Study of SO2 Adsorption on Porous SiO2 Particles Using a Micro-Reactor System
Modern Chemistry
Volume 5, Issue 3, June 2017, Pages: 43-49
Received: May 14, 2017; Published: May 16, 2017
Views 2197      Downloads 79
Authors
Yumei Wu, Chemical Engineering Department, Wenzhou University, Wenzhou, China
Xiaoling Zha, Chemical Engineering Department, Wenzhou University, Wenzhou, China
Jin Xu, Chemical Engineering Department, Wenzhou University, Wenzhou, China
Article Tools
Follow on us
Abstract
Immobilized ionic liquids (ILs) with high selective adsorption capacity of SO2 from N2, on porous solid particles such as SiO2, has potential applications on SO2 emission control. As the first step towards the establishment of a comprehensive model for SO2 adsorption on supported IL, the performance of neat SiO2, the support material, was evaluated in this work. A series of adsorption/desorption breakthrough experiments were carried out using a micro-reactor system to investigate the effects of concentration, particle structure and temperature. Theoretical analyses of experimental observations were used to identify the adsorption mechanisms and relative importance of mass transfer processes.
Keywords
SiO2, SO2 Capture, Mass Transfer Kinetics, Micro-Reactor
To cite this article
Yumei Wu, Xiaoling Zha, Jin Xu, Study of SO2 Adsorption on Porous SiO2 Particles Using a Micro-Reactor System, Modern Chemistry. Vol. 5, No. 3, 2017, pp. 43-49. doi: 10.11648/j.mc.20170503.12
References
[1]
Lunt R. R and Cunic J. D. Profiles in Flue Gas Desulfurization. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2000.
[2]
Srivastava R. K and Jozewicz W. Flue gas desulfurization: the state of the art. J Air Waste Manag Assoc. 2001; 51(12): 1676.
[3]
Camper D, Scovazzo P, Koval C, Noble R. Gas Solubilities in Room-Temperature Ionic Liquids. Ind Eng Chem Res. 2004; 43: 3049.
[4]
AnthonyJ. L, Maginn E. J, Brennecke J. F. Solubilities and Thermodynamic properties of Gases in the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Hexafluorophosphate. J Phys Chem B. 2002; 106:7315.
[5]
Cadena C, Anthony J. L, Shah J. K, Morrow T. I, Brennecke J. F, Maginn E. J. Why Is CO2 so Soluble in Imidazolium-Based Ionic Liquids. J Am Chem Soc. 2004; 126: 5300.
[6]
Bates E. D, Mayton R. D, Ntai I, Davis J. H. CO2 Capture by a Task-Specific Ionic Liquid. J Am Chem Soc. 2002; 124: 926.
[7]
Zhang X, Zhang X. C, Dong H, Zhao Z, Zhang S, Huang Y. Carbon capture with ionic liquids: overview and progress. Energy Environ Sci. 2012; 5: 6668.
[8]
Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R. Regular Solution Theory and CO2 Gas Solubility in Room-Temperature Ionic Liquids. Ind Eng Chem Res. 2004; 43: 6855.
[9]
Wu W. Z, Han B. X, Gao H. X, Liu Z. M, Jiang T, Huang J. Desulfurization of Fuel Gas: SO2 Absorption by an Ionic Liquid. Angew Chem Int Ed. 2004; 43: 2415.
[10]
Huang J, Riisager A, Wasserscheid P, Fehrmann R. Reversible Physical Absorption of SO2 by Ionic Liquids. Chem Commun. 2006; 38: 4027.
[11]
Huang J, Riisager A., Berg R. W, Fehrmann R. Tuning Ionic Liquids for High Gas Solubility and Reversible Gas Sorption. J Mol Cat A-Chem. 2008; 279: 170.
[12]
Yuan X. L, Zhang S. J, Lu X. M. Hydroxyl Ammonium Ionic Liquids: Synthesis, Properties and Solubility of SO2. J Chem Eng Data. 2007; 52: 596.
[13]
Anderson J. L, Dixon J. K, Maginn E. J, Brennecke J F. Measurement of SO2 solubility in Ionic Liquids. J Phys Chem B. 2006; 110: 15059.
