| Peer-Reviewed

Human Red Blood Cells-1

Received: 27 September 2013    Accepted:     Published: 20 October 2013
Views:       Downloads:
Abstract

Biochemists and cell biologists, who are interested in membranes, tend to regard the human red blood cell ambivalently. On one hand, red blood cells lack nuclei and the various intracellular organelles, yet that are highly specialized for a particular respiratory function. On the other hand, the human red blood cell presents an excellent model for membrane transport function.

Published in American Journal of Life Sciences (Volume 1, Issue 5)
DOI 10.11648/j.ajls.20130105.12
Page(s) 195-214
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Human Erythrocyte, Electrochemical Potential, Donnan Equilibrium, Haemoglobin, Red Blood Cell Shape, Permean Ions, Osmotic Pressure, Band 3, Facilitated Transport, K+/Cl- Cotransport, K+(Na+)/H+ Exchanger, Na+/K+-Atpase, Anion Transport

References
[1] A.Piperno, S. Galimberti, R.Mariani, S.Pelucchi, G.Ravasi, C.Lombardi, G. Bilo, M. Revera, A. Giuliano, A. Faini, V., Mainini, M. Westerman, T. Ganz, M.G. Valsecchi, G. Mancia and G.Parati (2011) "Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project", Blood, vol.117 (10), pp.2953-2595.
[2] J. Seifter, A. Ratner and D.Sloane. (2005) Concepts in Medical Physiology. Baltimore, MD: Lippincott Williams &Wilkins.
[3] A. van Leeuwenhoek (1695) Arcana Natura Detecta. Apud Henricum a Krooneveld: Delphis Batavorum.
[4] J. Swammerdam (1737) Bybel der Nature, in The Book of Nature, Hill, J. (ed.). London: Bookseller C.G. Seyffert.
[5] S.I. Hajdu(2003) "A note from history; the discovery of bloodcells", Annals of Clinical & Laboratory Science, vol.33, pp.237-238.
[6] J.H. Bennett (1841) The Employment of the Microscope in Medical Studies. Edinburgh: C. Stewart & Co.
[7] L.S. Beale (1877) The microscope in Medicine. London: J.& A. Churchill.
[8] G.Schwartz and P.W. Bishop (1958)Moments of Discoveries, Volume 1. New York: Basic Books.
[9] J.R. Porter (1976) "Antony van Leenwenhoek: tercentary of his discovery of bacteria", Bacteriology Review, vol.40(2),pp.260-269.
[10] K. Landsteiner, (1900) "Zur kenntnis der antifermentativen, lytischen und agglutinierenden wirkungen des blutserums und der lymphe", Centralbl f Bakt., vol.27, pp. 253-360.
[11] K.Landsteiner and A.S. Wiener (1940) "An agglutinable factor in human blood recognized by immune sera for Rhesus blood", Proc. Soc. Exp. Biol. Med., vol.43, pp.223-224.
[12] A. von Decastello and A. Sturli (1902) "Ueber die isoagglutinine im serum gesunder und kranker menschen", Mfinch med Wschr, vol.49, pp.1090-1095.
[13] J. Jansky (1907) "Haematologicke studie u psychotiku: etudes hematologiques dans les maladies", Sborn Klin, vol.8, pp.85-135.
[14] W.M. Watkins (2001) "The ABO blood group system: historical background", Transfus Med., vol.11, pp.243-265.
[15] L. Dean (2005) Blood Groups and Red Cell Antigens. Bethesda,MD: National Centre for Biotechnology Information.
[16] R. Ottenberg and D.Haliski (1913) "Accidents in transfusion: their prevention by prevention by preliminary blood examinations", JAMA, vol.61, pp.2138-2140.
[17] P.L. Mollison (2000) "The introduction of citrate as an anticoagulant for transfusion and of glucose as a red cell preservative", Br.J.Haematol., vol.108, pp.13-18.
[18] M.F. Perutz, M.G. Rossman, A.F. Cullis, Muirhead, H. G. Will and A.C.T. North (1960) "Structure of haemoglobin: a three-dimensional fourier synthesis at 5.5-.ANG. resolution, obtained by X-ray analysis", Nature, vol. 185, pp. 416-422.
[19] L. Kaestner, W.Tabellion, E. Weiss, I.Bernhardt, and P. Lipp (2006) "Calcium imaging of individual erythrocytes: problems and approaches", Cell Calcium, vol.39, pp.13-19.
[20] L. Kaestner (2011) "Cation channels in erythrocytes-historical and future perspective", The Open Biology Journal, vol.4,pp.27-34.
[21] W.F. Ganong (2003) Review of Medical Physiology, 21st edn. New York: McGraw-Hill Lang. [75] Geers, C. and Gros, G. (2000)"Carbon dioxide transport and carbonic anhydrase in blood and muscle", Physiol Review, vol. 80 (2), pp.681-715.
