Adsorption of Pb (II), Cu (II), and Zn (II) Ions onto Urtica dioica Leaves (UDL) as a Low Cost Adsorbent: Equilibrium and Thermodynamic Studies
Modern Chemistry
Volume 5, Issue 1, February 2017, Pages: 11-18
Received: Jan. 3, 2017; Accepted: Jan. 25, 2017; Published: Mar. 4, 2017
Views 2284      Downloads 65
Authors
Priyanka Tiwari, Department of Chemistry, Kumaun University, L. S. M. P. G. College, Pithoragarh, Uttarakhand, India
Mahesh Chandra Vishwakarma, Department of Chemistry, Kumaun University, G. P. G. College, Gopeshwar, Chamoli, Uttarakhand, India
Sushil Kumar Joshi, Department of Chemistry, Kumaun University, Soban Singh Jeena Campus, Almora, Uttarakhand, India
Harish Sharma, Department of Chemistry, Kumaun University, Soban Singh Jeena Campus, Almora, Uttarakhand, India
Narendra Singh Bhandari, Department of Chemistry, Kumaun University, Soban Singh Jeena Campus, Almora, Uttarakhand, India
Article Tools
Follow on us
Abstract
The biosorption of Cu (II), Zn (II) and Pb (II) ions from aqueous solution onto dried biomass (Urtica dioica leaves) is discussed in the present study. The effect of variation of contact time, adsorbent dose, pH, concentration of metal ions and temperature on biosorption of metal ion is studied. Maximum adsorption was recorded for initial metal ion concentration of 10 mg/l, adsorbent dose of 2 gm, at pH 5 with 60 minutes of contact time for Lead and Zinc, 45 minutes of contact time for Copper ion. The equilibrium conditions were well described by Langmuir, Freundlich and Temkin isotherm equations. The Langmuir isotherm model have provided a better fit with the experimental data compared to that of Freundlich and Temkin isotherm models. The values of thermodynamic parameters indicate that the adsorption reactions were spontaneous, feasible and exothermic.
Keywords
Biosorption, Heavy Metals, Urtica dioica Leaves (UDL), Isotherms, Thermodynamic Parameters
To cite this article
Priyanka Tiwari, Mahesh Chandra Vishwakarma, Sushil Kumar Joshi, Harish Sharma, Narendra Singh Bhandari, Adsorption of Pb (II), Cu (II), and Zn (II) Ions onto Urtica dioica Leaves (UDL) as a Low Cost Adsorbent: Equilibrium and Thermodynamic Studies, Modern Chemistry. Vol. 5, No. 1, 2017, pp. 11-18. doi: 10.11648/j.mc.20170501.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Ahluwalia, S. S., Goyal, D. “Microbial and plant derived biomass for removal of heavy metals from wastewater”. Biores. Technol., 98, 2243–57, 2007.
[2]
Naiya, T. K., Bhattacharya, A. K., Mandal, S. and Das, S. K., “The sorption of lead (II) ions on rice husk ash”, J. Hazard. Mater, 163, 1254–1264, 2009.
[3]
Monken, A., “Water pollution control for paint booths”. Met. Finish, 98, 464– 471, 2000.
[4]
Veglio, F., Quaresima, R., Fornari, P. and Ubaldini, S., “Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning”, Waste Manage., 23, 245–252, 2003.
[5]
Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C. and Chambers, B. J., “An inventory of heavy metals inputs to agricultural soils in England and Wales”, Sci. Total Environ., 311, 205–219, 2003.
[6]
Otero, N., Vitoria, L., Soler, A. and Canals, A. “Fertiliser characterisation: major, trace and rare earth elements”, Appl. Geochem., 20, 1473–1488, 2005.
[7]
Castelblanque, J. and Salimbeni, F. “NF and RO membranes for the recovery and reuse of water and concentrated metallic salts from waste water produced in the electroplating process”, Desalination, 167, 65–73, 2004.
