Modern Chemistry

| Peer-Reviewed |

Quantum-Chemical Study the Nature of Coordination Bond in SiCl4←N(CH3)3 Complex

Received: 27 September 2016    Accepted: 20 October 2016    Published: 18 January 2017
Views:       Downloads:

Share This Article

Abstract

Quantum-chemical calculations were performed for the system SiCl4←N(CH3)3 using the MP2/6-31+G(d) level with total optimization of its geometry and at different fixed Si…N distances (from 1.9 to 4.5 Å). The coordination bond in the complex is a result of participation ofdifferent AO’s of N and Si atoms (along with orbitals of other atoms of the molecule) in the formation of a series of MO’s, the number of which increases on convergence of coordination centers. This coordination bond is of the same nature as covalent bond is. Formation of such bond results in variations in partial charges of atoms and in populations of their orbitals.

DOI 10.11648/j.mc.20160406.13
Published in Modern Chemistry (Volume 4, Issue 6, December 2016)
Page(s) 67-72
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Nature of Coordination Bond, SiCl4←N(CH3)3 Complex, AbInitio Calculations, MP2/6-31G(d) Level, Nuclear Quadrupoleresonance, Molecular Orbitals

References
[1] I. B. Bersuker; Electron structure and properties of coordination compounds. 3nd Ed., Chemistry Publishers: Leningrad, 1986, pp.8-9.
[2] Ya.A. Ugay; General and Inorganic Chemistry. High School Publishers: Moscow, 1997, pp. 113-120.
[3] A. K. Phukan, A. K. Guha, “Nature of IntramolecularTransannular Interaction in Group 13 Atranes: A Theoretical Study”. Inorg. Chem., vol. 50, pp. 1361-1367, 2011.
[4] A. A. Milov, R. M. Minyaev, V. I. Minkin, “HypervalenceIntramolecular Coordination X←N (X=C, Si, Ge) in Atranes: Theoretical Study by Quantum Chemistry”, Russ. J. Org. Chem., vol. 39, pp. 340-347, 2003.
[5] E.F. Belogolova, V. F. Sidorkin, “Animpirical estimation of Geometrical Sensitivity of Silicon Chelate Complexes to the Surroundings Influence”, Russ. Chem. Bull., pp. 1472-1476, 2003.
[6] A. A. Korlyukov, K. A. Lyssenko, M. Yu. Antipin, Russ. J. Phys. Chem., No. 8, pp. 1314-1318, 2002.
[7] M.S. Nechaev, T. N. Aksamentova, M. G. Voronkov, N. N. Chipanina, O. M. Trofimova, Yu. I. Bolgova, V.K.Turchaninov, “The Nature of the O→SiIntramolecular Bond in N-(Trifluorosylilmethyl)sukcinimid and N-(Trifluorosylilmethyl)ftalimid”, Russ. J. Gen. Chem., vol. 79,No. 6, pp. 1086-1089, 2009 (J. Gen. Chem. Vol. 79, pp. 914-917, 2009).
[8] V.P. Feshin, G, V. Dolgushin, I. M. Lazarev, M. G. Voronkov, “35Cl NQR Spectra and Structure of MCl4 (M=Si, Ge, Sn) Complexes with Nitrogencontaining Organic Compounds”, The Proceedings of the USSR Academy of Sciences., vol. 295, pp. 1415-1419, 1987.
[9] Yu. A. Buslaev, E. A. Kravchenko, V. G. Morgunov, M.Yu.Burcev, V. P. Feshin, G. V. Dolgushin, I. M. Lazarev, M. G. Voronkov, “Asymmetry Parameters of the Electric Field Gradients at the 35Cl Nuclei in Pentacoordinated Complexes of IVA Group Tetrachlorides”, The Proceedings of the USSRAcademy of Sciences, vol. 301, pp. 1407-1413, 1988.
[10] V. P. Feshin, E. V. Feshina, “Ab initio Calculations of Complexes of IVA Group Tetrachlorides. IV. Dinamic of SiCl4 with Trimethylamine Complex Formation”, Russ. J. Gen. Chem., vol. 77, pp. 786-791, 2007.
[11] V.P. Feshin, E. V. Feshina, “Nature of Coordination Bond in Silatrans and Dynamics of Its Formation Resulting from ab initio Calculations”, Russ. J. Gen. Chem., 84, pp. 70-74, 2014.
[12] V. P. Feshin, E. V. Feshina, “Nature of Coordination Bond in 1-Chlorosilatran and Dynamics of Its FormationResulting from ab initio Calculations”, Trends in Heterocyclic Chemistry, vol. 16, pp. 85-91, 2014.
[13] V.P.Feshin, E. V. Feshina, “Nature of Coordination Bond in GeCl4 with Trimethylamine Complex”, Russ. J. Neorg. Chem., vol. 59, No. 10, pp. 1157-1161, 2014.
[14] M.J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Сhallacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople; Gaussian 03, Revision D. 1, Gaussian, Inc. Wallingford, CT. 2005.
[15] S. S. Batsanov, “Van-der-Vaals Radii of Elements Resulting from Structural Inorganic Chemistry”, Russian Chemical Bulletin, No. 1, pp. 24-29, 1995,
[16] T. P. Das, E. L Hahn; Nuclear Quadrupole Resonance Spectroscopy, Acad. Press: New York, 1958, p. 223.
[17] V. P. Feshin, E. V. Feshina, Correlation between 35Cl NQR ParametersofChlorocontaining Organic and Organometallic Compounds and Results of ab initio Calculations”, Z. Naturforsch., Bd. 55a, pp. 555-559, 2000.
[18] V. P. Feshin, “Geminal interaction in organic and elementorganic chemistry”, Ural Branch of the RAS: Ekaterinburg, 2009, 265 p.
[19] M.S. Bilton, M. J. Webster, “Crystal Structure of Germanium Tetrachljride-Trimethylamine, GeCl4-NMe3”, Chem. Soc. Dalton Trans., No. 6, pp. 722-724, 1972.
[20] H. Fleischer, “Molecular “Floppyness” and the Lewis Acidity of Silanes: A Density Functional Theory Study”, European Journal of Inorganic Chemistry, vol.2001, pp. 393-404, 2001.
Author Information
  • Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences, Perm, Russian Federation

  • Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences, Perm, Russian Federation

Cite This Article
  • APA Style

    Valentin Petrovich Feshin, Elena Valentinovna Feshina. (2017). Quantum-Chemical Study the Nature of Coordination Bond in SiCl4←N(CH3)3 Complex. Modern Chemistry, 4(6), 67-72. https://doi.org/10.11648/j.mc.20160406.13

    Copy | Download

    ACS Style

    Valentin Petrovich Feshin; Elena Valentinovna Feshina. Quantum-Chemical Study the Nature of Coordination Bond in SiCl4←N(CH3)3 Complex. Mod. Chem. 2017, 4(6), 67-72. doi: 10.11648/j.mc.20160406.13

    Copy | Download

    AMA Style

    Valentin Petrovich Feshin, Elena Valentinovna Feshina. Quantum-Chemical Study the Nature of Coordination Bond in SiCl4←N(CH3)3 Complex. Mod Chem. 2017;4(6):67-72. doi: 10.11648/j.mc.20160406.13

    Copy | Download

  • @article{10.11648/j.mc.20160406.13,
      author = {Valentin Petrovich Feshin and Elena Valentinovna Feshina},
      title = {Quantum-Chemical Study the Nature of Coordination Bond in SiCl4←N(CH3)3 Complex},
      journal = {Modern Chemistry},
      volume = {4},
      number = {6},
      pages = {67-72},
      doi = {10.11648/j.mc.20160406.13},
      url = {https://doi.org/10.11648/j.mc.20160406.13},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.mc.20160406.13},
      abstract = {Quantum-chemical calculations were performed for the system SiCl4←N(CH3)3 using the MP2/6-31+G(d) level with total optimization of its geometry and at different fixed Si…N distances (from 1.9 to 4.5 Å). The coordination bond in the complex is a result of participation ofdifferent AO’s of N and Si atoms (along with orbitals of other atoms of the molecule) in the formation of a series of MO’s, the number of which increases on convergence of coordination centers. This coordination bond is of the same nature as covalent bond is. Formation of such bond results in variations in partial charges of atoms and in populations of their orbitals.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Quantum-Chemical Study the Nature of Coordination Bond in SiCl4←N(CH3)3 Complex
    AU  - Valentin Petrovich Feshin
    AU  - Elena Valentinovna Feshina
    Y1  - 2017/01/18
    PY  - 2017
    N1  - https://doi.org/10.11648/j.mc.20160406.13
    DO  - 10.11648/j.mc.20160406.13
    T2  - Modern Chemistry
    JF  - Modern Chemistry
    JO  - Modern Chemistry
    SP  - 67
    EP  - 72
    PB  - Science Publishing Group
    SN  - 2329-180X
    UR  - https://doi.org/10.11648/j.mc.20160406.13
    AB  - Quantum-chemical calculations were performed for the system SiCl4←N(CH3)3 using the MP2/6-31+G(d) level with total optimization of its geometry and at different fixed Si…N distances (from 1.9 to 4.5 Å). The coordination bond in the complex is a result of participation ofdifferent AO’s of N and Si atoms (along with orbitals of other atoms of the molecule) in the formation of a series of MO’s, the number of which increases on convergence of coordination centers. This coordination bond is of the same nature as covalent bond is. Formation of such bond results in variations in partial charges of atoms and in populations of their orbitals.
    VL  - 4
    IS  - 6
    ER  - 

    Copy | Download

  • Sections