Evaluation of Structural Properties and Isotopic Abundance Ratio of Biofield Energy Treated (The Trivedi Effect®) Magnesium Gluconate Using LC-MS and NMR
European Journal of Biophysics
Volume 5, Issue 1, February 2017, Pages: 7-16
Received: Jan. 31, 2017; Accepted: Feb. 14, 2017; Published: Feb. 25, 2017
Views 1732      Downloads 66
Authors
Mahendra Kumar Trivedi, Trivedi Global, Inc., Henderson, Nevada, USA
Alice Branton, Trivedi Global, Inc., Henderson, Nevada, USA
Dahryn Trivedi, Trivedi Global, Inc., Henderson, Nevada, USA
Gopal Nayak, Trivedi Global, Inc., Henderson, Nevada, USA
Alan Joseph Balmer, Trivedi Global, Inc., Henderson, Nevada, USA
Dimitrius Anagnos, Trivedi Global, Inc., Henderson, Nevada, USA
Janice Patricia Kinney, Trivedi Global, Inc., Henderson, Nevada, USA
Joni Marie Holling, Trivedi Global, Inc., Henderson, Nevada, USA
Joy Angevin Balmer, Trivedi Global, Inc., Henderson, Nevada, USA
Lauree Ann Duprey-Reed, Trivedi Global, Inc., Henderson, Nevada, USA
Vaibhav Rajan Parulkar, Trivedi Global, Inc., Henderson, Nevada, USA
Parthasarathi Panda, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Kalyan Kumar Sethi, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Article Tools
Follow on us
Abstract
The current research work was designed to explore the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio (PM+1/PM and PM+2/PM) by using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect®- Biofield Energy Healing Treatment remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The LC-MS analysis of the both control and treated samples revealed the presence of the mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.53 min with similar fragmentation pattern. The relative peak intensities of the fragment ions of the treated sample were significantly changed compared with the control sample. The proton and carbon signals for CH, CH2 and CO groups in the proton and carbon NMR spectra were found almost similar for the control and the treated samples. The isotopic abundance ratio analysis revealed that the isotopic abundance ratio of PM+1/PM (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) in the treated sample was significantly increased by 34.33% compared with the control sample. Subsequently, the percentage change of the isotopic abundance ratio of PM+2/PM (18O/16O or 26Mg/24Mg) was significantly decreased in the treated sample by 64.08% as compared to the control sample. Briefly, 13C, 2H, 17O, and 25Mg contributions from (C12H23MgO14)+ to m/z 416; 18O and 26Mg contributions from (C12H23MgO14)+ to m/z 417 in the treated sample were significantly changed compared with the control sample. Thus, the treated magnesium gluconate could be valuable for designing better pharmaceutical and/or nutraceutical formulations through its changed physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections. The Biofield Energy Treated magnesium gluconate might be supportive to design the novel potent enzyme inhibitors by using its kinetic isotope effects.
Keywords
Biofield Energy Healing Treatment, Consciousness Energy Healing Treatment, Biofield Energy Healers, The Trivedi Effect®, Magnesium Gluconate, LC-MS, NMR, Isotopic Abundance Ratio, Isotope Effects
To cite this article
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Alan Joseph Balmer, Dimitrius Anagnos, Janice Patricia Kinney, Joni Marie Holling, Joy Angevin Balmer, Lauree Ann Duprey-Reed, Vaibhav Rajan Parulkar, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana, Evaluation of Structural Properties and Isotopic Abundance Ratio of Biofield Energy Treated (The Trivedi Effect®) Magnesium Gluconate Using LC-MS and NMR, European Journal of Biophysics. Vol. 5, No. 1, 2017, pp. 7-16. doi: 10.11648/j.ejb.20170501.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Heaton FW (1990) Role of magnesium in enzyme systems in metal ions in biological systems, In: Sigel H, Sigel A (Eds.), Volume 26: Compendium on magnesium and its role in biology, nutrition and physiology, Marcel Dekker Inc., New York.
