Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals.
American Journal of Modern Physics
Volume 2, Issue 3, May 2013, Pages: 144-147
Received: Apr. 17, 2013; Published: May 20, 2013
Views 3629      Downloads 261
Authors
Wen-Piao Lin, Electronic Engineering Department, Chang Gung University, Taoyuan, Taiwan
Yu-Fang Hsu, Electronic Engineering Department, Chienkuo Technology University, Changhua, Taiwan
Han-Lung Kuo, Electronic Engineering Department, Chang Gung University, Taoyuan, Taiwan
Article Tools
PDF
Follow on us
Abstract
In this paper, a novel all-optical NOR logic gate based on two dimension (2-D) photonic crystals (PC) is designed and simulated by a cascade of two all-optical switches. The new all-optical switch is composed of a nonlinear photonic crystal ring resonator (PCRR) and T-type waveguide. The PC structure has a square lattice of silicon rod with refractive index of 3.39 in air. The bandgap of this structure is derived by the plane wave expansion (PWE) method, which is from a/= 0.32 to a/= 0.44. In this structure to work at the wavelength of 1550 nm, the lattice constant ‘a’ should be 630 nm; the total size of the proposed optical NOR gate is only 18 m × 11 m. The simulation results using two dimensional finite difference time domain (FDTD) method indicated that the proposed optical NOR logic gate is a potential candidature for ultrafast optical digital circuits.
Keywords
All-Optical NOR Logic Gate, Photonic Crystals (PC), Photonic Crystal Ring Resonator (PCRR), Plane Wave Expansion (PWE), Finite Difference Time Domain (FDTD)
To cite this article
Wen-Piao Lin, Yu-Fang Hsu, Han-Lung Kuo, Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals., American Journal of Modern Physics. Vol. 2, No. 3, 2013, pp. 144-147. doi: 10.11648/j.ajmp.20130203.18
References
[1]
E.-H. Lee, "Micro/nano-scale optical network: A new challenge toward next generation", Proc. Int. Conf. on Transparent Opt. Networks, 4 (2008), 118-119.
[2]
S. Robinson and R. Nakkeeran, "A bandpass filter based on 2D circular photonic crystal ring resonator", Proc. IEEE Int. Conf. on Wireless Opt. Commun. Networks 1 (2010), 1-3.
[3]
Riadh Bchir, Afraph Bardaoui, Hatem Ezzaouia,"Design of silicon-based two-dimensional photonic integrated circuits: XOR gate", IET Optoelectron (2013), Vol. 7, Iss. 1, pp. 25-29
[4]
Yi-Pin Yang, I-Chen Yang, Chia Hsien Chang, Yao-Tsung Tsai, Kun-Yi Lee, Yi-Rung Tsai, Yong-Si Tu, Sin-Fu Liao, Ching-Chou Huang, Yen-Juei Lin, Wei-Yu Lee, Cheng-Che Lee,"Binary Operating in All-Optical Logic Gates Based on Photonic Crystals",2012 Internatioinal Symposium on Computer,Consumer and Control
[5]
A. P. Kabilan, X. S. Christina and P. E. Caroline, "Design of optical logic gates using photonic crystal", Proc. Int. Conf. on Internet (2009), 1-4.
[6]
T.-T. Shih, Y.-D. Wu and J.-J. Lee, "Proposal for compact optical triplexer filter using 2-D photonic crystals", IEEE Photon. Technol. Lett. 21 (2009), 18-20.
[7]
Y. D. Wu, K. W. Hsu, T. T. Shih and J. J. Lee, "New design of four-channel add-drop filters based on double resonant cavity photonic crystals", J. Opt. Soc. Am. B 26 (2009), 640-644.
[8]
D. Zhao, J Zhang, P. Yao, X. Jiang and X. Chen, "Photonic crystal Mach-Zehnder interferometer based on self-collimation", Appl. Phys. Lett. 90 (2007), 231114-231114-3.
[9]
J. Wang, J. Sun and Q. Sun, "PPLN based flexible optical logic AND gate", IEEE Photon. Tech. Lett. 20 (2008), 211-213.
[10]
Y.-L. Zhang, Y. hang and B. Li, "Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystal", Opt. Express 15 (2007), 9287-9292.
[11]
C. Porzi, M. Guina, "A. Bogoni and L. Poti, All-optical nand/nor logic gates based on semiconductor saturable absorber etalons", IEEE J. Sel. Top. Quantum Electron 14 (2008), 927-937.
[12]
P. Andalib and N. Granpayeh, "All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators", J Opt. Soc. Am B 26(2009), 10-16.
[13]
M. Djavid, A. Ghaffari and M. S. Abrishamian, "Coupled-mode analysis of photonic crystal add–drop filters based onring resonators", J. Opt. Soc. Am. B 25 (2008), 1829-1832.
[14]
V. D. Kumar, T. Srinivas and A. Selvaraian, "Investigation of ring resonators in photonic crystal circuits", Photonics and Nanostructures 2 (2004), 199-20
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186