[14]
Jiang Y. Y, Zhou Z, Jiao Z, Li L, Wu Y. T, Zhang Z. B. SO2 Gas Separation Using Supported Ionic Liquid Membranes. J Phys Chem B. 2007; 111: 5058.
[15]
Yokozeki A, Shiflett M. B. Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid [hmim]-[Tf2N]. Energy Fuels. 2009; 23:4701.
[16]
Huang J, Riisager A, Wasserscheid P, Fehrmann R. Reversible physical absorption of SO2 by ionic liquids. Chem Commun.2006; 38: 4027.
[17]
Anderson J. L, Dixon J. K, Maginn E. J, Brennecke J. F. Measurement of SO2 solubility in ionic liquids. J Phys Chem B. 2006; 110: 15059.
[18]
Wang C, Cui G, Luo X, Xu Y, Li H, Dai S. Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption. J Am Chem Soc. 2011; 133:11916.
[19]
Tang Y X, Mao W K, Ma N, et al. [Adsorption performances for sulfur dioxide using imidazole ionic liquids] [J]. Huan Jing Ke Xue, 2010, 31(31):2582-2586.
[20]
Qu Y, Lu. Adsorption of five adsorbents for different ionic liquids aqueous solutions [J]. Chinese Journal of Environmental Engineering, 2012, 6(9):2969-2973.
[21]
Wishart J F. Energy applications of ionic liquids [J]. Energy & Environmental Science, 2009, 2(9):956-961.
[22]
Wang C, Ren S, Hou Y, et al. Absorption of SO2 in simulated flue gas with aqueous ionic liquid solutions [J]. Ciesc Journal, 2015, 66(S1):222-227.
[23]
Huang K, Lu J F, Wu Y T, et al. Absorption of SO2, in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids [J]. Chemical Engineering Journal, 2013, s 215–216(2):36-44.
[24]
Xu J, Zha X, Wu Y, et al. Fast and highly efficient SO2 capture by TMG immobilized on hierarchical micro-meso-macroporous AlPO-5/cordierite honeycomb ceramic materials [J]. Chemical Communications, 2016, 52(38):6367-6370.
[25]
Li X, Zhang L, Ying Z, et al. SO2 Absorption Performance Enhancement by Ionic Liquid Supported on Mesoporous Molecular Sieve [J]. Energy & Fuels, 2015, 29(2):150105003334007.
[26]
Chen K, Lin W, Yu X, et al. Designing of anion‐functionalized ionic liquids for efficient capture of SO2 from flue gas [J]. Aiche Journal, 2015, 61(6):2028-2034.
[27]
Wu L. B, An D, Dong J, Zhang Z. M, Li B-G, Zhu S-P. Preparation and SO2 Absorption/Desorption Properties of Crosslinked Poly (1, 1, 3, 3-Tetramethylguanidinium Acrylate) Porous Particles. Macromol Rapid Commun. 2006; 27: 1949.
[28]
Zhang Z, Wu L, Dong J, Li B-G and Zhu S-P. Preparation and SO2 Sorption/Desorption Behavior of an Ionic Liquid Supported on Porous Silica Particles. Ind Eng Chem Res. 2009; 48: 2142.
[29]
Li X, Zhang L, Zheng Y, Zheng Chuguang. SO2 Absorption Performance Enhancement by Ionic Liquid Supported on Mesoporous Molecular Sieve. Energy Fuels 2015; 29: 942.
[30]
Jin M, Hou Y, Wu W, Ren S, Tian S, Xiao L, Lei Z. Solubilities and Thermodynamic Properties of SO2 in Ionic Liquids. J Phys Chem B. 2011; 115: 6585.
[31]
H. S. Traub. Preparative Chromatography. Weinheim, Germany, 2005.
[32]
Zha X. Master Thesis at Wenzhou University.
[33]
Xu J, Zhu L, Xu G, Yu W, Ray A. K. Determination of competitive adsorption isotherm of enantiomers on preparative chromatographic columns using inverse method. J Chromatogr A. 2013; 1273: 49.
[34]
Bird R. B, Stewart W. E, Lightfoot E. N. Transport Phenomena. John Wiley & Sons, New York, 1960.
[35]
Gritti F, Guiochon G. Mass transfer kinetics, band broadening and column efficiency. J Chromatogr A. 2012; 1221: 2.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186