[2]
Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4: 60-72.
[3]
Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: Properties, applications and microbial production. Food Technol Biotechnol 44: 185-195.
[4]
Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7: 8199-8226.
[5]
William JH, Danziger J (2016) Magnesium deficiency and proton-pump inhibitor use: A clinical review. J Clin Pharmacol 56: 660-668.
[6]
Guerrera MP, Volpe SL, Mao JJ (2009) Therapeutic uses of magnesium. Am Fam Physician 80: 157-162.
[7]
Fleming TE, Mansmann Jr HC (1999) Methods and compositions for the prevention and treatment of diabetes mellitus. United States Patent 5871769, 1-10.
[8]
Fleming TE, Mansmann Jr HC (1999) Methods and compositions for the prevention and treatment of immunological disorders, inflammatory diseases and infections. United States Patent 5939394, 1-11.
[9]
Turner RJ, Dasilva KW, O'Connor C, van den Heuvel C, Vink R (2004) Magnesium gluconate offers no more protection than magnesium sulphate following diffuse trau-matic braininjury in rats. J Am Coll Nutr 23: 541S-544S.
[10]
Weglicki WB (2000) Intravenous magnesium gluconate for treatment of conditions caused by excessive oxidative stress due to free radical distribution. United States Patent 6100297, 1-6.
[11]
Martin RW, Martin JN Jr, Pryor JA, Gaddy DK, Wiser WL, Morrison JC (1988) Comparison of oral ritodrine and magnesium gluconate for ambulatory tocolysis. Am J Obstet Gynecol 158: 1440-1445.
[12]
Lee KH, Chung SH, Song JH, Yoon JS, Lee J, Jung MJ, Kim JH (2013) Cosmetic compositions for skin-tightening and method of skin-tightening using the same. United States Patent 8580741 B2.
[13]
Coudray C, Rambeau M, Feillet-Coudray C, Gueux E, Tressol JC, Mazur A, Rayssiguier Y (2005) Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes Res 18: 215-223.
[14]
Stenger VJ (1999) Bioenergetic Fields. The Scientific Review of Alternative Medicine 3.
[15]
Rogers, M (1989) "Nursing: A Science of Unitary Human Beings." In J.P. Riehl-Sisca (ed.) Conceptual Models for Nursing Practice. 3rd Edn. Norwark: Appleton & Lange.
[16]
Rosa L, Rosa E, Sarner L, Barrett S (1998) A close look at therapeutic touch. JAMA- J Am Med Assoc 279: 1005-1010.
[17]
Warber SL, Cornelio D, Straughn, J, Kile G (2004) Biofield energy healing from the inside. J Altern Complement Med 10: 1107-1113.
[18]
Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[19]
Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4: 141.
[20]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Antibiogram of biofield-treated Shigella boydii: Global burden of infections. Science Journal of Clinical Medicine 4: 121-126.
[21]
Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Mondal SC, Jana S (2015) Antibiogram pattern of Shigella flexneri: Effect of biofield treatment. Air Water Borne Diseases 3: 122.
[22]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Characterization of phenotype and genotype of biofield treated Enterobacter aerogenes. Transl Med 5: 155.
[23]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Antibiogram and genotypic analysis using 16S rDNA after biofield treatment on Morganella morganii. Adv Tech Biol Med 3: 137.
[24]
Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Physicochemical and spectroscopic properties of biofield energy treated protose. American Journal of Biomedical and Life Sciences 3: 104-110.
[25]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Bacterial identification using 16S rDNA gene sequencing and antibiogram analysis on biofield treated Pseudomonas fluorescens. Clin Med Biochemistry Open Access 1: 101.
[26]
Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Characterisation of physical, spectral and thermal properties of biofield treated resorcinol. Organic Chem Curr Res 4:146.
