Theoretical Advances in Aromatic Nitration
Modern Chemistry
Volume 3, Issue 1, February 2015, Pages: 9-13
Received: Feb. 16, 2015; Accepted: Mar. 4, 2015; Published: Mar. 14, 2015
Views 2585      Downloads 129
Authors
Francisco Sánchez-Viesca, Organic Chemistry Department, Faculty of Chemistry, National Autonomous University of Mexico, México, DF, México
Reina Gómez, Organic Chemistry Department, Faculty of Chemistry, National Autonomous University of Mexico, México, DF, México
Martha Berros, Organic Chemistry Department, Faculty of Chemistry, National Autonomous University of Mexico, México, DF, México
Article Tools
Follow on us
Abstract
In this paper we want to present together our theoretical findings on aromatic nitration, involving both homocyclic and heterocyclic compounds. Our theoretical proposals have been introduced in recent years via several research communications. These theories convey new concepts in Organic Chemistry, such as Electric Hindrance, Autogenic Electromeric Effect, the formation of Precursor Complexes, as well as, short- and long-distance electric interactions in the reactive intermediates. These concepts explain the regiochemistry and the reaction yields, clearing up some obscurities found in Organic Chemistry. Thus, these theoretical considerations are filling gaps in the theory of supposedly well known chemical reactions, improving and updating the Chemical Education.
Keywords
Electric Hindrance, Noncovalent Interactions, Precursor Complexes, Reaction Mechanisms, Reactive Intermediates
To cite this article
Francisco Sánchez-Viesca, Reina Gómez, Martha Berros, Theoretical Advances in Aromatic Nitration, Modern Chemistry. Vol. 3, No. 1, 2015, pp. 9-13. doi: 10.11648/j.mc.20150301.12
References
[1]
W. M. Cumming, I. V. Hopper, and T. S. Wheeler, Systematic Organic Chemistry, 4th. ed., London: Constable, 1950, p. 280.
[2]
K. Bahadur, and W. D. Patwardhan, “Preparation of o-nitroacetanilide”, Curr. Sci., vol. 37(17), p.492, 1968.
[3]
F. Sánchez-Viesca, R. Gómez, and M. Berros, “Electric hindrance and precursor complexes in the regiochemistry of some nitrations”, J. Chem. Ed., vol. 88(7), pp. 944-946, 2011. DOI: dx.doi.org/10.1021/ed900030s
[4]
M. Haouas, S. Bernasconi, A. Kogelbauer, and R. Prins, “An NMR study of the nitration of toluene over zeolites by nitric acid/acetic anhydride”, Phys. Chem. Chem. Phys., vol. 3, pp.5067-5075, 2001.
[5]
Bond Polarization-Temporary Effects-Electromeric Effect (Online, access with the title). Tutors on Net, 2013.
[6]
J. W. Baker, Electronic Theories of Organic Chemistry, Oxford: Clarendon Press, 1958, pp. 56-58.
[7]
F. Sánchez-Viesca, and R. Gómez, “Electric hindrance and dipole moments in 2-aminopyridine nitration”, Am. J. Chem., vol. 5(1), pp. 19-22, 2015. DOI: 10.5923/j.chemistry.20150501.03
[8]
F. Sánchez-Viesca, and M. Berros, “Espectroscopía y teoría de la regioquímica en la nitración de las benzopiridinas”, TIP Rev. Esp. Cienc. Quim. Biol., vol. 9(1), pp. 19-29, 2006; oai:unam.redalyc.org:43290103
[9]
E. Tchitchibabin, “Nitration of 2-aminopyridine”, J. Russ. Phys. Chem. Soc., vol. 46(11), pp.1236-1244, 1914; in J. Chem. Soc., London, vol. 108-I, pp.591-592, 1915.
[10]
E. Tchitchibabine, “Nitration de l’α-aminopyridine”, J. Soc. Phys. Chim. Russ., vol. 46(11), pp.1236-1244, 1914; in Bull. Soc. Chim. Fr., series 4, vol. 18, pp. 623-625, 1915.
[11]
B. C. Uff, Pyridines and their benzo derivatives: reactivity of substituents, in A. R. Katritzky and C. W. Rees, eds., Comprehensive Heterocyclic Chemistry, Oxford: Pergamon, 1984, vol. 2, part 2A, p. 317.
[12]
T. L. Gilchrist, Heterocyclic Chemistry, 3rd. ed., Essex: Longman, 1997, p. 166.
[13]
E. P. Linton, “The dipole moments of amine oxides”, J. Am. Chem. Soc., vol. 62(8), pp. 1945-1948, 1940.
[14]
R. D. Brown, F. R. Burden, and W. Garland, “Microwave spectrum and dipole moment of pyridine N-oxide”, Chem. Phys. Lett., vol. 7(4), pp. 461-462, 1970.
[15]
E. Ochiai, “A new classification of tertiary amine oxides”, Proc. Imp. Acad. Tokyo, vol. 19, pp. 307-311, 1943; Chem. Abstr., vol. 41, col. 5880d, 1947.
[16]
E. Ochiai, E. Hayashi, and M. Katada, “Polarization of aromatic heterocyclic compounds. LVII. Nitration of pyridine 1-oxide”, Yakugaku Zasshi (J. Pharm. Soc. Japan), vol. 67, pp. 79-81, 1947; Chem. Abstr., vol. 45, col. 9538a, 1951.
[17]
E. Ochiai, and E. Hayashi, “Nitration of pyridine 1-oxide”, Yakugaku Zasshi (J. Pharm. Soc. Japan), vol. 67, p. 157, 1947; Chem. Abstr., vol. 45, col. 9541c, 1951.
[18]
H. J. den Hertog, and W. P. Combé, “Reactivity of 4-nitropyridine N-oxide: Preparation of 4-substituted derivatives of pyridine N-oxide and pyridine”, Rec. Trav. Chim., vol. 70(7), pp. 581-590, 1951.
[19]
Notice of Preparation (NOP) 1004 Nitration of pyridine N-oxide to 4-nitropyridine N-oxide; Bremen University, 2006, http://kriemhild.uft.uni-bremen.de/nop/en /instructions/pdf/1004_en.pdf
[20]
F. A. L. Anet, and I. Yavari, “Carbon-13 nuclear magnetic resonance study of pyridine N-oxide”, J. Org. Chem., vol. 41(22), pp. 3589-3591, 1976.
[21]
F. Sánchez-Viesca, and R. Gómez, “Polarization by intermolecular induction in pyridine N-oxide and its nitration”, Am. J. Chem., vol. 3(5), pp. 136-139, 2013. DOI: 10.5923/j.chemistry.20130305.03
[22]
R. A. Barnes, “A comparison of the structure and reactivity of pyridine and pyridine 1-oxide”, J. Am. Chem. Soc., vol. 81(8), pp. 1935-1938, 1959.
[23]
A. A. Morton, The Chemistry of Heterocyclic Compounds, New York: McGraw-Hill, 1946, p. 211.
[24]
L. Gattermann, Laboratory Methods of Organic Chemistry, London: Macmillan, 1957, pp. 161-162.
[25]
W. M. Cumming, I. V. Hopper, and T. S. Wheeler, Systematic Organic Chemistry, 4th. ed., London: Constable, 1950, pp. 276-277.
[26]
J. H. White, A Reference Book of Chemistry, London: University of London Press, 1960, p. 47.
[27]
Collins English Dictionary Complete and Unabridged, “Electromerism”, New York: Harper Collins Publishers, 2003.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186