Contribution to Reactivity, Stability and Selectivity of Monodentated Free Phosphines
Modern Chemistry
Volume 7, Issue 2, June 2019, Pages: 38-44
Received: Aug. 19, 2019; Accepted: Sep. 2, 2019; Published: Sep. 17, 2019
Views 68      Downloads 13
Authors
Kouadio Valery Bohoussou, Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University Nangui Abrogoua, Abidjan, Côte d'Ivoire
Anoubilé Bénié, Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Chimie Bio-Organique et de Substances Naturelles, University Nangui Abrogoua, Abidjan, Côte d'Ivoire
Mamadou Guy-Richard Koné, Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University Nangui Abrogoua, Abidjan, Côte d'Ivoire
N’guessan Yao Silvère Diki, Faculty of Science of Structures of Matter and Technology (UFR SSMT), Laboratoire de Chimie Physique, University Félix Houphouët - Boigny, Abidjan-Cocody, Côte d'Ivoire
Koffi Alexis Respect Kouassi, Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University Nangui Abrogoua, Abidjan, Côte d'Ivoire
Nahossé Ziao, Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University Nangui Abrogoua, Abidjan, Côte d'Ivoire
Article Tools
Follow on us
Abstract
Phosphines having a high degree of instability in their syntheses, it is necessary to find conditions for obtaining stable products in order to propose new stable and active compounds. It is this concern that responds to the theoretical study of stability and selectivity. This theoretical study of chemical reactivity was carried out using the Density Functional Theory (DFT) method, at the B3LYP/6-31G (p) calculation level. The use of the Frontier Molecular Orbital (FMO) theory, with the Single Orbital Molecular Orbital (SOMO) cation model, made it possible to study the stability of some isomers formed during the addition of free phosphines to the carbon-carbon triple bond. The analysis of these reactivity quantities allowed us to conclude that the presence of halogens on acetylene influences the stability of the stereoisomers during their formation. This stability increases as the electronegativity of the halogen decreases. The large number of π conjugation favors the formation of Cis isomers and the lack or small amount of π conjugation orients the formation of Trans isomers. The nature of the aryl substituent and the number of low electronegativity halogen on the phosphine are capable of promoting the production of stable products.
Keywords
DFT, Phosphine, Stability, SOMO, Stereoisomers
To cite this article
Kouadio Valery Bohoussou, Anoubilé Bénié, Mamadou Guy-Richard Koné, N’guessan Yao Silvère Diki, Koffi Alexis Respect Kouassi, Nahossé Ziao, Contribution to Reactivity, Stability and Selectivity of Monodentated Free Phosphines, Modern Chemistry. Vol. 7, No. 2, 2019, pp. 38-44. doi: 10.11648/j.mc.20190702.13
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
M. Brynda, Coord. Chem. Rev., (2005) 249, 2013-2034.
[2]
R. M. Hiney, A. Ficks, D. G. Gilheany, L. J. Higham, Air-stablechiral primary phosphines part (i) synthesis, stability and applications, in: I. J. S. Fairlamb, J. M. Lynam (Eds.) Organometallic Chemistry: The Royal Society of Chemistry, London (2011) 37, 27-45.
[3]
K. V. Katti, H. Gali, C. J. Smith, D. E. Berning, Acc. Chem. Res., (1998) 32, 9-17.
[4]
H. Dorn, R. A. Singh, J. A. Massey, I. Manners, Angew. Chem., Int. Ed., (1999) 38, 3321-3323.
[5]
J. B. Foresman, A. Frisch Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, USA, (1996).
[6]
M. Kurt, TR. Sertbakan, M. Ozduran. Spectrochim, An experimental and theoretical study of molecular structure and vibrational spectra of 3-and 4- pyridineboronic acid molecules by density functional theory calculations. Acta Part A: Mol. Biomol. Spectrosc. (2008); 70 (3): 664-673.