[22] I.L. Weissman, D.J. Anderson and F.Gage (2001) " Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations", Annu Rev Cell Dev Biol., vol.17, pp. 387-403.
[23] J. Macleod (1977) Davidson's Principles and Practice of Medicine, 12th edn. Edinburgh: Churchill.
[24] J. Pallis, and G.B. Segel (1998) "Development biology of erythropoiesis", Blood Review, vol.12 (2), pp.106-114.
[25] I. Baciu and L.Ivanof (1984) "Erythropoietin interaction with the mature red cell membrane, Ann.N.Y.Acad.Sci" vol.414,pp. 66-72.
[26] W. Bartley, L.M. Birt and P. Banks (1968) The Biochemistry of the Tissues, London: John Wiley & Sons Ltd.
[27] D.W. Golde, N. Bersch, S.G. Quan and A.J. Lusis (1980) "Production of erythroid- potentiating activity by a human T-lymphoblast cell line", Proc. Nati. Acad. Sci. USA, vol. 77, No. 1, pp. 593-596.
[28] J.D. Bauer, P.G. Ackermann and G.Toro (1974) Clinical Laboratory Methods, 8th edn. St.Louis, MO: The C.J.Mosby Company.
[29] J.W. Harris and R.W. Kellermeyer (1974) The Red Cell-Production, Metabolism, Destruction: Normal and Abnormal.Cambridge, MA: Harvard University Press.
[30] F. Ajmar, , C. Garre, M. Sessarego, R. Ravazzolo, R. Barresi, G.B. Scarra and M.Lituania (1983) "Expression of erythroid acetylcholineesterase in the K-562 leukemia cell line", Cancer Res., vol.43, pp.5560-5563.
[31] K.J. Halbhuber, C. Lemke, D.Stibenz and W. Linss, (1984) "Activation of acetylcholine esterase (ACHE) as a sign for erythrocyte membrane alteration", Exp.Pathol, vol.25 (1), pp.35-44.
[32] S. Trubowitz and B.Masek (1968) "A histochemical study of the reticuloendothelial system of human marrow—it's possible transport role", Blood, vol. 32 (4), pp. 610-628.
[33] R.M. Cohen, R.S. Franco, P.K. Khera, E.P. Smith, C.J. Lindsell, P.J. Ciraolo, M.B. Palascak and C.H. Joiner (2008) "Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c", Blood, vol.12 (10), pp.4284-4291.
[34] N.T. Berlin, M. Beeckmans, P.J. Elmlinger and J.H. Lawrence, (1957) "Life span of red blood cell", J.Lab.Clin. Med., vol.50, p.558.
[35] J.C. Ellory and J.D. Young (1982) Red Cell Membranes – A Methodological Approach. London: Academic Press.
[36] R. Whittam (1964) Transport and Diffusion in Red Blood Cells. London: Edward Arnold (publishers) Ltd.
[37] H.B. Sutton and N.S. Moore (1944) "The diagnosis and treatment of congenital hemalotic (spherocytic) jaundice: report of a case with unusual blood findings altered by liver therapy", Ann. Intern. Med., vol.21 (4), pp. 698-708.
[38] I. Bernhardt and J.C. Ellory (2003) Red Cell membrane Transport in Health and Disease. Berlin: Springer-Verlag.
[39] Y. Yawata (2003) Cell Membrane: The Red Blood Cell as a Model. Weinheim, Germany: Wiley-VCH GmbH & Co.KGaA.
[40] F.J.W. Roughton (1963) "Kinetics of gas transport in the blood", Br.Med.Bull, vol.19 (1), pp.80-89.
[41] G.R. Cokelet and H.J. Meiselman (1968) "Rheological comparison of hemoglobin solutions and erythrocyte suspensions", Science, vol.162, pp.275-277.
[42] R.A.B. Holland (1969) " Rate at which CO replaces O2 from O2Hb in red cells of different species", Respiratory Physiology, vol.7 (1), pp.43-63.
[43] W. Lathem and W.E. Worley (1959) " The distribution of extracorpuscular hemoglobin in circulating plasma", J.Clin.Invest, vol.38 (3), p.474-483.
[44] H.C. Wilson (1923) "The effect of carbon dioxide and acetic acid on the osmotic pressure of haemoglobin", Biochem. J., vol.17 (1), pp.59–71.
[45] J.H. Green (1978) Basic Clinical Physiology, 3rd edn. Oxford: Oxford University Press.
[46] P.A. Fortes (1977) "Anion movement in red blood cells", in Membrane Transport in Red Cells, Ellory, J.C. and Lew, V.L.(eds.), pp.175-195. London: Academic Press.
[47] A.J. Vander, J.H. Sherman and D.S. Luciano (1978) Human Physiology, 2nd edn. New Delhi: Tata McGraw Hill Ltd.
[48] R. Benesch and R.E. Benesch (1967) " The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin", Biochem. Biophys. Res. Comm., vol.26 (2), pp.162-167.
[49] K. Imaizumi, K.Imai and I.Tyuma (1982) "Linkage between carbon dioxide binding and four-step oxygen binding to hemoglobin", J.Mol.Biol, vol.159 (4), pp.703-719.
