Investigation of Structural, Electronic and Optical Properties of KCdF3
American Journal of Modern Physics
Volume 2, Issue 2, March 2013, Pages: 77-80
Received: Mar. 11, 2013; Published: Mar. 10, 2013
Views 3561      Downloads 254
Authors
M. Nurullah Secuk, Physics Department, Faculty of Science, Yuzuncu Yil University, 65080, Van, Turkey
Emel Kilit Dogan, Physics Department, Faculty of Science, Yuzuncu Yil University, 65080, Van, Turkey
urat Aycibin, Physics Department, Faculty of Science, Yuzuncu Yil University, 65080, Van, Turkey
Bahattin Erdinc, Physics Department, Faculty of Science, Yuzuncu Yil University, 65080, Van, Turkey
Harun Akkus, Physics Department, Faculty of Science, Yuzuncu Yil University, 65080, Van, Turkey
Article Tools
PDF
Follow on us
Abstract
The structural, electronic and optical properties of KCdF3 are investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA). The calculated lattice parameters have been compared to experimental results and demonstrated to be in good agreement with them. The calculated electronic band structure of cubic KCdF3 shows that crystal has a indirect forbidden band gap with value of 2.95 eV from the high symmetry point R to gamma point in the first Brillouin Zone (BZ). The optical spectra are investigated under the scissor approximation in the photon energy range, up to 30 eV. The dielectric function and some optical constants such as energy loss functions, reflectivity, extinction, and absorption coefficients, effective number of valance electrons and refractive index are calculated.
Keywords
Density functional theory, Electronic structure, Optical properties
To cite this article
M. Nurullah Secuk, Emel Kilit Dogan, urat Aycibin, Bahattin Erdinc, Harun Akkus, Investigation of Structural, Electronic and Optical Properties of KCdF3, American Journal of Modern Physics. Vol. 2, No. 2, 2013, pp. 77-80. doi: 10.11648/j.ajmp.20130202.18
References
[1]
C.-g. Duan, W. N. Mei, J. Liu, W.-G. Yin, J. R. Hardy, R. W. Smith, M. J. Mehl, and L. L. Boyer, "Electronic properties of NaCdF3: A first-principles prediction," Phys. Rev. B, vol. 69 (2004) pp. 033102-1- 033102-4.
[2]
A. Gektin, I. Krasovitskaya, and N. Shiran, "High-temperature thermoluminescence of KMgF3-based crystals," Journal of Luminescence, vol. 72–74 (1997) pp. 664-666.
[3]
M. Mortier, I. Gesland, and M. Rousseau, "Experimental and theoretical study of second-order Raman scattering in BaLiF3," Solid State Commun., vol. 89 (1994) pp. 369-371.
[4]
M. Hidaka, S. Hosogi,, M. Ono and K. Horai, "Structural phase transitions in KCdF3," Solid State Commun., vol. 23 (1977) pp. 503-506.
[5]
B. Huang, J. M. Hong, X. T. Chen, Z. You, and X. Z. You, "Mild solvothermal synthesis of KZnF3 and KCdF3 nanocrystals," Materials Letters, vol. 59 (2005) pp. 430-433.
[6]
M. Hidaka, and S. Hosogi, "The crystal structure of KCdF3 ," J. Phys. France, vol. 43 (1982) pp. 1227-1232.
[7]
M. Hidaka, Z. Y. Zhou, and S. Yamashita, "Structural phase transitions in KCdF3 and K0.5Rb0.5CdF3," A Multinational Journal, vol. 20 (1990) pp. 83-94.
[8]
M. Rousseau, J. Y. Gesland, J. Julliard, J. Nouet, J. Zarembowitch, and A. Zarembowitch, "Crystallographic, elastic, and Raman scattering investigations of structural phase transitions in RbCdF3 and TlCdF3," Phys. Rev. B, vol. 12 (1975) pp. 1579-1590.
[9]
C. N. W. Darlington, "Phase transitions in KCdF3," J. Phys. C: Solid State Phys., vol. 17 (1984) pp. 2859-2868.
[10]
W. Kleemann, J. Y. Gesland, and J. Nouet, "Linear birefringence studies of structural phase transitions of KCdF3," Solid State Communications, vol. 26 (1978) pp. 583-588.
[11]
G. A. Geguzina, "Interatomic Bond Strains—Phase Transition Temperatures Correlations for Perovskite Compounds," Integrated Ferroelectrics, vol. 64 (2004) pp. 61-68.
[12]
R. L. Moreira, and A. Dias, " Comment on prediction of lattice constant in cubic perovskites," J. Phys. Chem. Solids, vol. 68 (2007) p. 1617-1622.
[13]
J. P. Perdew, K. Burke and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. , vol. 77 (1996) pp. 3865-3868.
[14]
N. Troullier and J. L. Martins, "Efficient Pseudopotentials for Plane-Wave Calculations.," Phys. Rev. B, vol. 43 (1991) pp. 1993-2006.
[15]
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, " Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients," Rev. Mod. Phys. , vol. 64 (1992) pp. 1045-1097.
[16]
W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Phys. Rev. , vol. 140 (1965) pp. A1133- A1138.
[17]
X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rignanese, L. Sindic, M. Verstrate, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J. Y. Raty, D. C. Allan, "First-principle computation of material properties: the ABINIT software project," Computational Materials Science, vol. 25 (2002) pp. 478-492.
[18]
H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Phys. Rev. B, vol. 13 (1976) pp. 5188-5192.
[19]
J. L. P. Hughes and J. E. Sipe, "Calculation of second-order optical response in semiconductors," Phys. Rev. B, vol. 53 (1996) pp. 10751-10763.
[20]
Y. Chornodolskyy, S. Syrotyuk, G. Stryganyuk, A. Voloshinovskii,and P. Rodnyi, "Electronic energy structure and core –valance luminescence of ABX3 (A=K, Rb, Cs; B=Ca; X=F) crystals," Journal of Physical Studies, vol. 4 (2007) pp. 421-426.
[21]
M. Fox, Optical Properties of Solids. Oxford University Press, Oxford, UK, 2002, pp. 2-7.
[22]
H. R. Philipp, and H. Ehrenreich, "Optical Properties of Semiconductors," Phys. Rev., vol. 129 (1963) pp. 1550-1560.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186