Inertial Propagation of Streamers after External Voltage Termination
American Journal of Modern Physics
Volume 2, Issue 5, September 2013, Pages: 242-247
Received: Jun. 25, 2013; Published: Jul. 20, 2013
Views 3306      Downloads 120
Alexander V. Shelobolin, P.N. Lebedev Institute of Russian Academy of Science, Moscow, Russia
Article Tools
Follow on us
The fundamental processes of streamer propagation in the streamer chamber after external voltage termination are considered on the basis of a plasma-waveguide model of gas electric breakdown. The model analyses the time dependence of streamer radiation under the mentioned conditions. The velocity and time scales of the process have been defined, and the electron density is estimated in the plasma waveguide formed before the external voltage termination. Earlier shortcomings of theories of this phenomenon are corrected.
Gas Electric Breakdown, Voltage Termination, Streamer Pair, Nonlinear Plasma-Waveguide Model
To cite this article
Alexander V. Shelobolin, Inertial Propagation of Streamers after External Voltage Termination, American Journal of Modern Physics. Vol. 2, No. 5, 2013, pp. 242-247. doi: 10.11648/j.ajmp.20130205.11
Rudenko N.S and V.I. Smetanin. Streamer propagation after the voltage termination in chamber. Sov. Phys. Techn. Phys. 19, p.1616. 1975.
N.S. Rudenko and V.I. Smetanin. Mechanism of streamer propagation based on plasma oscillations. Izvestiya vuzov. Fizika. v.7. p.34. 1977.
A.F. D’yakov, Y.K. Bobrov, A.V. Sorokin and Y.V. Yrgelenas. Physical Concept of Electrical Breakdown of Gases (Moscow: MPEI) 1999.
N.S. Rudenko and V.I. Smetanin. Investigation of large-gap streamer neon breakdown. Sov. Phys. – JETP. 34, 76. 1972.
A.A. Vorob’ev, N.S. Rudenko, V.I.Smetanin. Spark chamber technique. Moscow, Atomizdat. 1978.
L.P. Babich Fiz. Plazmy 7, 1419 [Sov. J. Plasma Phys. 7, 783] 1981.
E.D. Lozansky and O.B. Firsov. Streamer propagation in a zero leading field. J. Eksp. Teor. Phys., v.2, 8, p.352. (JETP Lett.) 1976.
A.N. Lagar’kov and I.M. Rutkevich. Ionization waves in electrical breakdown in gases. Springer-Verlag, Inc. 1994.
A.V. Gurevich and K.P. Zybin. Runaway breakdown and electric discharges in thunderstorms. Phys. Uspekhi 44(11), 1119 – 1140. 2001.
K.R. Allen, K. Phillips K. Cloud chamber study of electron avalanche growth. Proc. Roy. Soc., 274 A, 163. 1963.
H. Raether. Electron Avalanche and Breakdown in Gases. Butterworths. London. 1964.
K.H. Wagner. Electron avalanche-to-streamer transition investigated by means of image intensifier streak shutter technique. Proceedings of the Seventh International Conference «Phenomena in Ionized Gases». Beograd. 1965, V.1, p.571.
H. Tholl H. Zs. Naturforsch. V.180, P.516. 1964.
P. Stritzke, I. Sander and H. Raether Spatial and temporal spectroscopy of streamer discharge in nitrogen. J. Phys. D: Appl. Phys., Vol.10, p.2285. 1977.
A.V. Shelobolin Quality factor of plasma waveguide and contraction of laser-induced breakdown in gases. Plasma Phys. Rep., 32, p. 880. 2006.
A.N. Kondratenko. Plasma Waveguides (Moscow; Atomizdat). 1976.
H. Jrenka and E. Barreto. Study of electron waves in electrical discharge channels. J. Appl. Phys. Vol.53, №5, p.3481. 1982.
A.N. Lagar’kov and I.M. Rutkevich. Fiz. Plazmy 7, 1132. 1981. [Sov. J. Plasma Phys., 7 622 (1981)]
A.V. Shelobolin A.V. Diagnostics of Solitary Waves of Electric Breakdown in Gases. Journal of Russian Laser Research. V25, N5. p.440. 2004.
V.E. Golant, A.P. Zhilinsky, I.E. Sakharov I.E. The principles of plasma physics. Atomizdat. Moscow. 1977.
A.V. Shelobolin. Plasma-waveguide model of electric breakdown in gases Plasma Phys. Rep.., 29, 166. 2003.
T.M. Bazelyan and Y.P. Raizer. Spark Discharge. Chem. Rubber Co. Press. New York. 1998.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186