[50] R.E. Dickerson and I.Geis (1983) Haemoglobin: Structure, Function, Evolution and Pathology. San Francisco, CA: The Benjamin/Cummings Pub., Inc.
[51] R.C. Darling and F.J.W. Ranghton (1942) "Effect of methemoglobin on equilibrium between oxygen and hemoglobin", Am. J. Physiol, vol.137, pp.56-68.
[52] R.W. Hill (1976) Comparative Physiology of Animals. New York: Harper & Row Publishers.
[53] A. White, P. Handler and E. Smith E. (1973) Principles of Biochemistry, 5th edn. Tokyo: McGraw-Hill Kogakusha Ltd.
[54] S. Tomita and A.Riggs (1971) "Studies of the interaction of 2, 3-diphosphoglycerate and carbon dioxide with hemoglobins from mouse, man, and elephant", J.Biol.Chem, vol.246, pp.547-554.
[55] R.J. Tanis, R.E. Tashian and Y.S.L. Yu (1970) " Properties of carbonic anhydrase isozymes isolated from porcine erythrocytes", J. Biol. Chem, vol.245, pp.6003-6009.
[56] B.K. Vallee and A. Galdes, (1984)"The metallobiochemistry of zinc enzymes", Adv. Enzymol, vol.56, pp.283-430.
[57] J.C. Ellory, H. Guizouran, F. Borgese, L.J. Bruce, R.J. Wilkins and G.W. Stewart (2009) "Leaky Cl—HCO3- exchangers: cation fluxes via modified AE1", Phil.Trans.R. Soc.B, vol.364, pp.189-194.
[58] C.J. Davidson, E.G. Tuddenham and J.H. McVey (2001) "450 million years of hemostasis", J.Thromb. Haemost., vol.1,pp.1487- 1494.
[59] K.A. Tanaka, N.S. Key and J.H. Levy (2009) "Blood coagulation: hemostasis and thrombin regulation", Anesthesia & Analgesia, vol.108(5), pp.1433-1446.
[60] K. Landsteiner (1961) "On agglutination of normal human blood", Transfusion, vol.1, pp. 5-8.
[61] M.G. Angelos and G.C. Hamilton (1986) "Coagulation studies: prothrombin time, partial thromboplastin time, bleeding time", Emerg.Med.Clin. North. Am., vol. 4(1), pp.05-113.
[62] N.C. Hughes-Jones and B.Gardener (2002) "Historical review red cell agglutination: the first description by Creite (1869)and further observations made by Landois (1875) and Landsteiner (1901)", Br.J.Haematol, vol.119, pp.889-893.
[63] K.E.Barrett, S.M. Barman, S.Boitano and H Brooks (2012) Ganong's Review Medical Physiology, 24th edn. New York: McGraw-Hill Professional.
[64] W.L. Nichols and J.W. Bowie (2001) A History of Blood Coagulation. Rochester, MN: Mayo Clinic Foundation.
[65] A.T. Nurden and J.N. George (2005) Inherited Abnormalities of Platelets Membranes: Glanzman Thrombasthenia, Bernard-Soulier Syndrome, and Other Disorders, in Hemastasis and Thrombosis, Basic Principles & Clinical Practice, Colman, R.W., Marder, V.J., Clowes, A.W., George, J.N. and Goldhaber, A.Z. (eds.), pp.987-1010. Philadelphia, PA: VI.Lippincott, Williams & Wilkins.
[66] C. Chaimoff, D.Creter and M.Djaldetti (1978) "The effect of pH on platelet and coagulation factor activities", Am.J.Surg., vol. 136(2), pp. 257-259.
[67] G.L. Dale (2005) "Coated-platelets: an emerging omponent of procoagulant response", J.Thromb. Haemost., vol. 3(10), pp. 2185-2192.
[68] J. Dias , M. Gumenyuk , H.Kang , M.Vodyanik,, J. Yu, J.A.Thomson and I.I. Slukvin (2011) "Generation of red blood cells from human induced pluripotent stem cells", Stem Cells Dev., vol. 20 (9), pp.1639-1547.
[69] P. Fantle and H.A. Ward (1965) "Human fibrinogen derived from phosphorus determinations", Biochem. J., vol.96, pp.886-889.
[70] J.Y. Chang (1986) "The structure and proteolytic specifications of autolysed human thrombin", Biochem. J., vol.240 (3),pp.797-802.
[71] W.W. Duke (1910) "The relation of blood platelets to hemorrhagic disease", J.Am.Med.Ass, vol.55, pp.1185-1193.
[72] A.J Hellem, C.F. Borchgrevink and S.B. Ames (1961) "The role of red cells in haemostasis: the relation between haematocrit , bleeding time and platelet adhesiveness", Br.J.Haematol., vol.7, pp. 42-49.
[73] V.T. Turitto and H.J. Weiss (1980) "Red blood cells: their dual role in thrombus formation", Science, vol. 207, pp.541-543.
[74] S. Valles, M.T. Santos, J.Aznar, A.J. Marcus, V. Martinez-Sales, M. Portoles, M.J. Broekman and L.B. Safier, (1991) "Erythrocytes metabolically enhance collagen- induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release and recruitment", Blood, vol.78, pp.154-162.