[27]
Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Spectroscopic characterization of disulfiram and nicotinic acid after biofield treatment. J Anal Bioanal Tech 6: 265.
[28]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Potential impact of biofield treatment on atomic and physical characteristics of magnesium. Vitam Miner 3: 129.
[29]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Physical, Atomic and Thermal Properties of Biofield Treated Lithium Powder. J Adv Chem Eng 5: 136.
[30]
Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatment. Modern Chemistry 3: 38-46.
[31]
Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Characterization of physical, thermal and spectroscopic properties of biofield energy treated p-phenylenediamine and p-toluidine. J Environ Anal Toxicol 5: 329.
[32]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Agronomic characteristics, growth analysis, and yield response of biofield treated mustard, cowpea, horse gram, and groundnuts. International Journal of Genetics and Genomics 3: 74-80.
[33]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of biochemical marker - glutathione and DNA fingerprinting of biofield energy treated Oryza sativa. American Journal of BioScience 3: 243-248.
[34]
Trivedi MK, Nayak G, Tallapragada RM, Patil S, Latiyal O, Jana S (2015) Effect of biofield treatment on structural and morphological properties of silicon carbide. J Powder Metall Min 4: 132.
[35]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Evaluation of atomic, physical and thermal properties of tellurium powder: Impact of biofield energy treatment. J Electr Electron Syst 4: 162.
[36]
Trivedi MK, Branton A, Trivedi D, Nayak G, Sethi KK, Jana S (2016) Isotopic abundance ratio analysis of biofield energy treated indole using gas chromatography-mass spectrometry. Science Journal of Chemistry 4: 41-48.
[37]
Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Evaluation of the isotopic abundance ratio in biofield energy treated resorcinol using gas chromatography-mass spectrometry technique. Pharm Anal Acta 7: 481.
[38]
Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2016) Determination of isotopic abundance of 2H, 13C, 18O, and 37Cl in biofield energy treated dichlorophenol isomers. Science Journal of Analytical Chemistry 4: 1-6.
[39]
Schellekens RC, Stellaard F, Woerdenbag HJ, Frijlink HW, Kosterink JG (2011) Applications of stable isotopes in clinical pharmacology. Br J Clin Pharmacol 72: 879-897.
[40]
Muccio Z, Jackson GP (2009) Isotope ratio mass spectrometry. Analyst 134: 213-222.
[41]
Vanhaecke F, Kyser K (2012) Isotopic composition of the elements In Isotopic Analysis: Fundamentals and applications using ICP-MS (1stedn), Edited by Vanhaecke F, Degryse P. Wiley-VCH GmbH & Co. KGaA, Weinheim.
[42]
Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Determination of isotopic abundance of 13C/12C or 2H/1H and 18O/16O in biofield energy treated 1-chloro-3-nitrobenzene (3-CNB) using gas chromatography-mass spectrometry. Science Journal of Analytical Chemistry 4: 42-51.
[43]
Smith RM (2004) Understanding Mass Spectra: A Basic Approach, Second Edition, John Wiley & Sons, Inc, ISBN 0-471-42949-X.
[44]
Meija J, Coplen TB, Berglund M, Brand WA, De Bievre P, Groning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC technical Report). Pure Appl Chem 88: 293-306.
[45]
Asperger S (2003) Chemical Kinetics and Inorganic Reaction Mechanisms Springer science + Business media, New York.
[46]
Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.
[47]
Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Mass spectrometric analysis of isotopic abundance ratio in biofield energy treated thymol. Frontiers in Applied Chemistry 1: 1-8.
[48]
Cleland WW (2003) The use of isotope effects to determine enzyme mechanisms. J Biol Chem 278: 51975-51984.
[49]
Nikolic VD, Illic DP, Nikolic LB, Stanojevic LP, Cakic MD, Tacic AD, Ilic-Stojanovic SS (2014) The synthesis and characterization of iron (II) gluconate. Advanced Technologies 3: 16-24.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931