights into the malaria parasite’s complex lifecycle, which, combined with a deeper understanding of the human immune response to infection, has yielded many novel candidate vaccines during the past two decades. Most notable of these is RTS,S which has shown great promise over a long development process, becoming the first candidate vaccine against human malaria to advance to phase III clinical trials. Hence, there is optimism that in the near future RTS,S may become the first ever licensed vaccine against a parasitic disease in humans. However, this is qualified by the need for a better knowledge of its mechanism of protection and questions raised over its long-term therapeutic capacity. While the availability of RTS,S as a validated commercial product is not guaranteed, it is likely to contribute to the continuing campaign against malaria, if only as a forerunner to a fine-tuned second generation vaccine.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Advancement Towards an Approved Vaccine to Target Plasmodium Falciparum Malaria
    AU  - Andrew W. Taylor-Robinson
    Y1  - 2014/12/17
    PY  - 2014
    N1  - https://doi.org/10.11648/j.iji.20140205.11
    DO  - 10.11648/j.iji.20140205.11
    T2  - International Journal of Immunology
    JF  - International Journal of Immunology
    JO  - International Journal of Immunology
    SP  - 31
    EP  - 39
    PB  - Science Publishing Group
    SN  - 2329-1753
    UR  - https://doi.org/10.11648/j.iji.20140205.11
    AB  - Plasmodium falciparum causes the severest form of malaria which kills well over one million persons each year, chiefly children, and results in significant debilitation in hundreds of millions more. This disease has a dramatic socioeconomic impact in endemic countries and thus it is a recurring target for global health enterprises. Increased investment in existing control measures, including insecticide-impregnated bed nets, has been paired with revitalized efforts to develop an efficacious vaccine. Sequencing of the genome of P. falciparum has provided insights into the malaria parasite’s complex lifecycle, which, combined with a deeper understanding of the human immune response to infection, has yielded many novel candidate vaccines during the past two decades. Most notable of these is RTS,S which has shown great promise over a long development process, becoming the first candidate vaccine against human malaria to advance to phase III clinical trials. Hence, there is optimism that in the near future RTS,S may become the first ever licensed vaccine against a parasitic disease in humans. However, this is qualified by the need for a better knowledge of its mechanism of protection and questions raised over its long-term therapeutic capacity. While the availability of RTS,S as a validated commercial product is not guaranteed, it is likely to contribute to the continuing campaign against malaria, if only as a forerunner to a fine-tuned second generation vaccine.
    VL  - 2
    IS  - 5
    ER  - 

    Copy | Download

  • Sections