[75] M.T. Santos, J.Valles, J. Aznar, A.J. Marcus, M.J. Broekman and L.B. Safier (1997) "Prothombotic effects of erythrocytes on platelet reactivity: reduction by aspirin", Circulation, vol.95, pp.63-68.
[76] D.A. Andrews, and P.S.Low (1999) "Role of red blood cells in thrombosis", Curr.Opin.Hematol., vol.6(2), pp.76-82.
[77] L. Kaestner, W.Tabellion, P.Lipp and I. Bernhardt (2004) "Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process", Thromb. Haemost., vol.92, pp.1269-1272.
[78] D. Mori, K. Yano, K. Tsubota, T. Ishikawa, S. Wada and T.Yamaguchi (2008) "Computational study on effect of red blood cells on primary thrombus formation", Thrombosis Research, vol.123 (1), pp.114-121.
[79] J.Y. Noh, K.M. Lim, O.N. Bae, S.M. Chung, S.W. Lee, K.M. Joo, S.D. Lee and J.H. Chung (2010) "Procoagulant and prothrombotic activation of human erythrocytes by phosphatidic acid", Am.J. Physiol: Heart Circ. Physiol., vol.299, pp.347-355.
[80] D. L. Nelson and M.M.Cox (2008) Lehninger Principles of Biochemistry, 5th edn. New York: W.H.Freeman and Company.
[81] F.J. Lionetti (1974) "Pentose phosphate pathway in human erythrocytes", in Cellular and Molecular Biology of Erythrocytes, Yoshikawa, H. and Rapoport, S.M. (eds.), pp.143-166. Tokyo: University of Tokyo Press.
[82] S.G. [Quick Edit]Sullivan and A.Stern (1984) "Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate", Biochem. Pharmacol., vol. 33(9), pp.1417-1421.
[83] D.Galleman and P. Eyer (1993) "Effects of phenacetin metabolites 4-nitrosophenol on glycolysis and pentose pathway in human red blood cells", Biol.Chem. Hoppe Seyler, vol. 4(1), pp.37-49.
[84] M.A. Milanick and R.B. Gunn (1982) "Proton-sulfate cotraosnport mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells", J.Gen. Physiol., vol.79, pp.87-113.
[85] V. de Bari and A.Bennun (1984) "Regulation of the pentose phosphate pathway in the human erythrocyte", Biophys. J., vol.45 (2), p.212.
[86] R. Sasaki and H.Chiba (1983) " Role and induction of 2, 3-bisphosphoglycerate synthase", Mol. Cell Biochem., vol.53, pp.247-256.
[87] E.R. Jaffe (1974) "The formation and reduction of methemoglobin in human erythrocytes", in Cellular and Molecular Biology of Erythrocytes, Yoshikawa, H. and Rapoport, S.M. (eds), pp.345-376. Tokyo: University of Tokyo Press.
[88] R.B. Gunn (1973) "Recent Advances in Membrane Metabolic Research", in Erythrocytes, Thrombocytes, Leukocytes, Gerlach, E., Moser, K., Deutsch, E. and Willmanns, W. (eds), pp.77-81. Stuttgart, Germany: Georg Thieme.
[89] O.H. Lowry, N.J. Rosenbrough, A.L. Farr and R.J. Randall (1951) "Protein measurement with the Folin-phenol reagent", Biol. Chem., vol.193, pp.265-275.
[90] J.T. Dodge, C. Mitchelland D.J. Hanahan (1963) "The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes", Arch. Biochem., vol.100, pp.119-130.
[91] T.L. Steck and J.A. Kant (1974) "Preparation of Impermeable Ghosts and Inside-out Vesicles from Human Erythrocyte Membranes", in Methods in Enzymology, Fleischer, S. and Packer, S. (eds.), vol. 31, pp.172-180.
[92] C.A. Seymour, S. Muallen and V.L. Lew (1982) "Preparation of Inside-out Vesicles from Red Blood Cells in One Step", in Red Cell Membranes - A Methodological Approach, Ellory, J.C. and Young, J.D. (eds.), pp.219-222. London: Academic Press.
[93] P.M. Hilarius, I.G. Ebbing, D.W. Dekkers, J.W. Lagerberg, D. de Korte and A.J. Verhoeven (2004) "Generation of singlet oxygen induces phospholipid scrambling in human erythrocytes", Biochemistry, vol.43, pp.4012-4019.
[94] M. Minetti, L.Agati and W. Malorni (2007) "The microenvironment can shift erythrocytes from a friendly to a harmful behavior: pathogenic implications for vascular diseases", Cardiovasc. Res., vol.75, pp. 21-28.
[95] W.D. Stein (1972) "The mechanism of sugar transfer across erythrocyte membranes", Ann. N.Y. Acad. Sci.USA,vol.195,pp.412-428.
[96] J.A.F. Op den Kamp (1981) The Asymmetric Architecture of Membranes, in New Comprehensive Biochemistry, Finean, J.B. and Michell, R.H. (eds.), pp.83-126. Amsterdam: Elsevier.
