[1]
National Cancer Institute, Global Cancer Research Programs. 2013. [Online]. Available at:
[2]
Torres, M.P., Ponnusamy, M.P., Chakraborty, S., Smith, L.M., Das, S., Arafat, H.A., Batra, S.K., 2010. Effects of Thymoquinone in the Expression of Mucin 4 in Pancreatic Cancer Cells: Implications for the Development of Novel Cancer Therapies. Molecular Cancer Therapy 9, 1419-1431.
[3]
Woo, C.C., Loo, S.Y., Gee, V., Yap, C.W., Sethi, G., Kumar, A. P., Benny, T., Huat, K., 2011. Anticancer activity of Thymoquinone in breast cancer cells: Possible involvement of PPAR-[gamma] pathway. Biochemical Pharmacology 82, 464-75.
[4]
Gali-Muhtasib, H., Diab-Assaf, M., Boltze, C., Al-Hmaira, J., Hartig, R., Roessner, A., Schneider-Stock, R., 2004a. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. International Journal Oncology 25, 857-66.
[5]
Kaseb, A., Chinnakannu, K., Chen, D., Sivanandam, A., Tejwani, S., Menon, M., Dou, Q., Reddy, G., 2007. Androgen receptor and E2F-1 targeted Thymoquinone therapy for hormone-refractory prostate cancer. Cancer Research 67, 7782-8.
[6]
Roepke, M., Diestel, A., Bajbouj, K., Walluscheck, D., Schonfeld, P., Roessner, A., Schneider-Stock, R., Gali-Muhtasib, H., 2007. Lack of p53 augments Thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biology and Therapy 6, 160-169.
[7]
Dongsheng, X.U., Yong, M.A., Baolei, Z., Shuai, Li, Yu, Z., Shangha P., Yaohua, W.U., Jizhou, W., Dawei, W., Huayang P., Lianxin, L., Jiang, H., 2014. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncology Reports 31, 2063-2070.
[8]
Wenchuan, Q., Xu, S., Ling, L., 2013. Long non-coding RNA-guided regulation in organisms. Science China Life Sciences 56, 891-896.
[9]
Broad Institute., 2010. Human Body Map lincRNA. Human lincRNA catalog [Online]. Available at:
[10]
Wang, X., Wang, H., Figueroa, B., Zhang, W., Huo, C., Guan, Y., Zhang, Y., Bruey, J., Reed, J., Friendlander, R., 2005. Dysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington's disease. Journal Neuroscience 25, 11645-54
[11]
El-Najjar, N., Chatila, M., Moukadem, H., Vuorela, H., Ocker, M., Gandesiri, M., Schneider-Stock, R., Gali-Muhtasib, H., 2010. Reactive oxygen species mediate Thymoquinone- induced apoptosis and activate ERK and JNK signalling. Apoptosis 15, 183-195.
[12]
NCBI Resources., 2014. Gene. [Online]. Available at:
[13]
Li, X., Bratton, S., Radominska-Pandya, A., 2007. Human UGT1A8 and UGT1A10 mRNA Are Expressed In Primary Human Hepatocytes. Drug Metabolism Pharmacokinetic 22, 152–161.
[14]
Wu, Y., Zhang, X., Bardag-Gorce, F., Robel, R.C.V., Aguilo, J., Chen, L., Zeng, Y., Hwang, K., French, S.W., Lu, S.C., Wan, Y.J.Y., 2004. Retinoid X Receptor α Regulates Glutathione Homeostasis and Xenobiotic Detoxification Processes in Mouse Liver. Mol Pharmacol 65, 550-557.
[15]
Liska, D.J., 1998. The Detoxification Enzyme Systems. Alternative Medicine Review 3, 187-198.
[16]
NextPort Beta., 2014. Exploring the universe of human proteins[Online].Available at :
[17]
Sinicropi, D., Cronin, M., Liu, M., 2007. Gene Expression Profiling Utilizing Microarray Technology and RT-PCR. Genomic Health, Inc., Redwood City, California USA. [Online]. Available at:
[18]
The Human Gene Compendium. (2014). GeneCards [Online]. Available at:>http://www.genecards.org/. accessed on 28th May 2014.
[19]
Pham, A.N., Blower, P.E., Alvarado, O., Ravula, R., Gout, P. W., Huang, Y., 2010. Pharmacogenomic Approach Reveals a Role for the xc− Cystine/Glutamate Antiporter in Growth and Celastrol Resistance of Glioma Cell Lines. Journal of Pharmacology and Experimental Therapeutics 332, 949-958.
[20]
Huang, Y., Dai, Z., Barbacioru, C., Sadee, W., 2005. Cystine-Glutamate Transporter SLC7A11 in Cancer Chemosensitivity and Chemo resistance. Cancer Research 65, 7446-7454.
[21]
Amin, A., Gali-Muhtasib, H., Ocker, M., Schneider-Stock, R. 2009. Overview of Major Classes of Plant-Derived Anticancer Drugs. Internationa Journal Biomedical Science 5, 1-11.
[22]
Alhosin, M., Abusnina, A., Achour, M., Sharif, T., Muller, C., Peluso, J., Chataigneau, T., Lugnier, C., Schini-Kerth, V. B., Bronner, C. & Fuhrmann, G., 2010. Induction of apoptosis by Thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochemical Pharmacology 9, 1251-1260.
[23]
Koka, P.S., Mondal, D., Schultz, M., Abdel-Mageed., Agrawal, K.C., 2010. Studies on molecular mechanisms of growth inhibitory effects of Thymoquinone against prostate cancer cells: role of reactive oxygen species. Experimental Biology and Medicine 235, 751-760.
[24]
Hussain, A.R., Ahmed, M., Ahmed, S., Manogaran, P., Platanias, L., Alvi, S., Al-Kuraya, K., Uddin, S., 2011. Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radical Biology & Medicine 50, 978-987.
[25]
Landa, S.Z., Mohan, S., Othman, R., Abdelwahab, S.I., Kamalidehghan, B., Sheikh, B.Y., Ibrahim, M.Y., 2013. Thymoquinone Induces Mitochondria-Mediated Apoptosis in Acute Lymphoblastic Leukaemia in Vitro Molecules 18, 11219-11240.