[8]
Alvarez-Ayuso, E., Garcia-Sanchez, A. and Querol, X. “Purification of metal electroplating waste waters using zeolites”, Water Res., 37, 4855–4862, 2003.
[9]
Theophanides, T. and Anastassopoulou, J., “Copper and carcinogenesis”, Crit Rev Oncol Hematol, 42, 57–64, 2002.
[10]
Walsh, C. T., Sandstead, H. H., Prasad, A. S., Newberne, P. M. and Fraker, P. J. “Zinc: Health effects and research priorities for the 1990s, Environ Health Perspect, 102, 5–46, 1994.
[11]
Ho, Y. S., Ng, J. C. Y. and McKay, G., “Removal of lead (II) from effluents by sorption on peat using second-order kinetics”, Separ. Sci. Technol., 36, 241–261, 2001.
[12]
Ahmaruzzaman, M., “Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals”, Adv Colloid Interface Sci., 166, 36-59, 2011.
[13]
Matlock, M. M., Howerton, B. S. and Atwood, D. A., “Chemical precipitation of heavy metals from acid mine drainage”, Water Res., 36, 4757–4764, 2002.
[14]
Blocher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K. and Matis, K. A “Hybrid flotation membrane filtration process for the removal of heavy metal ions from wastewater”, Water Res., 37, 4018–4026, 2003.
[15]
Rengaraj, S., Joo, C. K., Kim, Y. and Yi, J., “Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H”, J. Hazard. Mater, 102, 257–275, 2003.
[16]
Kobya, M., Demirbas, E., Senturk, E. and Ince, M. “Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone”, Bioresource Technol. 96, 1518–1521, 2005.
[17]
Ding, Y., Jing, D., Gong, H., Zhou, L. and Yang, X., “Biosorption of aquatic cadmium (II) by unmodified rice straw”, Bioresource Technol., 114, 20-25, 2012.
[18]
Flores-Garnica, J. G., Morales-Barrera, L., Pineda-Camacho G., Cristiani- Urbina, E., “Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds”, Bioresource Technol., 136, 635-643, 2013.
[19]
Akhtar, M., Iqbal, S., Kausar, A., Bhangar, M. I., and Shaheen, M. A., “An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk”, Colloids Surf. B: Biointerf., 75, 149–155, 2010.
[20]
Odoemelam, S. A., Iroh, C. U. and Igwe, J. C., “Copper (II), Cadmium (II) and Lead (II) adsorption kinetics from aqueous metal solutions using chemically modified and unmodified cocoa pod husk (Theobroma cacao) waste biomass”. Res. J. Applied Sci., 6, 44-52, 2011.
[21]
Zhao, M. and Duncan, J. R., “Batch removal of hexavalent chromium by Azolla filliculoids”, Biotech. Appl. Biochem., 26, 179 – 182, 1997.
[22]
Dupont, L., Bouanda, J., Dumoneeau, J. and Applincourt, M., J., “Metal ions binding onto a lignocellulosic substrate extracted from wheat bran: A nica donnan approach” Colloid Int. Sci., 263, 35-41, 2003.
[23]
Moufilh, M., Aklil, A., and Sebti, S., “Removal of lead from aqueous solutions by activated phosphate”, J. Hazard. Mater., 119, 183–188, 2005.
[24]
Reddy, D. H. K., Seshaiah, K. Reddy, A. V. R. Rao, M. M. and Wang, M. C., “Biosorption of Pb (II) from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies”, J. Hazard. Mater., 174, 831–838, 2010.
[25]
Munagapati, V. S., Yarramuthi, V., Nadavala, S. K., Alla, S. R. and Abburi, K. “Biosorption of Cu (II), Cd (II) and Pb (II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics”. Chem. Eng. J., 157, 357-365, 2010.
[26]
Dupont, L., Bouanda, J., Dumonceau, J. and Aplincourt, M. “Biosorption of Cu (II) and Zn (II) onto a lignocellulosic substrate extracted from wheat bran”. Environ. Chem. Lett., 2, 165–168, 2005.