[97] A. Herrmann and P.Müller (1986) "A model for the asymmetric lipid distribution in the human erythrocyte membrane", Bioscience Reports, vol.6 (2), pp.185-190.
[98] N. Mohandas and P.G. Gallagher (2008) "Red cell membrane: past, present and future", Blood, vol.112 (10), pp.3939-3948.
[99] L.L.M. van Deenen, J. de Gier, U.M.T. Houtsmuller, A.Montfoort and E.Mulder (1963) "Dietary Effects on the Lipid Composition of Biomembranes", in Biochemical Problems of Lipids, Frazer, A.C. (ed.), pp. 404-414. Amsterdam: Elsevier.
[100] G. Fairbanks, T. L. Steck and D. F. H Wallach (1971) " Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane", Biochemistry, vol.10, pp.2606-2617.
[101] T.L. Steck G. Fairbanks and D.F.H. Wallach (1971) "Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection", Biochemistry, vol.10, pp. 2617-2624.
[102] M.J. Tanner, P.G. Martin and S.High (1988) "The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence ", Biochem. J., vol.256 (3), pp.703-712.
[103] R.L. Juliano (1973) "The proteins of the erythrocyte membrane", Biochem. Biophys. Acta., vol.300, pp.341-378.
[104] J. Lenard and S.J. Singer (1966) "Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism", Proceedings of the National Academy of Sciences, vol.56, pp.1828-1835.
[105] S.J. Singer and G. L. Nicolson (1972) "The fluid mosaic model of the structure of cell membranes", Science, vol. 175, pp. 720-731.
[106] T.L. Steck (1974) "The organization of proteins in the human red blood cell membrane", J. Cell Biol., vol.62 (1),pp.1-19.
[107] S.E. Lux (1979) "Dissecting the red cell membrane skeleton", Nature (London), vol.281, pp.426-429.
[108] S.C. Rastogi (2010) Biochemistry, 3rd edn. New Delhi: Tata McGraw-Hill Education.
[109] G. Fairbanks and J. Avruch, (1972) "Four gel systems for electrophoretic frantionation of membrane proteins using ionic detergents", J.Supramol Struct., vol.1, p.66-75.
[110] C.J. Brock and M.J.A. Tanner (1986) "The human erythrocyte anion-transporter protein", Biochem, J., vol.235, pp.899-901.
[111] M.R. Deziel, C.Y. Jung and A.Rothstein (1985) "The topology of the major band 4.5 protein component of the human erythrocyte membrane: characterization of reactive cysteine residue", Biochim. Biophys. Acta, vol.819 (1), pp.83-92.
[112] R.E. Jenkins and M.J.A. Tanner (1977) "Ionic-strength-dependent structure of the major protein of the human erythrocyte membrane", Biochem. J., vol.161, pp.131-138.
[113] S. Pikula, J. Bandorowicz-Pinkula, S. Awasthi, and Y.C. Awasthi (1996) "Differential staining of human erythrocyte membrane proteins by coomassie and silver: implications in the assessment of homogeneity of membrane proteins", Biochem. Arch., vol.12, pp.237-243.
[114] D.A. Butterfield, B.T. Farmer and J.B. Feix, (1984) "Induced alterations in the physical state of sialic acid and membrane proteins in human erythrocyte ghosts: implications for the topology of the major sialoglycoprotein" , Ann. N.Y. Acad Sci., vol.414, pp.169-179.
[115] T.J. Mueller and M.Morrison (1975) "Transmembrane proteins in the plasma membrane of normal human erythrocytes. Evaluation employing lactoperoxidase and proteases", Biochemistry, vol.14 (25), pp. 5512-5516.
[116] Y. Abe, T. Chaen, X.R. Jin, T.Hamasaki and N. Hamasaki (2004) "Massspectrometric analyses of transmembrane proteins in human erythrocyte membrane", J.Biochem, vol.136 (1), pp.97-106.
[117] Z.I. Cabantchik, P.A. Knauf and A.Rothstein (1978) "The anion transport of the red blood cell", Biochim.Biophys.Acta vol.515, pp. 239–302.
[118] H. Furthmayr (1978) "Structural comparison of glycophorins and immunochemical analysis of genetic variants", Nature, vol. 271(5645), pp.519–524.
[119] M. Tomita, H.Furthmayr and V.T. Marchesi (1978) " Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence", Biochemistry, vo.17 (22), pp.4756–4770.
[120] G. Guidotti (1972) "Membrane proteins",Ann. Rev. Biochem., vol.41, pp.731-752.
[121] L.K.Drickamer (1978) "Orientation of the Band 3 polypeptide from human erythrocyte membranes. Identification of NH2-terminal sequence and site carbohydrate attachment", J.Biol.Chem., vol.253 (20), pp.7242-7248.
