Molecular Characterization of Imazaquin Tolerant and Sensitive Cowpea Genotypes
International Journal of Genetics and Genomics
Volume 4, Issue 2, April 2016, Pages: 5-10
Received: Mar. 20, 2016; Accepted: Apr. 1, 2016; Published: Apr. 16, 2016
Views 4534      Downloads 185
Authors
Abdulrahman Lado, Department of Agronomy, Bayero University, Kano, Nigeria
Muhammad Auwal Hussaini, Department of Agronomy, Bayero University, Kano, Nigeria
Alpha Yaya Kamara, International Institute of Tropical Agriculture, Kano Station, Nigeria
Article Tools
Follow on us
Abstract
In this paper, to investigate the tolerance of some cowpea genotypes to imazaquin, seeds of 30 cowpea genotypes were treated with imazaquin at 0.06 kg active ingredient ha-1 and control were treated with distilled water. Treated seeds were planted in plastic pots and raised for 3 weeks in a green house. Samples leaves were detached for DNA isolation at 2 weeks after sowing. Phenotypic result revealed that Hen-me and Hodi were the most tolerant (with 12.5% mortality rate) to imazaquin while Maptwapa and many others (with 100% mortality rate) were highly sensitive to imazaquin. However, there were no sequences differences between tolerant and sensitive genotypes in amplified region of the annotated portion of AHAS (acetohydroxy-acid synthase) from cowpea. It can be concluded that the major significant difference between imazaquin tolerance and sensitive cowpea is as a result of rapid metabolic detoxification of herbicides in tolerant cowpea. It is therefore imperative that enzymology involve in the differential metabolism of this herbicide in this crop needs urgent and necessary attention.
Keywords
AHAS Enzyme, Imazaquin, Herbicide Tolerance and Cowpea Genotypes
To cite this article
Abdulrahman Lado, Muhammad Auwal Hussaini, Alpha Yaya Kamara, Molecular Characterization of Imazaquin Tolerant and Sensitive Cowpea Genotypes, International Journal of Genetics and Genomics. Vol. 4, No. 2, 2016, pp. 5-10. doi: 10.11648/j.ijgg.20160402.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Ashraf M. (1985). Farming-systems Approach. In: Kim SK. (ed) Combating Striga in Africa. Proceeding of the International Workshop held in Ibadan Nigeria; on 22–24 August, 1985.pp 341-357.
[2]
Davis D. W., Oeke E. A., Oplinger E. S., Doll J. D., Hanson K. V. and Putnam D. D. (1991). Field Crops Manual Alternative http:www.hort.purdue.edu/new crop/afcm/cowpea.html.
[3]
Barrett M. (1989). Reduction of imazaquin injury to corn (Zea mays) and sorghum (Sorghum bicolor) with antidotes. Weed Science, 37: 34-41.
[4]
Congleton W. F., Vancantfort A. M. and Lignowski E. (1987). Imazaquin (scepter): A new soybean herbicide. Weed Technology, 1 (2): 186-188.
[5]
Chen X. Laudeman T. W. Rushton P. J. Spraggins T. A. and Timko M. P. (2007). CGKB: An annotation knowledge base for cowpea (Vigna unguiculata L.) Methylation filtered genomic gene space sequences. BMC Bioinformatic, http://ww.biomedcentral.com/1471 21058/129.
[6]
Li C., Fatokun C. A., Ubi B., Singh B. B. and Scoles G. J. (2001). Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Science, 31(1): 189-197.
[7]
Timko, M. P., Pau J. R., Thomas, W. L., Marta T. B., Edmond C., Foo cheung C. D. T. and Xianfeng C. (2008). Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9: 103-123.
[8]
Riskey, M. A. and Lawrence O. L (1991). Efficacy of Imazaquin on various weed species. Weed Science 39 (2): 243-250.
[9]
Tecle, B. Cunha D. A. and Shaner L. D. (1993). Differential routes of metabolism of imidazolinones: Basis for soybean (Glycine max) selectivity. Pesticide Biochemistry and Physiology 46: 120-130.
[10]
Baerg R. J. and Barrett M. (1996). The basis of imazethapyr tolerance in cowpea (Vigna sinensis). Weed Science, 44: 769-775.
[11]
Zhou, Q., Weiping, L., Yongsong Z. and Kevin L. (2007) Action mechanism of acetolactate synthase-inhibiting herbicides. Pesticide Biochemistry and Physiology 89: 98-96.
[12]
Durner J., Gailus V. and Boger P. (1991).New aspects of inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiology, 95: 1144-1149.
[13]
Heap I. M. (2007). International survey of herbicide resistant weeds. Weed science society of America. http://www.weedscience.org/Accessed 11/7/2012.
[14]
Stidham M. A. (1991). Herbicide that inhibits acetohydroxy acid synthase. Weed Science 39(3): 428-434.
[15]
Tuinstra, M. R., Soumana S., Al-khatip K., Kapranu I., Toure A., Bastiaans A. L., Ochanda N. W., Salmi I., Kayentao M. and Dembele S. (2009). Efficacy of herbicide seed treatments for controlling Striga infestation of sorghum. Crop Science 49: 923-929.
[16]
Berner D. K., Award A. E. and Aigbokhan E. I. (1994). Potentials of imazaquin seed treatments for control of Striga gesnerioides and Alectra vogelii in cowpea (Vigna unguiculata). Plant Disease, 7: 18-23.
[17]
Kanampiu F. K. Ransom J. K., Gressel J., Jewell D., Freiese D., Grimanell D. and Hoisington D. (2002). Appropriateness of biotechnology to African Agriculture: Striga and maize paradigms. Plant Cell, Tissue and Organs Culture, 69: 105–110.
[18]
Kanampiu F. K., Ransom J. K., Friensen D. and Gressel J. (2002) b. Imazapyr and pyrithiobac movement in soil and from maize seed coats to control Striga in legume intercropping. Crop Protection, 21: 611-619.
[19]
Kabambe V. H., Kananpiu F. K. and Ngwira N. (2008). Imazapyr (herbicide) seed dressing increases yield, suppresses Striga asiatica and has seed depletion role in maize (Zea mays L.) in Malawi. African Journal of Biotechnology, 7(18): 3293-3298.
[20]
Adagba M. A., Lagoke S. T. O. and Singh B. N. (2002). Potentials of Cinosulfuron and CGA152005 seed treatment for control of Striga hermonthica in upland rice. Act Agronomica Hungarica, 50(1): 7-18.
[21]
FAO. (2005). Status research and application of crop biotechnology in developing countries. http:www.Fao.org/docrep/008/y5800e/y 5800.htm. Accessed 9/15/2012.
[22]
Menalled F, D. and Dyer W. E. (2006). Preventing and managing herbicideresistance in Montana. MSU Extension Montana Guige. MT 200506AG.
[23]
Newsom L. J. and Shaw D. R. (1992). Soybean (Glycine max) cultivar tolerance to chlorimuron and imazaquin with varying hydoponic solution pH. Weed Technology, 6(2): 382-388.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186