[27]
Gardea-Torresdey, J. L., de la Rosa, G. and Peralta-Videa, J. R., “Use of phytofiltration technologies in the removal of heavy metals: A review”, Pure Appl. Chem., 76, 801–813, 2004.
[28]
Martiın, M. I., Loıpez, F. A. and Alguacil, F. J., “Possibility of using by-products of the steelmaking industry for removing lead from aqueous solutions”, Revista de Metalurgia, 44, 258–264, 2008.
[29]
Venugopal, V. and Mohanty, K., “Biosorptive uptake of Cr (VI) from aqueous solutions by Parthenium hysterophorus weed: Equilibrium, kinetics and thermodynamic studies”, Chem. Eng J., 174, 151-158, 2011.
[30]
Veneu, D. M., Torem, M. L. and Pino, G. A. H., Fundamental aspects of copper and zinc removal from aqueous solutions using a Streptomyces lunalinharesii strain. Miner Eng., 48, 44-50, 2013.
[31]
Rawajfih, Z. and Nsour, N.,“Thermodynamic analysis of sorption isotherms of chromium (VI) anionic species on reed biomass”, J. Chem. Thermodyn., 40, 846–851, 2008.
[32]
Imamoglu, M. and Tekir, O., “Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks”, Desalination, 228, 108–113, 2008.
[33]
Feng, N., Guo, X., Liang, S., Zhu, Y. and J. Liu, “Biosorption of heavy metals from aqueous solutions by chemically modified orange peel”, J. Hazard Mater, 185, 49-54, 2011.
[34]
Zafar, S., Aqil, F. and Ahmad, Q., “Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil”, Bioresource Technol., 98, 2557 – 2561, 2007.
[35]
Rao, R. A. K. and Ikram, S., “Sorption studies of Cu (II) on gooseberry fruit (Emblica officinalis) and its removal from electroplating wastewater”, Desalination, 277, 390-398, 2011.
[36]
Lodeiro, P. Barriada, J. L., Herrero, R. and Vicente, Sastre de M. E., “The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium studies”, Environ. Pollut., 142, 264-273, 2006.
[37]
Azouaoua, N., Sadaouia, Z., Djaafri, A. and Mokaddema, H., “Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics” Journal of Hazardous Materials, 184, 126–134, 2010.
[38]
Mittal, A., Mittal, J., Malviya, A. Kaur, D. and Gupta, V. K., “Adsorption of hazardous dye crystal violet from wastewater by waste materials”, J. Colloid Interface Sci., 343, 463-473, 2010.
[39]
Langmuir, I., “The Adsorption of Gases on plane surfaces of Glass, Mica and Platimum” J. Am. Chem. Soc., 40, 1361–1403, 1918.
[40]
Ho, Y. S., Huang, C. T. and Huang, H. W., “Equilibrium sorption isotherm for metal ions on tree fern”, Process Biochem., 37, 1421–1430, 2002.
[41]
Freundlich, H. M. F., “Over the adsorption in solution”, J. Phys. Chem., 57, 385- 471, 1906.
[42]
Kausar, A., Nawaz, H. and Mackinnon, G., “Equilibrium, kinetic and thermodynamic studies on the removal of U (VI) by low cost agricultural waste”, Colloids Surfaces B Biointerfaces 111, 124-133, 2013.
[43]
Slejko, F. L., “Adsorption technology. A step-by-step approach to process evaluation and application”, Chemical Industries Series, New York/Basel: Marcel Dekker, Inc. Vol. 19, ISBN 08247-7285-7, 1985.
[44]
Aravindhan, R., Rao, J. R. and Nair, B. U., “Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis”, J. Hazard. Mater., 142, 68–76, 2007.
[45]
Dakiky, M., Khamis, M., Manasra, A. and Mereb, M. “Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents”, Advance Environ. Res., 6, 533–540, 2002.
[46]
Aksu, Z., “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris”, Process Biochem., 38, 89–99, 2002.
[47]
Sarı A. and Tuzen M., “Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass” Journal of Hazardous Materials, 164, 1004–1011, 2009.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186