[122] C.G. Gahmberg, G. Myllyla, J. Leikola, A. Pirkola, and S. Nordling (1976) "Absence of the major sialoglycoprotein in the membrane of human En(a-) erythrocytes and increased glycosylation on band 3", J.Biol. Chem., vol.251, pp.6108-6616.
[123] A.Boodhoo and R.A.F. Reithmeier (1984) "Characterization of the matrix-bound band 3, the anion transport protein from human erythrocyte membranes", J.Biol.Chem, vol. 259 (2), pp.786-790.
[124] M.J.A. Tanner and D.H. Boxer (1972) "Separation and some properties of the major proteins of the human erythrocyte membrane", Biochem. J., vol.129, pp.333-347.
[125] M. Ramjeesinhg, A. Gaarn and A.Rothstein (1984) " Pepsin cleavage of band 3 produces its membrane-crossing domain, II", Biochim. Biophys. Acta, vol.769 (2), pp.381-389.
[126] S. Gordon and G.B. Ralston (1990) "Solubilization and denaturation of monomeric actin from erythrocyte membranes by p-mercuribenzenesulfonate", Biochim. Biophys. Acta, vol.1025 (1), pp.43-48.
[127] R. Khanna, S.H. Chang, S. Andrabi, M. Azam, A. Kim, A. Rivera, C. Brugnara, P.S. Low, S.C. Lin and A.H. Chishti (2002) "Headpiece domain of dematin is required for the stability of the erythrocyte membrane", Proc. Natl. Acad. Sci.USA, vol. 99 (10), pp. 6637-6642.
[128] R.A.F. Reithmeier and A.Rao (1979) "Reactive sulfhydryl groups of the band 3 polypeptide from human erythrocyte membranes", J.Biol.Chem., vol.254 (13), pp. 6151-6155.
[129] M.L. Jennings, M.Adams-Lackey and G.H. Denney (1984) "Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage", J.Biol.Chem, vol.259 (7), pp.4652-4660.
[130] S. Perrotta, A. Borriello, A. Scarloni, , L. de Franceschi, A.M. Brunati, F. Turrini, V.E.M. Del Giudice, B. Nobili, M.L. Conte, F. Rossi, A. Lolascon, A. Donella-Deena, V. Zoppia, V. Poggi, W. Anong, P. Low, N.Mohandas and F.D. Ragione (2005) "The N-terminal 11 amino acids of human erythrocyte band 3 are critical for aldolase binding and protein phosporylation: implications for band 3 function", Blood, vol.106 (13), pp.4359-4366.
[131] J.M. Salhany (1996) "Allosteric effects stilbenedisulfonate binding to band 3 protein (AE1)", Cell Mol.Biol., vol.42 (7), pp. 1065-1096.
[132] C.H. Huang (1977) "A structural model for cholesterol-phosphotidylcholine complexes in bilayer membranes", Lipids, vol. 12 (4), pp.348-356.
[133] B. Deuticke (1977) "Properties and structural basis of simple dif- fusion pathways in the erythrocyte membrane", Rev. Physiol. Biochem. Pharmacol., vol.78, pp. 1-98.
[134] M.S. Bretscher (1985) "The molecules of the cell membrane", Sci. Am., vol.253 (4), pp.100-108.
[135] P.F. Franck, D.T. Chiu, J.A. Op den Kamp, B. Lubin, L.L. van Deenan and B.Roelosfsen (1983) "Accelerated transbilayer movement of phosphatidylcholine in sickle erythrocyte. A reversible process", J. Biol.Chemistry, vol.258, pp.8436-8422.
[136] R.K. Crane (1977) "The gradient hypothesis and other models of carrier-mediated active transport", Rev.Physiol. Biochem. Pharmacol., vol.78, pp.99-159.
[137] K. A. Fisher (1976) "Analysis of membrane halves: cholesterol", Proc. Natl. Acad. Sci. U. S. A, vol.73, pp.173-177.
[138] J.S. Wiley and R.A. Cooper (1975) "Inhibition of cation co-transport by cholesterol enrichment of human red cell membranes", Biochim. Biophys. Acta., vol.413, pp. 425-431.
[139] R.F.Zwaal, P. Comfururius and E.M. Bevers (2005) "Surface exposure of phosphatidylserine in pathological cells", Cell Mol.Life Sc., vol.62, pp.971-988.
[140] F.A. Kuypers, S.K. Larkin, J.J. Emeis and A.C. Allison (2007) "Interaction of an annexin v homodimer (diannexin) with phosphatydlserine on cell surfaces and consequent antithrombotic activity", Thromb. Haemost., vol.97, pp.478-486.
[141] D. Chapman, W.E. Peel, B.Kingston and T.H. Lilly (1977) "Lipid phase transitions in model biomembranes: the effect of ions on phosphatidylcholine bilayers", Biochim. Biophys. Acta, vol. 464 (2), pp.260-275.
[142] J. Seelig and A.Seelig (1980) "Lipid conformation in model membranes and biological membranes", Q.Rev.Biophys., vol.13, pp.19-61.
