Phenotyping and Genotyping Characterization of Proteus vulgaris After Biofield Treatment
International Journal of Genetics and Genomics
Volume 3, Issue 6, December 2015, Pages: 66-73
Received: Oct. 1, 2015; Accepted: Oct. 13, 2015; Published: Nov. 16, 2015
Views 5813      Downloads 126
Authors
Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, USA
Alice Branton, Trivedi Global Inc., Henderson, USA
Dahryn Trivedi, Trivedi Global Inc., Henderson, USA
Gopal Nayak, Trivedi Global Inc., Henderson, USA
Sambhu Charan Mondal, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Article Tools
Follow on us
Abstract
Proteus vulgaris (P. vulgaris) is widespread in nature, mainly found in flora of human gastrointestinal tract. The current study was attempted to investigate the effects of Mr. Trivedi’s biofield treatment on lyophilized as well as revived state of P. vulgaris for antimicrobial susceptibility pattern, biochemical characteristics, and biotype. P. vulgaris cells were procured from Micro BioLogics Inc., USA, in sealed pack bearing the American Type Culture Collection (ATCC 33420) number and stored according to the recommended storage protocol until needed for experiments. Lyophilized vial of ATCC strain of P. vulgaris were divided in two parts, Gr. I: control and Gr. II: treatment. Group II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10. Gr. IIB was stored and analysed on day 143. After retreatment on day 143, the sample was divided into three separate tubes. First, second and third tubes were analysed on day 5, 10 and 15 respectively. All experimental parameters were studied using automated Micro Scan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of P. vulgaris with other bacterial species after treatment. The antimicrobial susceptibility and minimum inhibitory concentration showed 10.71% and 15.63% alteration respectively in treated cells of P. vulgaris as compared to control. It was observed that few biochemical reactions (6%) were altered in the treated groups with respect to control. Moreover, biotype number was substantially changed in treated cells, Gr. IIA (62060406, Proteus penneri) on day 10 as compared to control (62070406; Proteus vulgaris). 16S rDNA analysis showed that the identified sample in this experiment was Proteus vulgaris after biofield treatment. However, the nearest homolog genus-species was found to be Proteus hauseri. The results suggested that biofield treatment has impact on P. vulgaris in lyophilized as well as revived state.
Keywords
Proteus vulgaris, Antimicrobial Susceptibility, Biofield Treatment, Biochemical Reaction, Biotype, 16S rDNA Analysis
To cite this article
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana, Phenotyping and Genotyping Characterization of Proteus vulgaris After Biofield Treatment, International Journal of Genetics and Genomics. Vol. 3, No. 6, 2015, pp. 66-73. doi: 10.11648/j.ijgg.20150306.12
Copyright
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Bahashwan SA, El Shafey HM (2013) Antimicrobial resistance patterns of Proteus isolates from clinical specimens. ESJ 9: 188-202.
[2]
Herter CA, Broeck CT (1911) A biochemical study of Proteus vulgaris Hauser. J Biol Chem 9: 491-511.
[3]
Ghaidaa M, Yanchang W, Abdallah H (2013) The effect of p-nitrophenylglycerol on swarming and the production of some virulence factors in Proteus vulgaris. N Y Sci J 6: 8-14.
[4]
O'Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13: 534-546.
[5]
Burr HS (1957) Bibliography of Harold Saxton Burr. Yale J Biol Med 30: 163-167.
[6]
Hammerschlag R, Jain S, Baldwin AL, Gronowicz G, Lutgendorf SK, et al. (2012) Biofield research: A roundtable discussion of scientific and methodological issues. J Altern Complement Med 18: 1081-1086.
[7]
Movaffaghi Z, Farsi M (2009) Biofield therapies: Biophysical basis and biological regulations? Complement Ther Clin Pract 15: 35-37.
[8]
Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven's string galvanometer: The first electrocardiograph. Tex Heart Inst J 35: 174-178.
[9]
Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment. Ind Eng Manage 4: 161.
[10]
Dabhade VV, Tallapragada RR, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479.
[11]
Trivedi MK, Tallapragada RM (2009) Effect of super consciousness external energy on atomic, crystalline and powder characteristics of carbon allotrope powders. Mater Res Innov 13: 473-480.
[12]
Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.
[13]
Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 83: 138-143.
[14]
Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.
[15]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167.
[16]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.
[17]
Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth). Biotechnology 11: 154-162.
[18]
Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.
[19]
Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus Micro Scan Walk Away for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.
[20]
Kumar S, Tamura K, Nei, M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163.
[21]
Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, et al. (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38: 3623-3630.
[22]
Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, et al. (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407-438.
[23]
Lindstrom E, Mild KH, Lundgren E (1998) Analysis of the T cell activation signaling pathway during ELF magnetic field exposure, p56lck and [Ca2+]i-measurements. Bioeletrochem Bioenerg 46: 129-137.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186