[7]
L. H. A-Rahman, R. M. El-Khatib, L. A. E. Nassr, AM. A-Dief, M. Ismael, A. A. Seleem. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron (II) bromosalicylidene amino acid chelates, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2014); 117; 366–378.
[8]
P. k Chattaraj, B. Maiti, U. Sarkar “philicity:  a unified treatment of chemical reactivity and selectivity”j. Phys. Chem. A (2003) 107; 25; 4973-4975.
[9]
A. R. Jupp, T. C. Johnstone, D. W. Stephan. Improving the Global Electrophilicity Index (GEI) as a Measure of Lewis Acidity. Inorganic Chemistry (2018), 57 (23), 14764-14771.
[10]
M. G. R. Koné, S. T. Affi, N. Ziao, K. Bamba, E. F. Assanvo. Hydrogen bonding sites in Benzimidazolyl-chalcones molecules: Ab initio and DFT investigation. Journal of Chemical and Pharmaceutical Research (2015); 7 (12): 805-812.
[11]
Y. Traore, K. Bamba, N. Ziao, ST. Affi, M. G. R. Koné. Quantum chemical characterization of hydrogen bonding sites in three 4-(4-Halo-Phenyl)-6-(Furan-2-yl) Pyrimidin-2-Amine Derivatives, Computational Chemistry (2017); 5: 91-102.
[12]
R. Bhattacharjee and R. K. Roy;”Relative Contribution of Combined Kinetic and Exchange Energy Terms vs the Electronic Component of Molecular Electrostatic Potential in Hardness Potential Derivatives”. The Journal of Physical Chemistry A (2013) 117 (45), 11528-11539.
[13]
J. I. M. Araya, G. S. Morán, and D. G. Mitnik. Computational Nanochemistry Report on the Oxicams—Conceptual DFT Indices and Chemical Reactivity. The Journal of Physical Chemistry B (2013), 117 (21).
[14]
Wavefunction Inc., Irvine, CA, (2014).
[15]
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT; (2009).
[16]
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. (1988) B37 (2): 785-789.
[17]
J. Kapp, M. Remko, PVR. Schleyer. H2XO and (CH3) 2XO Compounds (X= C, Si, Ge, Sn, Pb): Double bonds vs carbene-like structures can the metal compounds exist at all? Journal of the American Chemical Society. (1996) 118: 5745-5751.
[18]
AD. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. (1993) 98 (7): 5648-5652.
[19]
L Maier. Helv. Chim. Acta (1966), 842-851.
[20]
J. C. Guillemin; S. L. Serre; L Lassalle. Adv. Space Res. (1997) 19, 1093-1102.
[21]
B. Stewart, H. Anthony, and H. J. Lee Predicting the Air Stability of Phosphines American Chemical Society Organometallics (2011) 30, 5338–5343.
[22]
F. H. Zadeh, R. A. M. Quintana, T. Verstraelen, P. Bultinck, and P. W. Ayers;” When is the Fukui Function Not Normalized? The Danger of Inconsistent Energy Interpolation Models in Density Functional Theory”. Journal of Chemical Theory and Computation (2016), 12 (12), 5777-5787.
[23]
A. Benié, J. M. Dénis, Y. A Békro, Synthesis of Free and Complexes 2,2 Dichloro (ethyl) Aryl phosphine and bis(2,2)- Dichloro(ethyl)Arylphosphine by Regioselective Hydrophosphination. European Journal of Scientific Research (2010) 47, 164- 168.
[24]
K. N. N’Guessan, K. Bamba, O. P. Wawohinlin, N. Ziao; NBO Population Analysis and Electronic Calculation of Four Azopyridine Ruthenium Complexes by DFT Method; Computational Chemistry (2017), 5, 51-64.
[25]
R. K. Singh, S. K. Verma, and P. D. Sharma, DFT Based Study of Interaction between Frontier Orbitals of Transition Metal Halides and Thioamides. International Journal of Chemtech Research, (2011) 3, 1571-1579.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186