[143] D. Chapman (1982) "Protein-lipid interaction in model and natural biomembranes", Biological Membranes, vol.4, pp.179-229.
[144] G. Wegner, C. Tanner, D. Maretzki and W.Schossler. (1984) "Immunoglobulin G binding to human erythrocytes", Biomed. Biochim. Acta 43:179-186.
[145] W.D. Stein (1967) The Movement of Molecules across Cell membranes. New York: Academic Press.
[146] M.D. Houslay and K.K. Stanley (1982) Dynamics of Biological membranes. Chichester, West Wessex: John Wiley & Sons.
[147] P.A. Maguire and I.W. Sherman (1990) "Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells", Mol Biochem Parasitol., vol. 38 (1), pp.105-112.
[148] R. Heinrich, M. Brumen, A. Jaeger, P. Müller and A.Herrmann (1997) "Modeling of phospholipid translocation in the erythrocyte membrane: a combined kinetic and thermodynamic approach",. J. Theor. Biol., vol. 185, pp.295–312.
[149] E. Wodtke (1983) " On adaptation of biomembranes to temperature: membrane dynamics and membrane function", J. Therm. Biol. Vol.8, pp.416-420.
[150] D.E. Golan, S.T. Furtlong, C.S. Brown and J.P. Caulfield 1988)"Monopalmitoylphosphatidylcholine incorporation into human erythrocyte ghost membranes causes protein and lipid immobilization and cholesterol depletion", Biochemistry, vol.27 (8), pp. 2661-2667.
[151] P. Müller and A. Hermann (2002) "Rapid transbilayer movement of spin-labeled steroids in human erythrocytes and in liposomes", Biophysical J., vol. 82, pp.1418-1428.
[152] V. Fowler and D.Branton (1977) " Lateral mobil-ity of human erythrocytes integral membrane pro-teins", Nature (London), vol.268, pp.23-27.
[153] R.J. Cherry (1979) " Rotational and lateral diffusion of membrane proteins", Biochim. Biophys. Acta, vol.559, pp.289-327.
[154] P. Sche, C. Vera and L.A. Sung (2011) "Intertwined αβ spectrin meeting helical actin protofilament in the erythrocyte membrane skeleton: wrap-around vs. point- attachment", Ann.Biomed.Eng., vol. 39 (7), pp.1984-1993.
[155] L. Tilley, W.H. Sawyer, J.R. Morrison, N.H. Fidge (1988) "Rotational Diffusion of human lipoproteins and their receptors as determined by time-resolved phosphorescence anisotropy", J. Biol. Chem., vol. 263 (33), pp.17541-17547.
[156] T. Pomorski, P. Müller, B. Zimmermann, K. Burger, P.F. Devaux and A.Hermann (1996) "Transbilayer movement of fluorescent and spin-labeled phospholipids in the plasma membrane of human fibroblasts: a quantitative approach", J.Cell Science, vol.109, pp.687-698.
[157] P. F. Devaux, P.Fellmann and P.Herve (2002) " Investigation on lipid asymmetry using lipid probes. Comparison between spin-labeled lipids and fluorescent lipids", Chem. Phys. Lipids, vol. 116, pp. 115–134.
[158] P.A. Leventis and S.Grinstein (2010) "Distribution and function of phosphatidyl serine in cellular membranes", Ann.Rev. Biophys., vol.39, pp. 407-427.
[159] N.L. Hiller, T. Akompong, J.S. Morrow, A.A. Holder and K. Haldar (2003) " Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites. A role for microbial raft proteins in apicomplexan vacuole biogenesis", J.Biol.Chem, vol.278 (48), pp.48413-48421.
[160] C. Bracho, I. Dunia, M. Romano, G. Raposo, M. de la Rosa,E.L. Benedetti . and H.A. Pérez (2006) "Caveolins and flotillin-2 are present in the blood stages of Plasmodium vivax", Parasitol Res., vol.99 (2), pp.153-159.
[161] V. Michel and M.Bakovic (2007) "Lipid rafts in health and disease", Biol.Cell, vol. 99, pp. 129-140.
[162] E. Brown, L. Hooper, T. Ho and H.Gresham (1990) "Integrin-associated protein: a 50kD plasma membrane antigen physically and functionally associated with integrins", Cell Biol., vol. 111 (6), pp.2785-2794.
[163] G. Benga, V.I.Pop, O.Popescu, M.Ionescu and V.Michele (1983) "Water exchange through erythrocyte membranes: nuclear magnetic resonance studies on the effects of inhibitors and of chemical modifications of human membranes", J. Membr Biol, vol. 76, pp.129–137.
[164] E. Brown (2001) "Integrin-associated protein (CD47): an unusual activator of G protein signaling", J.Clin.Invest., vol. 107 (12), pp. 1499-1500.
Cite This Article
  • APA Style

    Omar S. Hajjawi. (2013). Human Red Blood Cells-1. American Journal of Life Sciences, 1(5), 195-214. https://doi.org/10.11648/j.ajls.20130105.12

    Copy | Download

    ACS Style

    Omar S. Hajjawi. Human Red Blood Cells-1. Am. J. Life Sci. 2013, 1(5), 195-214. doi: 10.11648/j.ajls.20130105.12

    Copy | Download

    AMA Style

    Omar S. Hajjawi. Human Red Blood Cells-1. Am J Life Sci. 2013;1(5):195-214. doi: 10.11648/j.ajls.20130105.12

    Copy | Download

  • @article{10.11648/j.ajls.20130105.12,
      author = {Omar S. Hajjawi},
      title = {Human Red Blood Cells-1},
      journal = {American Journal of Life Sciences},
      volume = {1},
      number = {5},
      pages = {195-214},
      doi = {10.11648/j.ajls.20130105.12},
      url = {https://doi.org/10.11648/j.ajls.20130105.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajls.20130105.12},
      abstract = {Biochemists and cell biologists, who are interested in membranes, tend to regard the human red blood cell ambivalently. On one hand, red blood cells lack nuclei and the various intracellular organelles, yet that are highly specialized for a particular respiratory function. On the other hand, the human red blood cell presents an excellent model for membrane transport function.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Human Red Blood Cells-1
    AU  - Omar S. Hajjawi
    Y1  - 2013/10/20
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ajls.20130105.12
    DO  - 10.11648/j.ajls.20130105.12
    T2  - American Journal of Life Sciences
    JF  - American Journal of Life Sciences
    JO  - American Journal of Life Sciences
    SP  - 195
    EP  - 214
    PB  - Science Publishing Group
    SN  - 2328-5737
    UR  - https://doi.org/10.11648/j.ajls.20130105.12
    AB  - Biochemists and cell biologists, who are interested in membranes, tend to regard the human red blood cell ambivalently. On one hand, red blood cells lack nuclei and the various intracellular organelles, yet that are highly specialized for a particular respiratory function. On the other hand, the human red blood cell presents an excellent model for membrane transport function.
    VL  - 1
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Biology, Arab American University, P. O. Box 240, Jenin, Israeli Occupied Territories of Palestine

  • Sections